整式的加减活动课
整式的加减教研活动(3篇)

第1篇一、活动背景随着新课程改革的不断深入,数学教学越来越注重学生的思维能力和实践能力的培养。
整式加减作为初中数学的基础内容,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
为了提高教师对整式加减教学的理解和教学水平,我们学校数学组特组织了一次以“整式加减”为主题的教研活动。
二、活动目标1. 深入理解整式加减的基本概念和运算规则。
2. 探讨有效的教学方法,提高整式加减的教学效果。
3. 加强教师之间的交流与合作,共同提高整式加减的教学水平。
三、活动时间2023年3月15日,下午2:00-5:00四、活动地点学校会议室五、活动参与人员数学组全体教师六、活动内容1. 主题讲座由我校资深数学教师张老师主讲,主题为“整式加减的运算技巧与教学策略”。
张老师从整式加减的定义、运算规则、常见错误及解决方法等方面进行了详细的讲解,并结合实例分析了整式加减在实际教学中的应用。
2. 教学案例分析教师们分组讨论了几个典型的整式加减教学案例,分析了案例中的优点和不足,并提出了改进建议。
案例包括:- 案例一:利用数形结合的方法帮助学生理解整式加减的意义。
- 案例二:通过小组合作探究,让学生自主发现整式加减的规律。
- 案例三:运用多媒体技术辅助教学,提高学生的学习兴趣。
3. 教学观摩邀请了两位教师分别进行了整式加减的公开课展示。
课后,全体教师进行了评课,提出了中肯的意见和建议。
4. 经验分享邀请了几位在教学整式加减方面有丰富经验的教师分享了自己的教学心得,包括如何激发学生的学习兴趣、如何帮助学生克服学习困难等。
七、活动总结1. 整式加减的教学要注重学生的思维能力的培养,引导学生主动探究,发现规律。
2. 教师应善于运用多种教学方法,如数形结合、小组合作、多媒体技术等,提高教学效果。
3. 加强教师之间的交流与合作,共同提高整式加减的教学水平。
八、后续工作1. 教师们根据教研活动的收获,结合自己的教学实际,对整式加减的教学方案进行修改和完善。
第四章 整式的加减 数学活动课件(共19张PPT) 2024-2025学年人教版数学七年级上册

互动新授
探究活动2 “+”形和“H”形
ɑ-7
ɑ-1
ɑ
ɑ+1
ɑ+7
ɑ-8
ɑ-6
ɑ-1
ɑ
ɑ+1
ɑ+6
ɑ+8
ɑ-7+ɑ-1+ɑ+ɑ+1+ɑ+7=5ɑ
ɑ-8+ɑ-6+ɑ-1+ɑ+ɑ+1+ɑ+6+ɑ+8=7a.
规律:(1)“+”形中五数之和=中间数的5 倍 (2)“H"形中七数之和=中间数的7倍
(1)若一个三位数的百位、十位、个位上的数字分别为α,b,c,则通常记
这个三位数为
,于是, =100ɑ+10b+c=99a+9b+(ɑ+b+c).显然99ɑ和9b都能
被3整除,因此,如果a+b+c能被3整除,那么99ɑ+9b+(ɑ+b+c)就能被3整除,即
能被3整除。
(2)若一个四位数的千位、百位、十位、个位上的数字分别为ɑ,b,c,d,则通常记这
个四位数为
,于是 =1000ɑ+100b+10c+d=999ɑ+99b+9c+(a+b+c+d).显然
999ɑ,99b和9c 都能被 3 整除,因此,如果ɑ+b+c+d能被3 整除,那么
999ɑ+99b+9c+(ɑ+b+c+d)就能被3整除,即 能被3整除.
初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
整式的加减教案【精选7篇】

整式的加减教案【精选7篇】《整式的加减》教学设计篇一一、情境诱导前面我们已经学习了整式,现在我们来看本章引言中的这个实际问题怎么解决:在西宁到拉萨路段,列车在冻土地段的行驶速度是100km/h,在非冻土地段的行驶速度是120km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要th,你能用含t的式子表示这段铁路的全长吗?(请列出算式)得到:100t+120×2.1t即:100t+252t对于100t+252t怎么计算呢?这就是今天要学习的内容(板书课题),为了解决这问题,请同学们先来按照探究提纲开始探究(要求:不会的同学可以请教,也可以看书)二、探究指导(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。
)探究提纲:1、填空:(1)2t+52t=()t(2)3x2+2x2=()x2(3)3ab2-5ab2=()ab2(4)4xy+6xy=2、如果把上面每个算式左边的两个项叫同类项,你能总结出他的特征吗?你能说说出什么是同类项吗?3、仔细观察上面三个算式的从左到右的运算,你发现了什么规律,请用语言叙述你的规律。
三、展示归纳1、抽有问题的学生逐题汇报,学生说教师板书。
2、发动学生进行评价、补充、完善,学生说老师改写,3、教师最后揭示性质,并画龙点睛的强调。
四、变式练习(第1、2、3、4小题学生口答结果,并说出为什么;其它题先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。
)1、说出两组同类项2、下列各组是同类项的是A2x3与3x2B12ax与8bxCx4与a4Dπ与-33、下列各题计算的结果对不对?如果不对,指出错在哪里?(1)3a+2b=5ab(2)5y2-2y2=3(3)2ab-2ba=0(4)3x2y-5xy2=-2x2y4、–xmy与45x3yn是同类项,则m=,n=。
《整式的加减》教案

《整式的加减》教案《整式的加减》教案「篇一」一、知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项。
(2)能先合并同类项化简后求值。
二、过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力。
三、情感态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用。
教学重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项。
2.难点:多字母同类项的合并。
3.关键:正确理解同类项概念和合并同类项法则。
教具准备投影仪。
四、教学过程,新课引入有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?我们来看本章引言中的问题(2)。
在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+1202.1t,即100t+252t1.类比数的运算,我们应如何化简式子100t+252t呢?五、新授(1)运用有理数的运算律计算:1002+2522=______;100(-2)+252(-2)=________。
1002+2522=(100+252)2=3522100(-2)+252(-2)=(100+252)(-2)=352(-2)我们知道字母可以表示数,如果用t表示上述算术中的数2(或-•2)•就有,•100t+252t=(100+252)t=352t。
《整式的加减》教案「篇二」一、素质教育目标(一)知识教学点1.理解:整式的加减实质就是去括号,合并同类项。
2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤。
3.运用:能够正确地进行整式的加减运算。
(二)能力训练点1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力。
2.培养学生用代数方法解几何问题的思路。
(三)德育渗透点渗透教学知识来源于生活,又要为生活而服务的辩证观点。
七年级数学《整式的加减》教案范文

七年级数学《整式的加减》教案范⽂ 整式的加减就是单项式和多项式的加减,可利⽤去括号法则和合并同类项来完成。
接下来是⼩编为⼤家整理的七年级数学《整式的加减》教案范⽂,希望⼤家喜欢! 七年级数学《整式的加减》教案范⽂⼀ 数学活动 ⼀、内容和内容解析 1.内容 活动1 ⽤⽕柴棍摆放图形,探究⽕柴棍的根数与图形的个数之间的对应关系; 活动2 探究⽉历中数之间所蕴含的关系和变化规律. 2.内容解析 本节课的数学活动将第⼆章“整式的加减”所学知识应⽤于实际,进⼀步⽤整式表⽰数量关系,⽤整式的加减运算进⾏化简,是整式与整式加减的应⽤. 两个数学活动综合运⽤整式和整式的加减运算,表⽰具体情境中的数量关系和变化规律.活动1中的核⼼问题是寻求三⾓形的个数与⽕柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时⼊视的⾓度不同,规律的显现⽅式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯⼀确定的.活动1先从图形的特殊情况⼊⼿,体现由特殊到⼀般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进⾏思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应⽤整式的加减探究⽉历中数之间的规律:(1)⽉历中数的排列规律;(2)由数的排列规律引出运算规律,应⽤整式的加减进⾏化简,表⽰出⼀般规律;(3)如何设字母可以简化表⽰⽅法和运算. 基于以上分析,可以确定本节课的教学重点:⽤整式表⽰实际问题中的数量关系,掌握数学活动中由特殊到⼀般的探究⽅法. ⼆、教材解析 本套教科书专门设计了“数学活动”专栏,旨在为学⽣提供探索的空间,发展学⽣的思维能⼒.本节课安排了两个有趣的数学活动.其中活动1从⼀个开放性的问题⼊⼿“如图1所⽰,⽤⽕柴棍拼成⼀排由三⾓形组成的图形.如果图形中含有n个三⾓形,需要多少根⽕柴棍?”引发学⽣的思索和探究.问题中并没有先问“图形中含有2,3,4个三⾓形,分别需要多少根⽕柴棍?”⽽是直接问“如果图形中含有n个三⾓形,需要多少根⽕柴棍?”⽬的在于让学⽣⾃⼰发现要解决⼀般性问题应先从特殊值⼊⼿,给学⽣充分的时间思考和探究,让学⽣⾃⼰寻求解决问题的策略,最终掌握从特殊到⼀般,从个体到整体地观察、分析问题的⽅法.之后⼜设计了⼀个问题“当图形中含有2012个三⾓形时,需要多少根⽕柴棍?”⽬的在于让学⽣体会由特殊⼀般特殊的分析问题的⽅法,体会⼀般性规律的实际意义.活动2设计了⼀个问题串,6个问题循序渐进地引导学⽣发现⽉历中数的排列规律,引导学⽣应⽤本章所学的整式的加减探究⽅框⾥数之间的关系.这两个活动有⼀定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学⽣能够⽤整式准确地表⽰数量关系;活动2的重点是让学⽣能够应⽤整式的加减探究⽉历中的数量关系.通过这两个数学活动检验学⽣对于第⼆章内容的掌握情况. 本节数学活动课教师要注意改进教学⽅式,充分相信学⽣,尽可能为学⽣留出探索的空间,发挥学⽣的主动性和积极性,⼒求使得数学结论的获得是通过学⽣思考、探究活动⽽得出的. 三、教学⽬标和⽬标解析 1.教学⽬标 (1)⽤整式和整式的加减运算表⽰实际问题中的数量关系; (2)掌握从特殊到⼀般,从个体到整体地观察、分析问题的⽅法.尝试从不同⾓度探究问题,培养应⽤意识和创新意识; (3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建⽴学好数学的⾃信⼼. 2.⽬标解析 达成⽬标(1)的标志:学⽣⽤整式表⽰出⽕柴棍的根数与三⾓形的个数之间的对应关系,⽤整式表⽰出⽉历中不同位置上的数字的⼀般表达式并探寻规律; ⽬标(2)是内容所蕴含的思想⽅法,学⽣需要体会在较为复杂的图形中寻找⼀般规律的⽅法,先把复杂图形分解,从其中的特殊图形⼊⼿,先就个体观察特征,再扩展到⼀般,最后由整体总结规律,感受由特殊到⼀般的探究模式.在活动2中,分析⽉历中数字之间的数量关系时,经常先将⽉历分解,分别从横、纵、对⾓线等不同的⽅向⼊⼿观察特征,再推⼴到⼀般,⽤整式表⽰出数的⼀般规律;学⽣体验解决问题策略的多样性;让学⽣尝试评价不同⽅法之间的差异,从⽽得出最优⽅案.学⽣体会进⾏数学活动的基本⽅法:提出问题动⼿实践寻求规律归纳总结.学⽣经历发现问题、独⽴思考、猜想验证,归纳总结这些数学活动,提⾼应⽤意识和创新意识; 达成⽬标(3)的标志:学⽣对数学有好奇⼼和求知欲,在⼩组合作活动中积极思考,勇于质疑,敢于发表⾃⼰的想法.在⾃主探究两个数学活动的过程中,⼩组成员合作克服困难,解决数学问题,感受成功的快乐,建⽴学好数学的信⼼. 四、教学问题诊断分析 本章学⽣已经学习⽤整式表⽰实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉⽤符号表⽰具体情境中的数量关系,对学⽣⽽⾔有⼀定难度.在拼图的过程中,学⽣⽐较容易发现⽕柴棍根数的变化情况,但要借助观察图形的变化寻找⽕柴棍的根数与三⾓形的个数n之间的对应关系,还是有⼀定困难,在总结变化量与n的对应关系时学⽣也容易出错.所以⽤整式准确地表⽰出这种对应关系是本节课的⼀个难点.在活动2中,探索⽉历中数字的排列规律⽐较容易,但要从不同⾓度,运⽤不同⽅法探究⽉历中隐含的数量关系及其规律,对学⽣来说具有⼀定的挑战性. 本节课的教学难点:利⽤整式和整式的加减运算准确表⽰出具体情境中的数量关系. 五、教学⽀持条件分析 根据活动课的特点,学⽣准备⼀盒⽕柴棍、若⼲张⼤⼩相等的正⽅形纸⽚、⼀张⽉历.教师准备⼏何画板软件供学⽣使⽤,同时采⽤多媒体课件辅助教学. 六、教学过程设计 1.数学活动1 问题1 如图1所⽰,⽤⽕柴棍拼成⼀排由三⾓形组成的图形. 图1 (1)如果图形中含有n个三⾓形,需要多少根⽕柴棍? (2)当图形中含有2012个三⾓形时,需要多少根⽕柴棍? 师⽣活动:学⽣分成⼩组,利⽤已准备好的⽕柴棍动⼿摆放图形进⾏⾃主探究.学⽣代表(利⽤⼏何画板软件)展⽰⼩组讨论的过程与结果.教师重点关注学⽣⾃主探究的步骤和⽅法. 学⽣在探究的过程中会从不同⾓度观察图形,会⽤不同的表达形式呈现规律,会从数和形两个⽅⾯进⾏探究.教师引导学⽣借助于“形”进⾏思考和推理,加强对图形变化的感受. 在活动的过程中,整理数据,观察⽕柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决⽅法很多,下⾯列出⼏种常见⽅法仅供参考. ①从第⼆个图形起,与前⼀图形⽐,每增加⼀个三⾓形,增加两根⽕柴棍,可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1. ②每个三⾓形由三根⽕柴棍组成,从第⼀个图形起,⽕柴棍根数等于所含三⾓形个数乘3,再减去重复的⽕柴棍根数,可得 三⾓形个数 1 2 3 4 … ⽕柴棍根数 1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1. ③从第⼀个图形起,以⼀根⽕柴棍为基础,每增加⼀个三⾓形,增加两根⽕柴棍,可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n. ④从⽕柴棍的根数与三⾓形的个数的对应关系观察可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 3=1×2+1 5=2×2+1 7=3×2+1 9=4×2+1 … n×2+1 表达式:2n+1. ⑤将组成图形的⽕柴棍分为“横”放和“斜”放两类统计计数,可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1. 七年级数学《整式的加减》教案范⽂⼆ 教学⽬标 【知识与技能】 理解同类项的概念,在具体情景中,认识同类项. 【过程与⽅法】 通过⼩组讨论、合作学习等⽅式,经历概念的形成过程,培养学⽣⾃主探索知识和合作交流的能⼒. 【情感、态度与价值观】 初步体会数学与实际⽣活的密切联系,从⽽激发学⽣学好数学的信⼼. 教学重难点 【重点】理解同类项的概念. 【难点】根据同类项的概念在多项式中找同类项. 教学过程 ⼀、复习引⼊ 师:同学们,在上新课之前,我们先来做⼏个题⽬. 1.教师读题,指名回答. (1)5个⼈+8个⼈= ;? (2)5只⽺+8只⽺= .? 2.师:观察下列各单项式,把你认为相同类型的式⼦归为⼀类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2. 由学⽣⼩组讨论后,按不同标准进⾏多种分类,教师巡视后把不同的分类⽅法投影显⽰. 要求学⽣观察归为⼀类的式⼦,思考它们有什么共同的特征. 请学⽣说出各⾃的分类标准,并且对学⽣按不同标准进⾏的分类给予肯定. ⼆、讲授新课 1.同类项的定义: 师:在⽣活中我们常常把具有相同特征的事物归为⼀类.8x2y与-x2y可以归为⼀类,2xy2与-可以归为⼀类,-mn2、7mn2与0.4mn2可以归为⼀类,5a与9a可以归为⼀类,还有、0与也可以归为⼀类.8x2y与-x2y只有系数不同,各⾃所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各⾃所含的字母都是x、y,并且x的指数都是1,y的指数都是2. 像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.⽐如,前⾯提到的、0与也是同类项. 通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项) (教师为了让学⽣理解同类项概念,可设问同类项必须满⾜什么条件,让学⽣归纳总结) 板书由学⽣归纳总结得出的同类项概念以及所有的常数项都是同类项. 三、例题讲解 教师读题,指名回答. 【例1】 判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”. (1)3x与3mx是同类项.( ) (2)2ab与-5ab是同类项.( ) (3)3x2y与-yx2是同类项.( ) (4)5ab2与-2ab2c是同类项.( ) (5)23与32是同类项.( ) (这组判断题能使学⽣清楚地理解同类项的概念,其中第(3)题满⾜同类项的条件,只要运⽤乘法交换律即可;第(5)题两个都是常数项属于同类项.⼀部分学⽣可能会单看指数不同,误认为不是同类项) 【例2】 游戏. 规则:⼀学⽣说出⼀个单项式后,指定⼀位同学回答它的两个同类项. 要求出题同学尽可能使⾃⼰的题⽬与众不同. 可请回答正确的同学向⼤家介绍写⼀个单项式同类项的经验,从⽽揭⽰同类项的本质特征,透彻理解同类项的概念. 【例3】 指出下列多项式中的同类项: (1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2. 【答案】 (1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项. (2)3x2y与-yx2是同类项,-2xy2与xy2是同类项. 【例4】 k取何值时,3xky与-x2y是同类项? 【答案】 要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项. 【例5】 若把(s+t)、(s-t)分别看作⼀个整体,指出下⾯式⼦中的同类项. (1)(s+t)-(s-t)-(s+t)+(s-t); (2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t. (组织学⽣⼝头回答上⾯三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运⽤投影仪给出书⾯解答,为合并同类项做准备.例4让学⽣明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作⼀个整体) 通过变式训练,可进⼀步明晰“同类项”的意义,在⾃主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提⾼识别能⼒. 四、课堂练习 请写出2ab2c3的⼀个同类项.你能写出多少个?它本⾝是⾃⼰的同类项吗? (学⽣先在课本上解答,再回答,若有错误请其他同学及时纠正) 【答案】 改变2ab2c3的系数即可,与其本⾝也是同类项. 五、课堂⼩结 理解同类项的概念,会在多项式中找出同类项,会写出⼀个单项式的同类项,会判断同类项. 第2课时 合并同类项 教学⽬标 【知识与技能】 理解合并同类项的概念,掌握合并同类项的法则. 【过程与⽅法】 经历概念的形成过程和法则的探究过程,渗透分类和类⽐的思想⽅法.培养观察、归纳、概括能⼒,发展应⽤意识. 【情感、态度与价值观】 在独⽴思考的基础上,积极参与讨论,敢于发表⾃⼰的观点,从交流中获益. 教学重难点 【重点】正确合并同类项. 【难点】找出同类项并正确的合并. 教学过程 ⼀、情境引⼊ 师:为了搞好班会活动,李明和张强去购买⼀些⽔笔和软⾯抄作为奖品.他们⾸先购买了15本软⾯抄和20⽀⽔笔,经过预算,发现这么多奖品不够⽤,然后他们⼜去购买了6本软⾯抄和5⽀⽔笔.问: (1)他们两次共买了多少本软⾯抄和多少⽀⽔笔? (2)若设软⾯抄的单价为每本x元,⽔笔的单价为每⽀y元,则这次活动他们⽀出的总⾦额是多少元? 学⽣完成,教师点评. ⼆、讲授新课 合并同类项的定义. 学⽣讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运⽤加法的交换律与结合律将同类项结合在⼀起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元. 由此可得:把多项式中的同类项合并成⼀项,叫做合并同类项. 三、例题讲解 【例1】 找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项. 【答案】 原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2. 根据以上合并同类项的实例,让学⽣讨论归纳,得出合并同类项的法则: 把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变. 【例2】 下列各题合并同类项的结果对不对?若不对,请改正. (1)2x2+3x2=5x4; (2)3x+2y=5xy; (3)7x2-3x2=4; (4)9a2b-9ba2=0. (通过这⼀组题的训练,进⼀步熟悉法则) 【例3】 求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3. 【答案】 3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17. 试⼀试:把x=-3直接代⼊例4这个多项式,可以求出它的值吗?与上⾯的解法⽐较⼀下,哪个解法更简便? (通过⽐较两种⽅法,使学⽣认识到在求多项式的值时,常常先合并同类项,再求值,这样⽐较简便) 课堂练习. 课本P71练习第1~4题. 【答案】 略 四、课堂⼩结 1.要牢记法则,熟练正确的合并同类项,以防⽌2x2+3x2=5x4的错误. 2.从实际问题中类⽐概括得出合并同类项法则并能运⽤法则正确地合并同类项. 第3课时 去括号、添括号 教学⽬标 【知识与技能】 去括号与添括号法则及其应⽤. 【过程与⽅法】 在具体情境中体会去括号和添括号的必要性,能运⽤运算律去括号和添括号. 【情感、态度与价值观】 让学⽣接受“⽭盾的对⽴双⽅能在⼀定条件下互相转化”的辩证思想和概念. 教学重难点 【重点】去括号和添括号法则. 【难点】当括号前是“-”号时的去括号和添括号. 教学过程 ⼀、创设情境,引⼊新课 还记得我们前⾯⽤⽕柴棒摆的正⽅形吗?记录正⽅形的个数与所⽤⽕柴棒的根数. 1.若第⼀个正⽅形摆4根,以后每个摆3根,则n个正⽅形所⽤的⽕柴棒的根数为 4+3(n-1) .? 2.若每个正⽅形上⽅摆1根,下⽅摆1根,中间摆1根,还需加1根,则n个正⽅形所⽤的⽕柴棒的根数为 n+n+(n+1) .? 3.若每个正⽅形都摆4根,除第1个外,其余的都多1根,则n个正⽅形所⽤的⽕柴棒的根数为 4n-(n-1) .? 4.若先摆1根,再每个正⽅形摆3根,则n个正⽅形所⽤的⽕柴棒的根数为 1+3n .? 搭n个正⽅形所需要的⽕柴棒的根数,⽤的计算⽅法不⼀样,所⽤⽕柴棒的根数相等吗? ⽣:相等. 师:那么我们怎样说明它们相等呢? 学⽣讨论、回答. 师评:4+3(n-1)⽤乘法的分配律把3乘到括号⾥,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,⽽-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1. 活动⼀ 去括号 师:在代数式⾥,如果遇到括号,那么该如何去括号呢? 我们再看看以前做过的习题. 七年级数学《整式的加减》教案范⽂三 ⼀、教学内容解析:1.本节课选⾃:新⼈教版数学七年级上册§2.2.1节,是学⽣进⼊初中阶段后,在学习了⽤字母表⽰数,单项式、多项式以及有理数运算的基础上,对同类项进⾏合并、探索、研究的⼀个课题。
《整式的加减》教学设计(精选22篇)

《整式的加减》教学设计《整式的加减》教学设计什么是教学设计教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
《整式的加减》教学设计(精选22篇)作为一位杰出的老师,编写教学设计是必不可少的,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
我们该怎么去写教学设计呢?下面是小编精心整理的《整式的加减》教学设计(精选22篇),欢迎阅读,希望大家能够喜欢。
《整式的加减》教学设计1教学目标:教学内容分析:本节课的教学内容是《整式的加减》(第1课时),是在学习了整式的有关概念之后的一节课。
整式的加减是整式的运算、因式分解、解一元二次方程及函数的基础,是“数”向“式”的正式过渡,它具有十分重要的地位,而整式加减的知识基础则是同类项的概念及同类项的合并,整式的加减主要是通过合并同类项从而把整式化简,所以本节课在中学数学中的地位不言而喻。
教学重点和难点:同类项的概念及合并同类项的方法教学设计思路:长期以来,学生主动学习的意识淡薄,对教师的依赖性很大,学生长期处于被动接受的学习状态,使学生变得内向、被动、缺少自信、恭顺……窒息了学生的创造性。
新课程要求“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流合作的能力”。
为此要求我们教师努力变“知识给予”为“教育交往”,变“教程”为“学程”,在课堂上向学生提供从事数学活动的机会,帮助学生改变旧的学习模式,引导学生在学习活动中自主探究问题和解决问题,使每一个学生在数学课堂中各有所得。
为了突出教学的重点、突破教学的难点,本节课拟采用探究式教学法:通过观察生活实例,从学生已有的生活经验出发,采取合作探究的学习方式,通过小组合作讨论等方式开展学习活动,让学生独立自主地发现问题、分析问题并独立地解决问题,在探究的过程中,获得成功的体验,增强学习数学的信心,发展学生学习数学的积极性,并通过探究活动,使学生体验探究的过程,培养思维的变通性和严密性,培养学生的探索精神和创新能力。
整式的加减教学设计(优秀10篇)

整式的加减教学设计(优秀10篇)整式的加减篇一教学目的1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程一、复习1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:y2+(x2+2xy-3y2)-(2x2-xy-2y2)二、新授1、引入整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题例1 (P166例1)求单项式5x2y,-2 x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。
几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)例2(P166例2)求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)=3x2-6x+5+4x2-7x-6 (去括号)=7x2+x-1 (合并同类项)例3。
(P166例3)求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-( x2-xy+2y2)=2x2+xy+3y2-x2+xy-2y2=x2+2xy+y23、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。
在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B四、小结1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业1、P169:A:1(3、4),3,5,6,7,8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.如下图(1)是一个三角形,分别连接这个三角 形三边中点得到图(2);再分别连接图(2)中间 小三角形三边的中点,得到图(3). (1)图(1)、图(2)、图(3)中分别有多 少个三角形? (2)按上面的方法继续下去,第n个图形中有多 少个三角形?
义务教育教科书 数学 七年级 上册
第二章 数学活动
学习目标: (1)应用整式和整式的加减运算表示实际问题中的数量关系; (2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法. 尝试从不同角度探究问题,培养应用意识和创新意识; (3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑 ,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的 自信心.
学习重点: 应用整式表示实际问题中的数量关系,掌握数学活动中从特 殊到一般的探究方法.
活动1
1.如右图所示,用火柴棍拼成一排由三角形组成 的图形,如果图形中含有1,2,3或4个三角形,分 别需要多少根火柴棒?如果图形中含有n个三角形, 需要多少根火柴棍?
摆一摆,算一算.
你是如何计算的?把你的想法与同伴进行交流
a-8 a-1 a-7 a a-6 a+1
a+6
a+7
a+8
议一议
(4)这个结论对任何一个月的月历都成立吗?
这个结论对于任何一个月的月历都成立,因为此浅色方 框无论移至月历中的哪个位置,方框中的9个数字都可 以用上述方法表示.
做一做
7 14 21 28
1 8 15 22 29
2 9 16 23 30
分别排出由1个、2个、3个、4个……三角形排 成的图形 三角形个数 1 2 3 4 5
火柴棍根数 3 5 7 9 11
每增加一个三角形,火柴棍根数增加2. 如果图形中含有1个三角形, 3 根火柴棍. 需 如果图形中含有2个三角形, (3+2) 火柴棍. 需 根 ……….. 如果图形中含有3个三角形, (3+2+2) 火柴棍. 需 根 如果图形中含有n个三角形, 3+2(n-1)根火柴棍. 需
小组进行讨论 说出你的答案
思路点拨:当n≤100时,n本笔记本所需钱数为 2.3n元,当n>100时,n• 笔记本需要2.2n元.观察 本 这两个整式,当n=100时,需花钱230元,而当 n=101时,只需花钱2.2• 101=222.2(元),出现 × 多买比少买反而付钱少的情况,所以如果需要100 本笔记本,• 该购买101本能省钱 应
小结
整式的加减在生活中的应用
能力拓展
1.探索规律并填空:
1 1 1 1 1 1 1 1 (1) 1 ; ; ; 1 2 2 2 3 2 3 3 4 3 4 1 __________ . n(n 1)
(2)计算:.
1 1 1 1 1 2 2 3 3 4 2006 2007
做一做
7 14 21 28
1 8 15 22 29
2 9 16 23 30
3 10 17 24 31
4 11 18 25
5 12 19 26
6 13 20 27
Байду номын сангаас
(6)如图,对浅色方框里的4个数,又能得出什么 结论?
我们仍可以用字母a表示方框中的数. a+(a+7)=2a+7, (a+6)+(a+1)=2a+7, 因此有a+(a+7)=(a+1)+(a+6).
2 9 16 23 30
3 10 17 24 31
4 11 18 25
5 12 19 26
6 13 20 27
(2)如果将浅色方框移至图的位置,又如何? 浅色方框中9个数字之和为144,144=9×16
想一想
(3)不改变方框的大小,将方框移动几个位置试 一试,你能得出什么结论?你能证明这个结论吗? 如果用a表示中间的数,那么其余的8个 数应如何用a表示?经过观察,可得:
数学活动1
小结: 1.基本步骤:
图1
提出问题→动手实践→ 寻求规律→ 归纳总结 2.探究规律:特殊→ 一般 → 特殊 3.数学知识:用字母表示数、整式的加减 4.重点关注:
三角形的个数与火柴棍的根数之间的对应关系
2.如下图所示,用大小相等的小正方形拼大正方
形,拼第1个正方形需要4个小正方形,拼第2个 正方形需要9个小正方形,……拼一拼,想一想, 按照这样的方法拼成的第n个正方形比第(n-1) 个正方形多几个正方形?
活动3
7 14 21 28
做一做
1 8 15 22
29
2 9 16 23
30
3 10 17 24
31
4 11 18 25
5 12 19 26
6 13 20 27
(1)浅色方框中的9个数之和与方框正中心的数 有什么关系? 浅色方框中的9个数字之和为99,99=9×11.
做一做
7 14 21 28
1 8 15 22 29
2 2
(n 1 - n )
2
2
活动2
一种笔记本售价为2.3元/本,如果买100本以上 (不含100本),如果买100本以上(不含100 本),售价为2.2元/本,列式表示买n本笔记本 所需钱数(注意对n的大小要有所考虑),请同 学们讨论下面的问题: (1)按照这种售价规定,会不会出现多买比 少买反而付钱少的情况? (2)如果需要100本笔记本,怎样购买能省 钱? (3)了解实际生活中类似问题,并举出几个 具体例子.
3 10 17 24 31
4 11 18 25
5 12 19 26
6 13 20 27
(5)如图,如果浅色方框里的数是4个,你能得出什么 结论?
交叉两数的和相等.若设方框中第一行第一个数为a, 则第二个数为a+1,第二行第一个数为a+7,第二个数为 a+8,而a+(a+8)=2a+8,(a+1)+(a+7)=2a+8,所 以a+(•+8)=(a+1)+(a+7). a
(第1个正方形)(第2个正方形) (第3个正方形)
拼一拼,想一想
你是如何计算的?把你的想法与同伴进行交流
思路(1)设小正方形的边长为1,那么第1个正方形的 2 2 1 边长为2,小正方形的个数 2( 1 ,第2个正方形 ) 2 的边长为3,小正方形的个数为32 (2 1 ,第3个正 ) 3 方形的边长为4,小正方形的个数为 4 ( 1 ,…… ) 第(n-1)个正方形的边长为n-1+1=n,• 正方形的个数 小 2 为 n ,第n个正方形的边长为n+1,所以小正方形的个数 2 为(n1) ,因此,第n• 正方形比第(n-1)个正方形多 个