内点法+外点法

合集下载

惩罚函数法

惩罚函数法
内点法的程序框图如下:
k k 1
r k 1 cr k

X 0 X *(rk )
开始
输入 X 0、r0、c、
k←0
求 min(X , rk )
满足收敛条件? 是
X * X *(rk ) f ( X *) f X *(rk )
结束
3.外点惩罚函数法
求解策略
外点惩罚函数法简称外点法。这种方法和内点相反,
3.外点惩罚函数法
外点法程序框图:
Yes
X * X *(rk )
Yes
f ( X *) f X *(rk )
结束
开始
输入 X 0, r0, c,1,2
k 0
求 min ( X , rk ) 得X *(rk )
Q max g j ( X *(rk ))
Q 1 ?
No
X * (r k ) X * (r k1) 2
(X , r) f (X ) rmax 0, g j (X ) rhk (X )
j 1
k 1
式中:r为惩罚因子,它是由小到大,且趋近于∞的数列
3.外点惩罚函数法
l
2m
2
即 r0<r1<r2<··· ,hk (X ) 、max 0, g j (X )分别对
应为对应于不等式约束和等k式1 约束函数j1的惩罚项, 其中
当 r , lim(1 1 ) 1。
r 4r
当逐步增大r值,直至趋近于无穷时,逼近原问题的约束最优
解,当r=0.25,0.5,1,2时,惩罚函数 (X , r) 的等值线图
下如
3.外点惩罚函数法
当r逐渐增大时,极值
点 X *(r)的序列将沿一直线轨 迹 ( X *(r), r) 1 X *(r) 在可 行域外逐步逼近2 最优2 点。

罚函数法(SUMT法)(ppt文档)

罚函数法(SUMT法)(ppt文档)

( NP) 求解 min( X , M ) 设其最优解为 X*(M), XRn
研究 X*(M) 与(NP)的最优解 X* 之间的关系
线性规划3-6
一.外点法迭代原理
(NP) min f (X )
m
( X , M ) f ( X ) M [min( 0, gi ( X ))]2
i 1
gi (X ) 0 gi (X )
30 若 gi ( X (k ) ( Mk )) , i 1,2, ,m, 则迭代终止,X X (k ) ( M k ) 否则取Mk+1=C Mk , 其中C = 5~10
D
X

X(k)(Mk )
gi (X ) 0
令 k:= k+1 转20
M4 1000 X (4) (1000)
D
g2(X ) 0
g1( X ) 0
X(k)(Mk )
X
x1
线性规划3-6
一.外点法迭代原理
(NP) min f (X )
s.t. gi ( X ) 0
线性规划3-6
第三章 非线性规划
一.外点罚函数法(外点法)
( NP) min f (X )
s.t
.

gi hj
( (
X X
) )

0, 0,
i j
1, 2, 1, 2,
,m ,p
外点法迭代原理 外点法迭代步骤 外点法举例 外点法的优缺点
二.外点法迭代步骤
(NP) min f (X )
通过迭代逐渐增大罚因子M:
(NP)min f (X )
s.t. gi ( X ) 0

运筹学与最优化方法习题集

运筹学与最优化方法习题集

一.单纯性法一.单纯性法1.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 122121212max 25156224..5,0z x x x x x s t x x x x =+£ìï+£ïí+£ïï³î 2.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 2322..2210,0z x x x x s t x x x x =+-³-ìï+£íï³î 3.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 1234123412341234max 24564282..2341,,,z x x x x x x x x s t x x x x x x x x =-+-+-+£ìï-+++£íï³î4.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 123123123123123max 2360210..20,,0z x x x x x x x x x s t x x x x x x =-+++£ìï-+£ïí+-£ïï³î 5.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12312312123max 224..26,,0z x x x x x x s t x x x x x =-++++£ìï+£íï³î6.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 105349..528,0z x x x x s t x x x x =++£ìï+£íï³î7.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 16 分)分) 12121212max 254212..3218,0z x x x x s t x x x x =+£ìï£ïí+£ïï³î二.对偶单纯性法二.对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分)12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î 2.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 121212212max 3510501..4,0z x x x x x x s t x x x =++£ìï+³ïí£ïï³î 3.用对偶单纯形法求解下列线性规划问题(共用对偶单纯形法求解下列线性规划问题(共 15 分)分) 1212121212min 232330210..050z x x x x x x s t x x x x =++£ìï+³ïï-³íï³ïï³î4.灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 124123412341234min 262335,,,0z x x x x x x x s t x x x x x x x x =+-+++£ìï-+-³íï³î5.运用对偶单纯形法解下列问题(共运用对偶单纯形法解下列问题(共 16 分)分) 12121212max 24..77,0z x x x x s t x x x x =++³ìï+³íï³î6.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分) 12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î三.0-1整数规划整数规划1.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345123345max 567893223220..32,,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x x or =++++-++-³ìï+--+³ïí--+++³ï=î 2.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 12312312323123min 4322534433..1,,01z x x x x x x x x x s t x x x x x or =++-+£ì++³ïí+³ïï=î 3.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 1234512345123451234512345max 20402015305437825794625..81021025,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++£ìï++++£ïí++++£ïï=î或 4.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345max 2534327546..2420,,,,01z x x x x x x x x x x s t x x x x x x x x x x =-+-+-+-+£ìï-+-+£íï=î或 5.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12341234123412341234min 25344024244..1,,,01z x x x x x x x x x x x x s t x x x x x x x x =+++-+++³ì-+++³ïí+-+³ïï=î或6.7.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 123451234513451245max 325232473438..116333z x x x x x x x x x x x x x x s t x x x x =+--+++++£ìï+-+£ïí-+-³ï 1231231231223max 3252244..346z x x x x x x x x x s t x x x x =-++-£ìï++£ïï+£íï+£ïï=四.K-T 条件条件1.利用库恩-塔克(K-T )条件求解以下问题(共)条件求解以下问题(共 15 分)分)22121122121212max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+£ìï+£íï³î2.利用库恩-塔克(K-T )条件求解以下非线性规划问题。

压缩感知的重构算法

压缩感知的重构算法

压缩感知的重构算法算法的重构是压缩感知中重要的一步,是压缩感知的关键之处。

因为重构算法关系着信号能否精确重建,国内外的研究学者致力于压缩感知的信号重建,并且取得了很大的进展,提出了很多的重构算法,每种算法都各有自己的优缺点,使用者可以根据自己的情况,选择适合自己的重构算法,大大增加了使用的灵活性,也为我们以后的研究提供了很大的方便。

压缩感知的重构算法主要分为三大类:1.组合算法2.贪婪算法3.凸松弛算法每种算法之中又包含几种算法,下面就把三类重构算法列举出来。

组合算法:先是对信号进行结构采样,然后再通过对采样的数据进行分组测试,最后完成信号的重构。

(1) 傅里叶采样(Fourier Representaion)(2) 链式追踪算法(Chaining Pursuit)(3) HHS追踪算法(Heavy Hitters On Steroids)贪婪算法:通过贪婪迭代的方式逐步逼近信号。

(1) 匹配追踪算法(Matching Pursuit MP)(2) 正交匹配追踪算法(Orthogonal Matching Pursuit OMP)(3) 分段正交匹配追踪算法(Stagewise Orthogonal Matching Pursuit StOMP)(4) 正则化正交匹配追踪算法(Regularized Orthogonal Matching Pursuit ROMP)(5) 稀疏自适应匹配追踪算法(Sparisty Adaptive Matching Pursuit SAMP)凸松弛算法:(1) 基追踪算法(Basis Pursuit BP)(2) 最小全变差算法(Total Variation TV)(3) 内点法(Interior-point Method)(4) 梯度投影算法(Gradient Projection)(5) 凸集交替投影算法(Projections Onto Convex Sets POCS)算法较多,但是并不是每一种算法都能够得到很好的应用,三类算法各有优缺点,组合算法需要观测的样本数目比较多但运算的效率最高,凸松弛算法计算量大但是需要观测的数量少重构的时候精度高,贪婪迭代算法对计算量和精度的要求居中,也是三种重构算法中应用最大的一种。

(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计

(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计
1.Fibonacci法—理想方法,不常用。
2.黄金分割法(0.618法)
原理:提高搜索效率:1)每次只插一个值,利用一个前次的插值;2)每次的缩短率λ相同。左右对称。
程序:p52
(四)插值方法
1.抛物线法
原理:任意插3点:
算得: ; ;
要求:
设函数 用经过3点的抛物线 代替,有
解线代数方程
解得:
程序框图p57
网格法 ,缩小区间,继续搜索。
Monte Carlo方法 , ,随机数。
比较各次得到的 得解
遗传算法(专题)
(二)区间消去法(凸函数)
1.搜索区间的确定:高—低--高( )则区间内有极值。
2.区间消去法原理:在区间[a, b]内插两个点a1, b1保留有极值点区间,消去多余区间。
缩短率:
(三)0.618法
可行方向—约束允许的、函数减小的方向。(图)约束边界的切线与函数等高线的切线方向形成的区域。
数学模型
用内点法或混合法,取 ,
直接方法
(一)随机方向法
1.在可行域产生一个初始点 ,因 (约束),则
--(0,1)的随机数。
2.找k个随机方向,每个方向有n个方向余弦,要产生kn个随机数 , , ,随机方向的单位向量为
3.取一试验步长 ,计算每个方向的最优点
4.找出可行域中的最好点 得搜索方向 。以 为起点, 为搜索方向得 。最优点必须在可行域内或边界上,为此要逐步增加步长。

穷举下去得递推公式
3.算例
p73
4.框图p72
5.特点
作业:1. 2.
(六)变尺度法
1.引言
坐标变换
二次函数
令 为尺度变换矩阵

第八章 内点法和外点法

第八章 内点法和外点法

(1)p x 是连续的 (2)对任意的 x R n ,有 p x 0 (3)当且仅当 p x 0 时,x X
建模方法与应用
9. 约束优化问题(II)
对上面的不等式约束,定义
0 g ( x) 2 g ( x ) i
i
g i ( x) 0 g i ( x) 0
建模方法与应用
9. 约束优化问题(II)
取 M 1,2,3,4 可得如下结果:
1 2 7 T x ( , , ) M 2 M 1 : x ( 1 , : 6 9) 4 16 T
29 T 23 T 1 , M 3 : x ( 1 8 192 ) , M 4 : x ( 10 , 200 )
*
(4.4)
则gi ( x * ) 0,i 1,, p,h j ( x * ) 0, j 1,,q
建模方法与应用
9.惩罚函数的性质和构造
对上面的约束优化问题, 定义惩罚函数
F x, M f x Mp x
(4.5)
n 其中 M 0 为常数,称为惩罚因子, p x 是定义在 R 上的一 个函数,称为惩罚项,它满足:
i 1 L


i
F x
, M f x M g x f x
(k0 ) k0
k 0
L
k0
i 1
k0
建模方法与应用
9. 约束优化问题(II)
2. 如果第 1 种情况不发生,即得到一个无穷点列
x , x
(k )
(k )
X , k 1, 2,
x ( k0 ) X ,则 x( k0 ) 为原来约束优化问题(4.1)-(4.3)的最优解。

约束问题的最优化方法

约束问题的最优化方法

m
⑤ .Φ ( x, r ) = f ( x) − r ∑ ln[− g u ( x)]
(k )
其中:惩罚(加权)因子 降低系数 c:
r ( 0 ) > r (1) > ....r ( k )
0< c <1
r ( k −1) ⋅ c = r ( k )
xk * → x *
当lim r ( k ) → 0
x ∈ D ⊂ Rn s.t. g u ( x ) ≥ 0, u = 1,2,..., p hv ( x ) = 0, v = 1,2,..., q min F ( x )
一. 约束优化问题解法分类: 约束优化方法按求解原理的不同可以分为直接法和间接法两类。
直接解法:随机方向搜索法、复合形法、可行方向法
其中:g u ( x) ≥ 0, u = 1,2,...m
③ .Φ ( x, r ) = f ( x) − ∑ ru ( k )
(k ) u =1
m
1 g u ( x)
④ .Φ ( x, r ) = f ( x) + r
(k )
(k )
(k )
1 ∑ 2 u =1 [ g u ( x )]
m u =1
k →∞
则Φ ( x, r ( k ) ) → f ( x) ,
) x12 + x22 例: 用内点法求 min f ( x=
s.t. g ( x ) = 1 − x1 ≤ 0
的约束最优解。
2 解: 首先构造内点惩罚函数:φ ( x , r ) = x12 + x2 − r k ln( x1 − 1)
(k ) u =1 m
lim r2 H [hv ( x ( k ) )] = 0

非线性规划问题的求解方法

非线性规划问题的求解方法
1.约束中可以有等式约束 2.可以含线性、非线性约束均可
输入参数语法:
x = fmincon(fun,x0,A,b) x = fmincon(fun,x0,A,b,Aeq,beq) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) x= fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2, ...)
4、其它求解算法
(1)间接法 (2)直接法
直接搜索法 以梯度法为基础的间接法
无约束规划的Matlab求解函数 数学建模案例分析(截断切割,飞机排队)
(1)间接法
在非线性最优化问题当中,如果目标函 数能以解析函数表示,可行域由不等式约束 确定,则可以利用目标函数和可行域的已知 性质,在理论上推导出目标函数为最优值的 必要条件,这种方法就称为间接法(也称为
第二步:求 (k) 最优的目标函数
function r=fungetlamada(lamada) %关于lamada的一元函数,求最优步长 global x0 d=fun1gra(x0); r=2*(x0(1)-lamada*d(1))^2+(x0(2)lamada*d(2))^2; %注意负号表示是负梯度
三、Matlab求解有约束非线性规划
1. 用fmincon函数求解形如下面的有约束 非线性规划模型
一般形式:
min f ( X ) s.t. AX b
Aeq X beq l X u c(X ) 0 ceq ( X ) 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.外点法
的约束最优化问题。

(由约束条件作图)
解:取()()()00120,0,0.01,10,0.01,0;X C r k εε======
外点法惩罚函数为:(会转化,并且把握函数值的趋势)
(看到了min 就要知道在平面中取什么范围内的点,才可使罚函数达到最小) 対上式求偏导得:
()
()
1211221226
28
264152845x x x r x x r x x x φφ--⎧⎫⎧⎫∂∂⎪⎪
⎪⎪
==⎨⎬⎨⎬-+--+-∂∂⎪⎪⎪⎪⎩⎭
⎩⎭
无约束目标函数极小化问题的最优解系列为:
()()**
12156584242
r r x r x r r r ++==
++
22
121122123142 min ()(3)(4) .. ()50 () 2.50
()0
()0
f X x x s t
g X x x g X x x g X x g X x =-+-=--≥=--≥=≥=≥()()()()()()()()()()()()()()()222222
1212121222
112212342222
11
22121212min ,34max 0,5max 0, 2.5max 0,max 0,69816(0,0,0,0)698165 2.5(0,0,x r x x r x x r x x r x r x x x x x g x g x g x g x x x x x r x x r x x g x g x g φ=-+-++-+-+++-+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦-++-+-≤-≤-≤-≤=-++-+++-+-++->->-()()340,0)x g x ⎧⎫⎪⎪
⎨⎬≤-≤⎪⎪⎩⎭
则得到最优解()*
*
123.75 1.25
min 8.125X X f x ===
2用内点法求解:
31211221
min ()(1)12
.. ()10 ()0
f X x x s t
g X x g X x =
++=-≥=≥ 的约束最优化问题。

解:取()()()0010,10,0.01,0.1,1,0;X C r k ε===== 外点法惩罚函数为:
()()()()()3
()1212121,ln 1ln()1ln[1()]12
k x r f x r x x x x r x x φ=--+-=++---⎡⎤⎣⎦
対上式求偏导得:
2111122
114241x x r
r
x x x x φφ∂∂=++-
=-∂-∂
令上式等于零:
2111122
10424110x x r
x x r
x x φφ∂=++-=∂-∂=-=∂
即:3
1
241
()x r x r r +=
无约束目标函数极小化问题的最优解系列为:
*
*
3
12()
41
()x r r x r r +=
当惩罚因子渐减时,由下表可看出收敛情况。

()**
12210
min 3
X X f x ===
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档