2020届河南省六市高三第二次联合调研检测数学(理)试题解析

合集下载

2020高考模拟河南六市-理数答案

2020高考模拟河南六市-理数答案

2020年河南省六市高三第二次联合教学质量监测理科答案一、选择题1--5CBADC 6--10ACDAB 11—12DA二、填空题13、14、2815、3416、第一空2n (2分)第二空{}2(3分)17.解:(1)由①2633()b ac c a b -+=+及余弦定理得,2223)a c b +-=-(所以362cos 222-=-+=ac b c a B ...............3分②由cos 2cos C c b A a a +=及正弦定理,得cos sin cos sin 2sin cos sin sin C A A C B A A C +=,即sin(2sin cosAsinA sin A C B A+=),0A C A π+∈ (,)sin sin 0A CB ∴+=≠()1cos 2A ∴=0A π∈ (,),3A π∴=……………………6分因为32),,0(,2136cos ππ>∈-<-=B B B 所以且.,矛盾所以π>+B A 不能同时满足所以ABC ∆①②............................8分(2)有(1)知,满足故ABC ∆①③④或②③④...........................9分若ABC ∆满足①③④因为Bac c a b cos 2222--=024,36626822=-+⨯⨯⨯++=c c c c 即所以26-=c 解得............................11分23sin 21-==∆∴B ac S ABC 的面积............................12分另:若ABC ∆满足②③④............................9分1sin ,sin 22236,sin sin ===B BB b A a 解得即c ∴=..................................11分3sin 21==∆∴A bc S ABC 的面积........................12分18.解:(1)过P 做AB PO ⊥与O ,连ODOC ,由题可知,3==CD AB ,222AB PB PA =+∴,3,32,2,1,2=====∴OC OD OA OB PO ,所以CD OC ⊥.........................................2分平面⊥PAB 底面ABCD ,交线为AB ,⊥∴PO 底面ABCD ,所以CD PO ⊥,又⊂=PO OC O PO OC ,, 平面POC ,故⊥CD 平面POC ,所以CD PC ⊥;................................................6分(2)由(1)知OD AB ⊥,以O 为坐标原点,OP OB OD ,,为z y x ,,轴建立空间直角坐标如图所示..7分则)0,23,23(),0,0,32(),2,0,0(C D P .....................................8分所以)0,23,233(),2,0,32(-=-=CD PD 设平面平面PCD 的法向量),,(z y x =故⎪⎩⎪⎨⎧=-=-023*******y x z x 令1=x ,可得)6,3,1(=平面PAB 的法向量取)0,0,1(=n ,.............10分所以1010101||||,cos ==>=<n m nm n m 故平面PCD 与PAB 夹角的余弦值为1010..............12分19.解:(1)设)(),,(1,100y x P y x M ,则),(00y x N --由⎪⎪⎩⎪⎨⎧=+=+11221221220220b y a x b y a x 得0))(())((2101021010=-++-+b y y y y a x x x x 即2210101010))(())((ab x x x x y y y y -=-+-+222b a =∴,又122=-b a ,1,222==∴b a ,故椭圆C 的标准方程为:1222=+y x ..............4分(2)设直线PQ 的方程为:1+=ty x ,则直线MN 的方程为代入tyx =由⎪⎩⎪⎨⎧=++=12122y x ty x 得012)2(22=-++ty y t ,设)(2,2y x Q 则0)1(8)2(44222>+=++=∆t t t ,22122121,22t y y t t y y +-=+-=+......7分所以222122)1(22||1||t t y y t PQ ++=-+=….........................................9分由⎪⎩⎪⎨⎧=+=1222y x ty x 得22022t y +=,...................................10分=∴||MN 2220220202)1(22)1(22t t y t y x ++=+=+............................11分故22||||2=PQ MN 为常数.得证....…....................................12分20.【解析】(1)120.04140.12160.28180.36200.10220.06240.0417.40x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=千元,故估计50位农民的年平均收入x 为17.40千元.…………………………………...3分(2)由题意知()17.40,6.92X N ~,①()10.68270.841422P x μσ>-=+≈,所以17.40 2.6314.77μσ-=-=时,满足题意,即最低年收入大约为14.77千元.…………………………………………6分②由()()0.954512.1420.50.97732P x P x μσ≥=≥-=+≈,每个农民的年收入不少于12.14千元的事件的概率为0.9773…………….……………………..….8分记1000个农民的年收入不少于12.14千元的人数为ξ,则()1000,B P ξ ,其中0.9773P =……………………………..………………………………….…9分于是恰好有k 个农民的年收入不少于12.14千元的事件概率为()()331010C 1k k k p P k p ξ-=-=,从而由()()()()1001111P k k p P k k p ξξ=-⨯=>=-⨯-,得1001k p <……………………………………….…10分而1001978.2773p =,所以,当0978k ≤≤时,()()1P k P k ξξ=-<=;当9791000k ≤≤时,()()1P k P k ξξ=->=,由此可知,在所走访的1000位农民中,年收入不少于12.14千元的人数最有可能是978人.…………………………………………………………………………….….12分21.(1)1令 x t +=由题意知()(1)f x a x ≤+等价于2ln 0a at t -+≤在0t >时恒成立…………1分令()2ln h t a at t =-+,则'22()at h t a t t-=-=………………………………………………2分当0a ≤时,'()0h t >,故()h t 在()0,+∞上单调递增,由于(1)0h =,不合题意…………………3分当0a >时,'2()()a t a h t t --=,故当20,x a ⎛⎫∈ ⎪⎝⎭'()0h t >()h t 单调递增当2,x a ⎛⎫∈+∞ ⎪⎝⎭'()0h t <()h t 单调递减,故max 2()()22ln 22ln h t h a a a ==-+-……………………………………………………………4分所以要使()0h t ≤在0t >时恒成立,则只需max ()0h t ≤即22ln 22ln 0a a -+-≤()22ln 22ln a a a ϕ=-+-,则'22()1a a a aϕ-=-=,所以()0,2时x ∈'()0a ϕ<,()a ϕ单调递减()2,时x ∈+∞'()0a ϕ>,()a ϕ单调递增,又因为(2)0ϕ=也可以分离参数或者数形结合,同样给分(2)由(1)知,1令 x t+=(1)()()1x f x g x x a +=+-变形成22ln ()(2)2t t t t t t θ+=>-,所以/22(2ln 4)()(2)t t t t θ--=-……………………………………………………………………7分令()2ln 4s t t t =--,则/22()1t s t t t -=-=由于2t >,所以/()0s t >。

2020年河南省六市高三第二次模拟考试数学(理)试题(有解析)

2020年河南省六市高三第二次模拟考试数学(理)试题(有解析)

2020年河南省六市高三第二次模拟考试数学(理)试题一、单选题1.记(0,)S e =,若对任意m S ∈,存在1,x 2x S ∈且12x x ≠,使得21122ln ln (3ax x ax x m -=-=+,则满足条件的整数a 的个数是( )A .2B .3C .4D .52.从装有大小材质完全相同的1个白球,2个黑球和3个红球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( )A .15B .415C .25D .133.已知S n 是等差数列{a n }的前n 项和,则“S n >na n 对n ≥2恒成立”是“a 3>a 4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知函数()sin 01y a bx b b =+>≠且的图象如图所示,那么函数()log b y x a =+的图象可能是( )A .B .C .D .5.12236log 49-⎛⎫- ⎪⎝⎭的值是( ). A .43 B .1 C .1- D .346.已知实数x 、y 满足条件2040250x y x y x y -+≥⎧⎪+-≥⎨⎪--≥⎩,则52y z x -=+的最大值为( )A .45B .49C .23D .1 7.设集合{}{}22|10,|log 0A x x B x x =-<=<,则A B =( )A .(1,0]-B .(0,1)C .(1,1)-D .∅ 8.设1211i z i i -=+-+,则z 的虚部是( ) A .i B .1 C .-1 D .i -9.如图,在正方体1111ABCD A B C D -中,P 为1BD 的中点,则PAC 在该正方体各个面上的正投影(实线部分)可能是( )A .①④B .①②C .②③D .②③10.已知O A B C ,,,为同一平面内的四个点,若,则向量OC 等于( )A .2133OA OB - B .C .2OA OB -D .2OA OB -+ 11.设抛物线C :y 2=4x 上一点P 到y 轴的距离为4,则点P 到抛物线C 的焦点的距离是( ) A .4B .5C .6D .712.陶艺选修课上,小明制作了空心模具,将此模具截去一部分后,剩下的几何体三视图如图所示,则剩下的模具体积为( )A .123π-B .122π-C .83π-D .8π+二、双空题13.已知等差数列{a n }的公差为d ,且d ≠0,其前n 项和为S n ,若满足a 1,a 2,a 5成等比数列,且S 3=9,则d =_____,S n =_____.三、填空题14.6的二项展开式中的常数项为________.(用数字作答) 15. 已知向量13,,,22a OA a b OB a b ⎛⎫=-=-=+ ⎪ ⎪⎝⎭,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________.16.已知直线MN 与双曲线2222:1x y C a b-=的左右两支分别交于M 、N 两点,与双曲线C 的右准线相交于P 点,点F 为右焦点,若2FM FN =,()01NP PM λλ=<<,则实数λ的值为___________.四、解答题17.举行动物运动会其中有小兔大兔接力赛跑一项,跑道从起点A 经过点P 再到终点B ,其中10AP =米,40PB =米,规定小兔跑第一棒从A 到P ,大兔在P 处接力完成跑第二棒从P 到B ,假定接力赛跑时小兔大兔的各自速度都是均匀的,且它们的速度之和为定值10米/秒,试问小兔和大兔应以怎样的速度接力赛跑,才能使接力赛成绩最好(所需时间最短),并求其最短时间. 18.为了了解人们对“延迟退休年龄政策”的态度,某部门从网年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(I )由频率分布直方图估计年龄的众数和平均数;(II )由以上统计数据填2×2列联表,并判断是否有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;参考数据:()()()()()22=n ad bc K a b c d a c b d -++++ (III )若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.求抽到的2人中1人是45岁以下,另一人是45岁以上的概率. 19. 在直角坐标系xOy 中,曲线M 的参数方程为1cos 2sin x y θθ=+⎧⎨=+⎩(θ为参数),若以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线N 的极坐标方程为ρsin(θ+4π)其中t 为常数). (Ⅰ)若曲线N 与曲线M 只有一个公共点,求t 的值;(Ⅱ)当t =-1时,求曲线M 上的点与曲线N 上的点的最小距离.20.如图,在三棱柱111ABC A B C -中,四边形11ABB A 为菱形,D 为AB 的中点,底面ABC ∆为等腰直角三角形,,2ACB π∠=1123ABB BC B C π∠=⋅==(1)求证:CD ⊥平面11ABB A ;(2)求二面角11A BC C --的余弦值.21.已知函数()2.6f x cosx sin x π⎛⎫ ⎪⎝=⎭-(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间 ,02π⎡-⎤⎢⎥⎣⎦上的最小值和最大值. 22.已知函数2()2sin 2f x x x x π=-+,曲线()f x 在函数零点处的切线方程为y kx b =+.(1)求k ,b 的值;(2)当0k >时,若有12()kx b f x +=成立,求证:210x x -≥.23.已知椭圆C :22221x y a b +=(0a b >>的面积为8.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,斜率为12的直线l 与椭圆C 交于A ,B 两点,点()2,1P 在直线l 的左上方.若90APB ∠=︒,且直线PA ,PB 分别与y 轴交于M ,N 点,求线段MN 的长度.参考答案1.D由已知可得()ln f x ax x =-与,y t =[3,5)t ∈在(0,)e 上有两个不同的交点,讨论()f x 的单调性,数形结合即可.当(0,)m e ∈时,令2(3[3,5)t m =-+∈,由题意()ln f x ax x =-在(0,)e 上与,y t = [3,5)t ∈有两个不同的交点,又'1()f x a x, 若0a ≤,()f x 在(0,)e 上单调递减,不可能与,y t =[3,5)t ∈有两个交点;若10a e <≤,()f x 在(0,)e 上单调递减,不可能与,y t =[3,5)t ∈有两个交点; 若1a e >,易知()f x 在1(0,)a 上单调递减,在1(,)a+∞上单调递增, 要使()f x 在(0,)e 上与,y t =[3,5)t ∈有两个不同的交点,需满足1()3()5f a f e ⎧<⎪⎨⎪≥⎩,解得26a e e ≤<,故满足的整数a 有3,4,5,6,7共5个. 故选:D.本题考查利用导数研究函数的交点问题,考查学生逻辑思维与运算能力,是一道有一定难度的题. 2.B分析:从随机袋中摸出两个小球同色的情况有两种:同为黑球或同为红球,确定每一种结果的数量,利用概率公式求解即可.详解:随机摸出两个小球,基本事件总数2615,n C ==两个小球同色包含的基本事件个数22234m C C ,=+=∴两个小球同色的概率是415m p n ==. 故选B. 点睛:本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.C设等差数列的公差为d ,利用等差数列的通项公式和前n 项和公式将n n S na >(2)n ≥等价转化为0d <,将34a a >等价转化为0d <,由此可得答案.设等差数列的公差为d ,当2n ≥时,因为n n S na >等价于1()2n n n a a na +>等价于1n a a >等价于(1)0n d -<等价于0d <,34a a >等价于430a a -<等价于0d <,所以n n S na >(2)n ≥等价于34a a >,所以“n n S na >(2)n ≥”是“34a a >”的充分必要条件.故选:C.本题考查了等差数列的通项公式和前n 项和公式,考查了充分必要条件的概念,属于基础题. 4.D由函数sin y a bx =+图象,可由sin y bx =向上平移a 各单位,由图知,1a >,根据图象可知sin y a bx =+的周期2,2T b bπ=,排除A 、B ;而()log y b x a =+,由log b y x =向上平移a 各单位,选项中只有D 符合题意,故选D.5.B ∵原式1212626log (2)7-⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 16176-⎛⎫=- ⎪⎝⎭1=.∴选择B .6.A分析:先作可行域,再求可行域内的点与(-2,5)连线斜率的取值范围,最后求范围中绝对值的最大值.详解:可行域如图,B(3,1),C(7,9),则52y x -+表示可行域内的点与A (-2,5)连线斜率,其范围为159544[,][,][,]327259AB AC k k --==-++,因此52y x -+的最大值为45,选A.。

2020届河南省普通高中高三第二次质量检测数学(理)试卷及解析

2020届河南省普通高中高三第二次质量检测数学(理)试卷及解析

2020届河南省普通高中高三第二次质量检测数学(理)试卷★祝考试顺利★(解析版)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上相应的位置.2.全部答案在答题卡完成,答在本试题上无效.3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案用0.5毫米及以上黑色笔迹签字笔写在答题卡上.4.考试结束后,将本试题和答题卡一并交回.参考公式:锥体的体积公式:13V Sh =(其中S 为锥体的底面积,h 为锥体的高). 第Ⅰ卷(共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{}2|log 1A x x =<,{}2|0B x x x =->,则A B =( )A. {|12x x <<}B. {|2x x <}C. {|12x x ≤≤}D. {|14x x ≤<}【答案】A【解析】 求出不等式2log 1x <和20x x ->的解,然后根据集合的交集运算,即可得到本题答案.【详解】由2log 1x <,得02x <<,故{|02}A x x =<<,由20x x ->,得1x >或0x <,故{|1B x x =>或0}x <,所以,{|12}A B x x =<<.故选:A2.已知复数z 满足21i z i-=+,则z =( )A. 132i +B. 132i -C. 32i +D. 32i - 【答案】B【解析】利用复数的除法运算,即可得答案.【详解】∵2(2)(1)131(1)(1)2i i i i z i i i ----===++-. 故选:B.3.由我国引领的5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G 经济产出所做的预测.结合下图,下列说法正确的是( )A. 5G 的发展带动今后几年的总经济产出逐年增加B. 设备制造商的经济产出前期增长较快,后期放缓C. 设备制造商在各年的总经济产出中一直处于领先地位D. 信息服务商与运营商的经济产出的差距有逐步拉大的趋势【答案】ABD【解析】本题结合图形即可得出结果.【详解】由图可知设备制造商在各年的总经济产出中在前期处于领先地位,而后期是信息服务商处于领先地位,故C 项表达错误.故选:ABD .4.411(12)x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A. 10B. 24C. 32D. 56。

河南省六市2020年高三第二次联合调研检测理科综合试题及答案

河南省六市2020年高三第二次联合调研检测理科综合试题及答案

★2020年5月28日2020年河南省六市高三第二次联合调研检测理科综合能力测试可能用到的相对原子质量:H 1 C 12 O 16 Na 23 K 39 Fe 56第Ⅰ卷(选择题,共126分)一、选择题(本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列关于人和动物体内有机物及细胞的叙述,错误的是A.脂肪和糖原彻底水解的产物都可作为细胞呼吸的底物B.某些蛋白质和脂类物质可对人体的生命活动进行调节C.肾小管壁细胞内的细胞器都含蛋白质,其细胞膜上的蛋白质只能识别激素D.人体各种免疫细胞中都有DNA和RNA两种核酸2.今年春季感染人类的病毒是一种新型的RNA冠状病毒,下列有关说法错误的是A.冠状病毒没有细胞结构,只能寄生于活细胞中B.子代病毒通过囊泡排出细胞说明生物膜具有的结构特性是一定的流动性C.冠状病毒相对DNA病毒更容易发生变异,这是由于RNA分子是单链,DNA分子具有双螺旋的双链结构,因此RNA比DNA容易发生碱基增添、替换和缺失D.冠状病毒进入人体后,吞噬细胞可以对其进行识别和吞噬消灭。

这属于特异性免疫,是人体的第三道防线3.某哺乳动物(2N=20)的两个精原细胞(DNA的两条链均被32P标记),一个只进行有丝分裂记为A.另一个只进行减数分裂记为B,将这两个细胞均置于31P标记的培养液中培养,待它们都进入第二次分裂中期,此刻各有一个细胞分别记为A'、B'。

A'和B'分裂后产生的两个子细胞分别标记为A1、A2和B1、B2,下列有关叙述错误的是A.A1和A2均有10条染色体含32PB.A'的每一条染色体中都只有一条染色单体含32P,而B'的20条染色单体都含32PC.A1和B2所含有的性染色体数目比为2:1D.A1和A2中含2个染色体组,而B1和B2中有1个染色体组4.因发现细胞在分子水平上感知氧气的基本原理,三位科学家在2019年获得诺贝尔生理学或医学奖。

2020届高三数学第二次调研考试试题理(含解析)

2020届高三数学第二次调研考试试题理(含解析)

2020届高三数学第二次调研考试试题理(含解析)注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.作答选择题时,选出每个小题答案后,用2B铅笔把答题卡上对应题目的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。

3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.集合,,则()A. B. C. D.【答案】C【解析】【分析】化简集合,进而求交集即可.【详解】,,所以,故选C.【点睛】本题考查交集的概念及运算,考查对数函数的单调性与二次不等式的解法,属于基础题.2.设复数满足(其中为虚数单位),则()A. B. C. D.【答案】B【解析】【分析】利用复数的除法运算得到,进而得到其共轭复数即可.【详解】,,的共轭复数为,故选B.【点睛】本题考查复数代数形式的乘除法运算,考查共轭复数的概念,考查计算能力,属于基础题.3.已知为数列前项和,,则()A. B. C. D.【答案】D【解析】【分析】根据得到,从而为等比数列,利用等比数列前n项和公式可得结果.【详解】时,,两式相减,整理得,∵,∴,所以是首项为,公比为的等比数列,∴,故选D.【点睛】已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.4.已知,为互相垂直单位向量,若,则()A. B. C. D.【答案】A【解析】【分析】利用向量夹角公式即可得到结果.【详解】代数法:,故选A.【点睛】本题考查向量夹角公式,考查向量的运算法则及几何意义,考查学生的运算能力与数形结合能力,属于基础题.5.下列说法正确的是()①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②某地气象局预报:5月9日本地降水概率为,结果这天没下雨,这表明天气预报并不科学.③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好.④在回归直线方程中,当解释变量每增加1个单位时,预报变量增加0.1个单位.A. ①②B. ③④C. ①③D. ②④【答案】B【解析】【分析】①由于间隔相同,这样的抽样是系统抽样;②降水概率为90%的含义是指降水的可能性为90%,但不一定降水;③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好,正确;④在回归直线方程0.1x+10中,回归系数为0.1,利用回归系数的意义可得结论.【详解】解:①从匀速传递的产品生产流水线上,质检员每10分钟从某处抽取一件产品进行某项指标检测,由于间隔相同,这样的抽样是系统抽样,故①不正确;②降水概率为90%的含义是指降水的可能性为90%,但不一定降水,故②不正确;③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好,正确;④在回归直线方程0.1x+10中,回归系数为0.1,当解释变量x每增加一个单位时,预报变量增加0.1个单位,故④正确.故选:B.【点睛】本题考查命题真假判断,考查学生分析问题解决问题的能力,属于基础题.6.若,且,则的值为( )A. B. C. D.【答案】A【解析】由题意,根据诱导公式得,又因为,所以,所以所以,故选A.7.设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足则p是q的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:画圆:(x–1)2+(y–1)2=2,如图所示,则(x–1)2+(y–1)2≤2表示圆及其内部,设该区域为M.画出表示的可行域,如图中阴影部分所示,设该区域为N.可知N在M内,则p是q的必要不充分条件.故选A.【考点】充要条件的判断,线性规划【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识相结合.本题的条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得出结论.8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析河南省六市联考高考数学二模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.33.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.66.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.27.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.99.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm310.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.1211.如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE 上,当E从D运动到C,则K所形成轨迹的长度为()A.B.C.D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为______.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为______.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为______.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|=______.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.63519.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;(2)若BD=,A1D=2,求二面角A1﹣BD﹣B1的大小.20.已知椭圆C:的左、右焦点分别为F1(﹣c,0)、F2(c,0),P为椭圆C 上任意一点,且最小值为0.(Ⅰ)求曲线C的方程;(Ⅱ)若动直线l2,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,使得点B到l1,l2的距离之积恒为1?若存在,请求出点B的坐标;若不存在,请说明理由.21.设函数f(x)=e x+ln(x+1)﹣ax.(1)当a=2时,判断函数f(x)在定义域内的单调性;(2)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.[选修4-1几何证明选讲]22.自圆O外一点P引圆O的两条割线PAB和PDC,如图所示,其中割线PDC过圆心O.AB= OA,PD=,∠P=15°,(1)求∠PCB的大小;(2)分别球线段BC和PA的长度.[选修4-4坐标系与参数方程]23.已知曲线C的极坐标方程为ρsinθ+2ρcosθ=20,将曲线C1:(α为参数)经过伸缩变换后得到C2(1)求曲线C2的参数方程;(2)若点M在曲线C2上运动,试求出M到曲线C的距离d的取值范围.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣5|﹣|x+a|(1)当a=3时,不等式f(x)≥k+2的解集不是R,求k的取值范围;(2)若不等式f(x)≤1的解集为{x|x≥},求a的值.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}【考点】交集及其运算.【分析】分别求解一元二次不等式与指数不等式化简集合A,B,然后利用交集运算得答案.【解答】解:由x2+x≥0,得x≤﹣1或x≥0,∴A={x|x2+x≥0}={x|x≤﹣1或x≥0},由5x≥5,得x≥1,∴B={x|5x≥5}={x|x≥1},∴A∩B={x|x≤﹣1或x≥0}∩{x|x≥1}={x|x≥1}.故选:C.2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.3【考点】复数代数形式的混合运算.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1 另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.3.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)【考点】奇偶性与单调性的综合.【分析】判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:y=sinx是奇函数,但是,[﹣1,1]上单调增函数.y=﹣|x+1|不是奇函数,对于,因为f(﹣x)==﹣=﹣f(x),所以是奇函数,在[﹣1,1]上单调减函数,y=(2x+2﹣x)是偶函数,[﹣1,1]上单调递增.故选:C.4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好【考点】相关系数.【分析】A根据相关关系的定义,判断命题A正确;B线性回归分析的相关系数r的绝对值越接近1,线性相关性越强,判断命题B错误;C一组数据拟合程度的好坏,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,判断命题C正确;D用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,由此判断命题D正确.【解答】解:对于A,根据相关关系的定义,即可判断自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系是相关关系,∴命题A正确;对于B,线性回归分析中,相关系数r的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴命题B错误;对于C,残差图中,对于一组数据拟合程度的好坏评价,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,∴命题C正确;对于D,回归分析中,用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,∴R2为0.98的模型比R2为0.80的模型拟合效果好,命题D正确.故选:B.5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.6【考点】等比数列的前n项和.【分析】由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得.【解答】解:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,∴由等比数列的求和公式可得=381,解得a=3,∴顶层有3盏灯,故选:B.6.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.2【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,y=5,不满足输出条件,故x=5,再次执行循环体后,y=11,不满足输出条件,故x=11,再次执行循环体后,y=23,满足输出条件,故输出的y值为23,故选:A.7.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+【考点】双曲线的简单性质.【分析】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c的关系,求出离心率的值.【解答】解:将x=c代入双曲线的方程=1(a>0,b>0)得y=,即M(c,).在△MF1F2中tan45°==1即,解得e==+1.故选:C.8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.9【考点】简单线性规划.【分析】作出不等式组对应的平面区域要使z=最大,则x最小,y最大即可,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:则x≥1,y≥1,要使z=的最大,则x最小,y最大即可,由图象知当z=经过点A时,z取得最大值,由,得x=1,y=3,即A(1,3),则z=的最大值是z==9,故选:D.9.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm3【考点】由三视图求面积、体积.【分析】根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,直四棱锥底面是一个边长为1.5、4的矩形,高是3,由俯视图得三棱锥的底面是直角三角形,直角边为1、4,由正视图得高即四棱锥的侧棱为3,∴几何体的体积V=+1.5×4×3=20(cm3)故选:A.10.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.12【考点】轨迹方程.【分析】根据向量加法的几何意义得出P点轨迹,利用正弦定理解出AB,得出△ABC的面积,从而求出围成封闭区域的面积.【解答】解:设=.∵=+(1﹣λ)=+(1﹣λ).∴C,D,P三点共线.∴P点轨迹为直线CD.在△ABC中,sinA=.sinC=.由正弦定理得AB==.sinB=sin (A+C )=sinAcosC+cosAsinC==.∴S △ABC ==.∴S △ACD =S △ABC =.故选:B .11.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .【考点】轨迹方程.【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.【解答】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E 与C 重合时,AK==,取O 为AD ′的中点,得到△OAK 是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣【考点】利用导数研究函数的极值.【分析】求函数的导数,根据函数存在极小值等价为f′(x)=﹣x+b=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可.【解答】解:函数的定义域为(0,+∞),则函数的导数f′(x)=﹣x+b,若函数f(x)=alnx﹣x2+bx存在极小值,则f′(x)=﹣x+b=0有解,即﹣x2+bx+a=0有两个不等的正根,则,得b>2,(a<0),由f′(x)=0得x1=,x2=,分析易得f(x)的极小值点为x1,∵b>2,(a<0),∴x1==∈(0,),则f(x)极小值=f(x1)=alnx1﹣x12+bx1=alnx1﹣x12+x12﹣a=alnx1+x12﹣a,设g(x)=alnx+x2﹣a,x∈(0,),f(x)的极小值恒大于0等价为g(x)恒大于0,∵g′(x)=+x=<0,∴g(x)在(0,)上单调递减,故g(x)>g()=aln﹣a≥0,得ln≤,即﹣a≤e3,则a≥﹣e3,故a的最小值为是﹣e3,故选:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为﹣.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[0,]上的最小值.【解答】解:将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后,得到y=sin(2x++φ)的图象,再根据所得图象关于原点对称,可得+φ=kπ,即φ=kπ﹣,k∈Z,又|φ|<,∴φ=﹣,f(x)=sin(2x﹣).∵x∈[0,],∴2x﹣∈[﹣,],故当2x﹣=﹣时,f(x)取得最小值为﹣,故答案为:﹣.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为84 .【考点】二项式系数的性质.【分析】写出二项式(x+)n的展开式的通项,可得y3(x+)n 的展开式的通项,再由x,y的指数为0求得n,r的值,则答案可求.【解答】解:二项式(x+)n的展开式的通项为,则要使y3(x+)n(n∈N*)的展开式中存在常数项,需,即n=9,r=3.∴常数项为:.故答案为:84.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为 4 .【考点】等差数列的性质.【分析】由等比中项的性质、等差数列的通项公式列出方程求公差d,代入等差数列的通项公式、前n项和公式求出a n、S n,代入利用分离常数法化简后,利用基本不等式求出式子的最小值.【解答】解:因为a1,a3,a13成等比数列,所以,又a1=1,所以(1+2d)2=1×(1+12d),解得d=2或d=0(舍去),所以a n=1+(n﹣1)×2=2n﹣1,S n==n2,则====﹣2≥2﹣2=4,当且仅当时取等号,此时n=2,且取到最小值4,故答案为:4.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|= 16 .【考点】抛物线的简单性质.【分析】设AB方程y=k(x﹣1),与抛物线方程y2=4x联立,利用tan∠AMB=,建立k的方程,求出k,即可得出结论.【解答】解:焦点F(1,0),M(﹣1,0),设AB方程y=k (x﹣1),设A(x1,y1),B(x2,y2)∵tan∠AMB=,∴=,整理可得2k(x1﹣x2)=(x1+1)(x2+1)+y1y2…(*)y=k(x﹣1),与y2=4x联立可得k2x2﹣(2k2+4)x+k2=0 可得x1x2=1,x1+x2=+2,y1y2=﹣4代入(*)可得2k(x1﹣x2)=?,∴x1﹣x2=,∴(+2)2﹣4=()2,∴k=±,∴x1+x2=+2=14,∴|AB|==16.故答案为:16.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简可得tanA=tanB,于是C=π﹣2A,代入sin2A(2﹣cosC)=cos2B+化简可求得A;(2)利用正弦定理用B表示出b,c,得到面积S关于B的函数,求出B的范围,得出S的范围.【解答】解:(1)∵,,∴tanA=tanB,∴A=B.∴C=π﹣2A.∵sin2A(2﹣cosC)=cos2B+,∴sin2A(2+cos2A)=cos2A+,即(1﹣cos2A)(2cos2A+1)=cos2A+,解得cos2A=,∵A+B+C=π,A=B,∴A,∴cosA=,∴A=,C=π﹣2A=.(2)由正弦定理得,∴b=2sinB,c=2sinC=2sin()=2sinB+2cosB.∴S==2sin2B+2sinBcosB=sin2B﹣cos2B+1=sin(2B﹣)+1.∵△ABC为锐角三角形,∴,∴.∴<2B﹣<,∴2<sin(2B﹣)≤1+.∴△ABC面积的取值范围是(2,1+].18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.635【考点】独立性检验的应用.【分析】(1)计算K2的值,与临界值比较,可得结论;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,可得结论.(3)X的取值为1,2,3,再求出X取每一个值的概率,即可求得X的分布列和数学期望.【解答】解:(1)由题意,K2=≈0.65<0.708,∴没有60%的把握认为“微信控”与“性别”有关;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,所抽取的5人中“微信控”有3人,“非微信控”的人数有2人;(3)X=1,2,3,则P(X=1)==0.3,P(X=2)==0.6,P(X=3)==0.1.X的分布列为:X 1 2 3P 0.3 0.6 0.1X的数学期望为EX=1×0.3+2×0.6+3×0.1=1.8.19.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;。

2020届河南省普通高中高考质量测评(二)数学(理)试题(解析版)

2020届河南省普通高中高考质量测评(二)数学(理)试题一、单选题1.已知全集U =R ,集合{}2|log 1A x x =<,{}2|0B x x x =->,则A B I =( )A .{|12x x <<}B .{|2x x <}C .{|12x x ≤≤}D .{|14x x ≤<}【答案】A【解析】求出不等式2log 1x <和20x x ->的解,然后根据集合的交集运算,即可得到本题答案. 【详解】由2log 1x <,得02x <<,故{|02}A x x =<<, 由20x x ->,得1x >或0x <,故{|1B x x =>或0}x <, 所以,{|12}A B x x =<<I . 故选:A 【点睛】本题主要考查集合的交集运算,其中涉及对数不等式和一元二次不等式的求解. 2.已知复数z 满足21iz i -=+,则z =( ) A .132i+ B .132i - C .32i +D .32i- 【答案】B【解析】利用复数的除法运算,即可得答案. 【详解】 ∵2(2)(1)131(1)(1)2i i i iz i i i ----===++-. 故选:B. 【点睛】本题考查复数的除法运算,考查基本运算求解能力,属于基础题.3.由我国引领的5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G 经济产出所做的预测.结合上图,下列说法错误的是()A .5G 的发展带动今后几年的总经济产出逐年增加B .设备制造商的经济产前期增长较快,后期放缓C .信息服务商与运营商的经济产出的差距有逐步拉大的趋势D .设备制造商在各年的总经济产出中一直处于领先地位 【答案】D【解析】对A 选项,可直观感知每年的产出是逐渐增高;对B 选项,2020到2023年设备制造商的经济产前期增长较快,后几年放缓;对C 选项,2028到2030年第二个小矩形的高与第一个小矩形的高度差明显逐年加大;对D 选项,2029和2030年已被信息服务超出. 【详解】对A 选项,每一年小矩形高是逐渐增高的,可直观发现每年产值是逐渐增高,故A 正确;对B 选项,2020到2023年设备制造商的经济产前期增长较快,后几年放缓,故B 正确; 对C 选项,2028到2030年第二个小矩形的高与第一个小矩形的高度差明显逐年加大,故C 正确;对D 选项,2029和2030年已被信息服务超出,故D 错误.故选D . 【点睛】本题主要考查数学阅读理解能力及从图中提取信息的能力,属基础题. 4.411(12)x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .10 B .24C .32D .56【答案】D【解析】先将式子411(12)x x ⎛⎫++ ⎪⎝⎭化成4411(12)(12)x x x⋅++⋅+,再分别求两项各自的2x 的系数,再相加,即可得答案.【详解】 ∵444111(12)1(12)(12)x x x x x⎛⎫++=⋅++⋅+ ⎪⎝⎭, ∴4(12)x +展开式中含2x 的项为22241(2)24C x x ⋅=,41(12)x x ⋅+展开式中含2x 的项33241(2)32C x x x⋅=, 故2x 的系数为243256+=. 故选:D. 【点睛】本题考查二项展开式中指定项的系,考查函数与方程思想,考查逻辑推理能力和运算求解能力.5.已知函数()x f x ae x b =++,若函数()f x 在(0,(0))f 处的切线方程为23y x =+,则ab 的值为( ) A .1 B .2C .3D .4【答案】B【解析】对函数求导得(0)2f '=,求得a 的值,再根据切点既在切线上又在曲线上,可求得b 的值,即可得答案. 【详解】∵()1x f x ae '=+,∴(0)12f a '=+=,解得1,(0)13a f a b b ==+=+=,∴2b =, ∴2ab =. 故选:B. 【点睛】本题考查导数的几何意义,考查函数与方程思想,考查逻辑推理能力和运算求解能力,求解时注意切点既在切线上又在曲线上的应用. 6.函数2sin ()1x xf x x +=+在[,]-ππ的图象大致为( ) A . B .C .D .【答案】D【解析】根据函数为奇函数及()0f π>,再结合排除法,即可得答案. 【详解】∵函数的定义域为R ,关于原点对称,且2sin()()()()()1x x f x f x x -+--==--+,∴()f x 是奇函数,故排除A ;22sin ()011f ππππππ+==>++,排除B ,C.故选:D. 【点睛】本题考查根据函数的解析式选择函数的图象,考查数形结合思想,求解时注意充分利用函数的性质及特殊点的函数值进行求解.7.如图,在四棱锥P ABCD -中,//AD BC ,2AD =,3BC =,E 是PD 的中点,F 在PC 上且13PF PC =,G 在PB 上且23PG PB =,则( )A .3AG EF =,且AG 与EF 平行B .3AG EF =,且AG 与EF 相交C .2AG EF =,且AG 与EF 异面D .2AG EF =,且AG 与EF 平行 【答案】D【解析】取CF 的中点H ,连接,DH GH ,通过证明四边形ADHG 为平行四边形,可得AG DH //且AG DH =,由在PHD ∆中,,E F 分别为PD 和PH 的中点,可得EF DH //且12EF DH =,综上,即可得到本题答案. 【详解】取CF 的中点H ,连接,DH GH ,则在PBC ∆中,23PG PH PB PC ==,所以GH BC //,223GH BC ==,又因为AD BC //且2AD =,所以GH AD //,且GH AD =,所以四边形ADHG 为平行四边形,所以AG DH //,且AG DH =.在PHD ∆中,,E F 分别为PD 和PH 的中点,所以EF DH //,且12EF DH =,所以EF AG //,且12EF AG =,即2AG EF =. 故选:D 【点睛】本题主要考查空间中两直线的位置关系及大小关系,数形结合思想的应用是解决此题的关键.8.已知等差数列{}n a 的前n 项和为n S ,22a =,728S =,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前2020项和为( ) A .20202021B .20182020C .20182019D .20212020【答案】A【解析】根据22a =,728S =,求得n a ,再利用裂项相消法求n T ,令2020n =代入n T ,即可得答案. 【详解】因为数列{}n a 是等差数列,所以()1774772a a S a +==. 设公差为d ,因为272,28a S ==, 所以()112,7328,a d a d +=⎧⎨+=⎩解方程组得11,1,a d =⎧⎨=⎩ 所以数列{}n a 的通项公式为1(1)1n a n n =+-⨯=,所以111(1)n n a a n n +=⨯+.设n T 为数列11nn a a +⎧⎫⎨⎬⎩⎭的前n 项和, 则11111122334(1)(1)n T n n n n =+++⋯++⨯⨯⨯-⨯⨯+ 111111122331n n =-+-++⋯+-+ ∴2020111111111122334202012020202020201T =-+-+-++-+--+L 12020120212021=-=故选:A. 【点睛】本题考查等差数列的通项公式和前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意利用裂项相消法进行求和.9.“角谷定理”的内容为对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.如图为研究角谷定理的一个程序框图.若输入n 的值为10,则输出i 的值为()A .5B .6C .7D .8【答案】B【解析】根据流程逐步分析,直到1n =时,计算出i 的值即可. 【详解】(1)10,0n i ==;(2)5,1n i ==;(3)16,2n i ==;(4)8,3n i ==;(5)4,4n i ==;(6)2,5n i ==;(7)1,6n i ==. 故选B . 【点睛】本题考查根据程序框图计算输出值,难度较易.程序框图问题,多数可以采用列举法的方式解答问题.10.设抛物线22(0)x py p =>的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B ,设7(0,)2pC ,AF 与BC 相较于点E .若||2CF AF =,且ACE ∆的面积为32,则p 的值为( ) A .2 B .2C .6D .22【答案】C【解析】由题,可得()2,Ap p ,又由~ABE FCE ∆∆及ACE ∆的面积为32,得92ACF S ∆=,然后通过求132922ACF S p p ∆=⨯⨯=的解,即可得到本题答案.【详解】 根据已知0,2p F ⎛⎫ ⎪⎝⎭,:2pl y =-,由||2||CF AF =,得3||2AF p =,不妨设点(,)A x y 在第一象限,则322p y p +=,即y p =,所以2x p =,易知~ABE FCE ∆∆,||||1||||2AB AE CF EF ==,所以||2||EF AE =,所以ACF ∆的面积是AEC ∆面积的3倍,即92ACF S ∆=,所以132922ACF S p p ∆=⨯⨯=,解得6p =. 故选:C 【点睛】本题主要考查抛物线与直线的综合问题,考查学生的分析问题和解决问题能力及运算求解能力.11.现有一副斜边长相等的直角三角板.若将它们的斜边AB 重合,其中一个三角板沿斜边折起形成三棱锥A BCD -,如图所示,已知,64DAB BAC ππ∠=∠=,三棱锥的外接球的表面积为4π,该三棱锥的体积的最大值为( )A .B .6C .24D .48【答案】B【解析】设三棱锥A BCD -的外接球的半径为r ,由球的体积得球的半径,当平面ABC ⊥平面ABD 时,三棱锥的体积达到最大,利用体积公式计算,即可得答案.【详解】设三棱锥A BCD -的外接球的半径为r ,因为244r ππ=⇒1r =, 因为90ADB ACB ︒∠=∠=,所以AB 为外接球的直径,所以2AB =,且1,AD BD AC BC ====当点C 到平面ABD 距离最大时,三枝锥A BCD -的体积最大, 此时平面ABC ⊥平面ABD ,且点C 到平面ABD 的距离1d =,所以11111332A BCD C ABD ABD V V S d --==⋅=⨯⨯=△. 故选:B. 【点睛】本题考查三棱锥与球的内接问题、三棱锥体积的最大值、球的体积公式,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意球心位置的确定.12.设函数()sin()f x x ωϕ=+,其中0,,43ππωϕ⎡⎤>∈⎢⎥⎣⎦,已知()f x 在[0,2]π上有且仅有4个零点,则下列ω的值中满足条件的是( ) A .136ω=B .116ω=C .74ω=D .34ω=【答案】A【解析】设t x ωϕ=+,则2t ϕπωϕ+剟,从而将问题转化为sin y t =在[,2]ϕπωϕ+上有4个零点,从而得到425ππωϕπ+<…,再利用不等式恒成立问题求得ω的范围,即可得答案. 【详解】设t x ωϕ=+,则2t ϕπωϕ+剟, 所以sin y t =在[,2]ϕπωϕ+上有4个零点,因为,43ππϕ⎡⎤∈⎢⎥⎣⎦,所以425ππωϕπ+<…, 所以52222ϕϕωππ-<-…, 所以5342222ππωππ-<-…,即15783ω<…,满足的只有A.故选:A. 【点睛】本题考查根据三角函数的零点个数求参数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意换元法的应用.二、填空题13.若||3a =r ,||2b =r,2a b +=r r ,则a r 与 b r的夹角为______________. 【答案】3π 【解析】由222|2|44a b a a b b +=+⋅+r rr r r r 及||||cos a b a b θ⋅=⋅r r r r ,即可得到本题答案.【详解】设a r 与 b r的夹角为θ,则222|2|449432cos 4437a b a a b b θ+=+⋅+=+⨯⨯⨯+⨯=r rr r r r ,得1cos 2θ=,所以3πθ=.故答案为:3π 【点睛】本题主要考查利用向量的模的计算公式求向量的夹角,属基础题.14.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43S S =________. 【答案】1514【解析】设等比数列{}n a 的公比为q ,利用等比数列{}12n S a -的等比中项性质可得公比q ,再代入等比数列的前n 项和公式中,即可得答案. 【详解】设等比数列{}n a 的公比为q , ∵数列{}12n S a -为等比数列,∴()()2211231a a a a a a -=-+-,解得:12q =, ∴4211231241332315(1)1587(1)144Sa q q q S a q a a a a a a q a +++====+++++++. 故答案为:1514.【点睛】本题考查等比数列中的基本量法运算、等比数列的通项公式和前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.15.某工厂生产的产品中分正品与次品,正品重100g ,次品重110g ,现有5袋产品(每袋装有10个产品),已知其中有且只有一袋次品(10个产品均为次品)如果将5袋产品以1~5编号,第i 袋取出i 个产品(1,2,3,4,5i =),并将取出的产品一起用秤(可以称出物体重量的工具)称出其重量y ,若次品所在的袋子的编号是2,此时的重量y =_________g ;若次品所在的袋子的编号是n ,此时的重量y =_______g . 【答案】1520 150010,{1,2,3,4,5}n n +∈【解析】第1袋取1个,第2袋取2个,第3袋取3个,第4袋取4个,第5袋取5个,共取15个.若次品是第2袋,则15个产品中正品13个,次品2个,若次品是第({1,2,3,4,5})n n ∈袋,则15个产品中次品n 个,正品15n -个,分别进行计算,即可得答案. 【详解】第1袋取1个,第2袋取2个,第3袋取3个,第4袋取4个,第5袋取5个,共取15个.若次品是第2袋,则15个产品中正品13个,次品2个, 此时的重量1001311021520y =⨯+⨯=,若次品是第({1,2,3,4,5})n n ∈袋,则15个产品中次品n 个,正品15n -个, 此时的重量100(15)110150010,{1,2,3,4,5}y n n n n =⨯-+⨯=+∈. 故答案为:1520;150010,{1,2,3,4,5}n n +∈ 【点睛】本题考查数学推理应用题,考查逻辑推理能力和运算求解能力,求解时注意对题意的理解.16.已知点P 是双曲线2213y x -=右支上一动点,12,F F 是双曲线的左、右焦点,动点Q 满足下列条件:①12212||0||PF PF QF PF PF ⎛⎫+=⎪⎝⎭⋅u u u u u u u r u u r u u u u r u u r r u ,②12120||||PF PF QP PF PF λ⎛⎫++= ⎪⎝⎭u u u r u u u ru u u r u u u r u u u r ,则点Q 的轨迹方程为________________. 【答案】221(0)x y y +=≠【解析】设动点Q 的坐标为(,)x y ,延长2F Q 交1PF 于点A ,根据向量的加法法则及数量积为0,可得2QF PQ ⊥,利用双曲线的定义可得11||12OQ AF ==,即可得答案. 【详解】设动点Q 的坐标为(,)x y ,延长2F Q 交1PF 于点A , 由条件②知点Q 在12F PF ∠的角平分线上, 结合条件①知2QF PQ ⊥,所以在2PF A △中,2PQ F A ⊥.又PQ 平分2APF ∠, 所以2PF A △为等腰三角形,即2||PA PF =,2||AQ QF =.因为点P 为双曲线上的点,所以122PF PF -=,即12||2PA AF PF +-=, 所以12AF =.又在12F AF V 中,Q 为2AF 的中点,O 为12F F 的中点, 所以11||12OQ AF ==, 所以点Q 的轨迹是以O 为圆心,半径为1的圆, 所以点Q 的轨迹方程为221(0)x y y +=≠.故答案为:221(0)x y y +=≠. 【点睛】本题考查单位向量、向量的数量积、向量的加法法则的几何意义、双曲线的定义、轨迹方程的求解,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意平面几何知识的应用.三、解答题17.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且sin 2sin()0c B b A B -+= (1)求角B 的大小;(2)设4a =,6c =,求sin C 的值. 【答案】(1)3B π=(2321【解析】(1)由已知结合正弦定理化简可求cos B ,进而可求B ;(2)由余弦定理可得,2221cos 22a cb B ac +-==,代入可求b ,由正弦定理可得,sin sin c BC b=可求. 【详解】解:(1)由正弦定理得sin sin 2sin sin()0C B B A B -+=, 化简得2sin sin cos sin sin 0C B B B C -=. 因为在三角形中,sin 0B ≠,sin 0C ≠, 可得1cos 2B =. 又因为(0,)B π∈,所以3B π=(2)由余弦定理可得,2221cos 22a cb B ac +-==,2163612462b +-=⨯⨯,所以b =由正弦定理可得,sin sin 14c B C b ==. 【点睛】本题主要考查了两角和及二倍角的公式,正弦定理,余弦定理的综合应用,属于中等试题.18.为实现有效利用扶贫资金,增加贫困村民的收入,扶贫工作组结合某贫困村水质优良的特点,决定利用扶贫资金从外地购买甲、乙、丙三种鱼苗在鱼塘中进行养殖试验,试验后选择其中一种进行大面积养殖,已知鱼苗甲的自然成活率为0.8.鱼苗乙,丙的自然成活率均为0.9,且甲、乙、丙三种鱼苗是否成活相互独立.(1)试验时从甲、乙,丙三种鱼苗中各取一尾,记自然成活的尾数为X ,求X 的分布列和数学期望;(2)试验后发现乙种鱼苗较好,扶贫工作组决定购买n 尾乙种鱼苗进行大面积养殖,为提高鱼苗的成活率,工作组采取增氧措施,该措施实施对能够自然成活的鱼苗不产生影响.使不能自然成活的鱼苗的成活率提高了50%.若每尾乙种鱼苗最终成活后可获利10元,不成活则亏损2元,且扶贫工作组的扶贫目标是获利不低于37.6万元,问需至少购买多少尾乙种鱼苗?【答案】(1)分布列见解析,2.6(2)40000尾【解析】(1)由题意得随机变量X 的所有可能取值为0,1,2,3,利用相互独立事件同时发生的概率,可计算(0),(1),(2),(3)P X P X P X P X ====的值,进而得到分布列和期望;(2)依题意知一尾乙种鱼苗最终成活的概率为0.95,计算一尾乙种鱼苗的平均收益,进而计算n 尾乙种鱼苗最终可获得的利润,再解不等式,即可得答案. 【详解】(1)记随机变量X 的所有可能取值为0,1,2,3, 则(0)0.20.10.10.002P X ==⨯⨯=,(1)0.80.10.10.20.90.10.20.10.90.044P X ==⨯⨯+⨯⨯+⨯⨯=,(2)0.80.90.10.80.10.90.20.90.90.306P X ==⨯⨯+⨯⨯+⨯⨯=,(3)0.80.90.90.648P X ==⨯⨯=.故X 的分布列为X0 1 2 3 P0.0020.0440.3060.648()00.00210.04420.30630.648 2.6E X =⨯+⨯+⨯+⨯=.(2)根据已知乙种鱼苗自然成活的概率为0.9,依题意知一尾乙种鱼苗最终成活的概率为0.90.10.50.95+⨯=, 所以一尾乙种鱼苗的平均收益为100.9520.059.4⨯-⨯=元. 设购买n 尾乙种鱼苗,()E n 为购买n 尾乙种鱼苗最终可获得的利润,则()9.4376000E n n =…,解得40000n …. 所以需至少购买40000尾乙种鱼苗,才能确保获利不低于37.6万元. 【点睛】本题考查离散型随机变量的分布列、期望、利润最大化的决策问题,考查函数与方程思想、,考查数据处理能力.19.如图,圆柱的轴截面ABCD 是边长为2的正方形,点P 是圆弧CD 上的一动点(不与,C D 重合),点Q 是圆弧AB 的中点,且点,P Q 在平面ABCD 的两侧.(1)证明:平面PAD ⊥平面PBC ;(2)设点P 在平面ABQ 上的射影为点O ,点,E F 分别是PQB △和POA V 的重心,当三棱锥P ABC -体积最大时,回答下列问题. (ⅰ)证明://EF 平面PAQ ;(ⅱ)求平面PAB 与平面PCD 所成二面角的正弦值.【答案】(1)见解析(2)(ⅰ)见解析(ⅱ 【解析】(1)证明PC 垂直平面PAD 内的两条相交直线,AD PD ,再利用面面垂直的判定定理证明即可;(2)当三棱锥P ABC -体积最大时,点P 为圆弧CD 的中点,所以点O 为圆弧AB 的中点,所以四边形AQBO 为正方形,且PO ⊥平面ABO .(ⅰ)连接PE 并延长交BQ 于点M ,连接PF 并延长交OA 于点N ,连接MN ,则//MN AQ ,再由线面平行的判定定理证得结论;(ⅱ)由PO ⊥平面,ABO AO 垂直BO ,所以以O 为坐标原点,,,OA OB OP 所在直线为,,x y z 轴建立空间直角坐标系,求出平面PAB 的法向量n =r ,平面PCD 的法向量(0,0,1)m =u r,求两向量夹角的余弦值,进而得到二面角的正弦值. 【详解】(1)因为ABCD 是轴截面,所以AD ⊥平面PCD ,所以AD PC ⊥,又点P 是圆弧CD 上的一动点(不与,C D 重合),且CD 为直径,所以PC PD ⊥, 又,AD PD D PD ⋂=⊂平面,PAD AD ⊂平面PAD ,所以PC ⊥平面PAD ,而PC ⊂平面PBC ,故平面PAD 平面PBC .(2)当三棱锥P ABC -体积最大时,点P 为圆弧CD 的中点,所以点O 为圆弧AB 的中点,所以四边形AQBO 为正方形,且PO ⊥平面ABO .(ⅰ)连接PE 并延长交BQ 于点M ,连接PF 并延长交OA 于点N ,连接MN ,则//MN AQ ,因为,E F 分别为两个三角形的重心,∴23PE PF PM PN ==,//EF MN 所以//EF AQ ,又AQ ⊂平面,PAQ EF ⊄平面PAQ ,所以//EF 平面PAQ . (ⅱ)PO ⊥平面,ABO AO 垂直BO ,所以以O 为坐标原点,,,OA OB OP 所在直线为,,x y z 轴建立空间直角坐标系,如图所示:则(0,0,2),(2,0,0),(0,2,0),(2,0,2),(2,2,0)P A B PA AB =-=-u u u r u u u r,设平面PAB 的法向量(,,)n x y z =r ,则0,0,n PA n AB ⋅=⎧⎨⋅=⎩vu u u v v即220,220,x z x y ⎧-=⎪⎨-+=⎪⎩可取(2,2,1)n =r,又平面PCD 的法向量(0,0,1)m =u r,所以5cos ,||||5n m n m n m ⋅〈〉===r u rr u r r u r ,所以25sin ,n m 〈〉=r u r . 所以平面PAB 与平面PCD 所成二面角的正弦值为25.【点睛】本题考查空间中的线面平行、面面垂直、二面角的向量求解,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意建系前必需证明三条直线两两互相垂直.20.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F 是椭圆上一动点(与左、右顶点不重合)已知12PF F △椭圆的离心率为12. (1)求椭圆C 的方程;(2)过2F 的直线l 交椭圆C 于,A B 两点,过A 作x 轴的垂线交椭圆C 与另一点Q (Q 不与,A B 重合).设ABQ △的外心为G ,求证2||AB GF 为定值. 【答案】(1)22143x y +=(2)见解析【解析】(1)当12PF F △面积最大时,r 最大,即P点位于椭圆短轴顶点时r =即可得到b 的值,再利用离心率求得,a c ,即可得答案;(2)由题意知,直线AB 的斜率存在,且不为0,设直线AB 为1x my =+,代入椭圆方程得()2234690m y my ++-=.设()()1122,,,A x y B x y ,利用弦长公式求得||AB ,利用AB 的垂直平分线方程求得G 的坐标,两个都用m 表示,代入2||AB GF 中,即可得答案. 【详解】 (1)由题意知:12c a =,∴2222,a c b a c ==-,∴b =. 设12PF F △的内切圆半径为r , 则()12121211(22)()22PF F S PF PF F F r a c r a c r =++⋅=+⋅=+⋅V , 故当12PF F △面积最大时,r 最大,即P点位于椭圆短轴顶点时r =)a c bc +=,把2,a c b ==代入,解得:2,a b ==,所以椭圆方程为22143x y +=.(2)由题意知,直线AB 的斜率存在,且不为0,设直线AB 为1x my =+, 代入椭圆方程得()2234690m y my ++-=. 设()()1122,,,A x y B x y ,则12122269,3434m y y y y m m --+==++, 所以AB 的中点坐标为2243,3434m m m -⎛⎫⎪++⎝⎭,所以()2122121|||3434m AB y m m +===++. 因为G 是ABQ △的外心,所以G 是线段AB 的垂直平分线与线段AQ 的垂直平分线的交点,AB 的垂直平分线方程为22343434m y m x m m ⎛⎫+=-- ⎪++⎝⎭, 令0y =,得2134x m =+,即21,034G m ⎛⎫⎪+⎝⎭,所以222213313434m GF m m +=-=++ 所以()22222121||1234433334m AB m m GF m ++===++,所以2||AB GF 为定值,定值为4. 【点睛】本题考查椭圆方程的求解、离心率、直线与椭圆位置关系中的定值问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将问题转化为关于变量m 的表达式,进而求证得到定值. 21.已知函数()2(12)ln af x x a x x=+-+. (1)讨论()f x 的单调性;(2)如果方程()f x m =有两个不相等的解12,x x ,且12x x <,证明:1202x x f +⎛⎫'> ⎪⎝⎭. 【答案】(1)见解析(2)见解析【解析】(1)对函数()f x 进行求导得2()(21)()(0)x a x f x x x-+'=>,再对a 进行分类讨论,解不等式,即可得答案;(2)当0a …时,()f x 在(0,)+∞单调递增,()f x m =至多一个根,不符合题意;当0a >时,()f x 在(0,)a 单调递减,在(,)a +∞单调递增,则()0f a '=.不妨设120x a x <<<,只要证122x x a +>212x a x >-⇔,再利用函数的单调性,即可证得结论. 【详解】(1)2222122(12)()(21)()2(0)a a x a x a x a x f x x x x x x -+---+'=+-==>.①当0a …时,(0,),()0,()x f x f x '∈+∞>单调递增; ②当0a >时,(0,),()0,()x a f x f x '∈<单调递减;(,),()0,()x a f x f x '∈+∞>单调递增.综上:当0a …时,()f x 在(0,)+∞单调递增;当0a >时,()f x 在(0,)a 单调递减,在(,)a +∞单调递增. (2)由(1)知,当0a …时,()f x 在(0,)+∞单调递增,()f x m =至多一个根,不符合题意;当0a >时,()f x 在(0,)a 单调递减,在(,)a +∞单调递增,则()0f a '=.不妨设120x a x <<<,要证1202x x f +⎛⎫'> ⎪⎝⎭,即证122x x a +>,即证122x x a +>,即证212x a x >-. 因为()f x 在(,)a +∞单调递增,即证()()212f x f a x >-,因为()()21f x f x =,所以即证()()112f x f a x >-,即证()()f a x f a x +<-. 令()()()g x f a x f a x =+--2()(12)ln()2()(12)ln()a a a x a a x a x a a x a x a x ⎡⎤⎡⎤=++-++--+--+⎢⎥⎢⎥+-⎣⎦⎣⎦4(12)ln()(12)ln()a ax a a x a a x a x a x=+-+---+-+-, 221212()4()()a a a ag x a x a x a x a x --'=++--+-+- ()()22222222222242(12)4()()()()a a x x x a a a a a x a x a x a x a x +---=+-=-+-+-. 当(0,)x a ∈时,()0,()g x g x '<单调递减,又(0)(0)(0)0g f a f a =+--=,所以(0,)x a ∈时,()(0)0g x g <=,即()()f a x f a x +<-, 即()(2)f x f a x >-.又1(0,)x a ∈,所以()()112f x f a x >-,所以1202x x f +⎛⎫'> ⎪⎝⎭. 【点睛】本题考查利用导数研究函数的单调性、证明不等式,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意将所证不等式转化为利用函数的单调性进行证明.22.在直角坐标系xOy 中,曲线C的参数方程为21,2x s y ⎧=⎪⎨⎪=⎩(s 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 2sin 90ρθρθ++=.(1)求C 和l 的直角坐标方程;(2)设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值. 【答案】(1)24y x =,290x y ++=(2【解析】(1)直接利用消参法可得曲线C 的直角坐标方程;将cos ,sin x y ρθρθ==代入l 的极坐标方程得l 的直角坐标方程; (2)设212P s ⎛⎫⎪⎝⎭,利用点到直线的距离公式,结合二次函数的性质求最值,即可得答案. 【详解】(1)C 的直角坐标方程为:24y x =,将cos ,sin x y ρθρθ==代入l 的极坐标方程得l 的直角坐标方程为:290x y ++=. (2)设212P s ⎛⎫⎪⎝⎭, 则点P 到直线l的距离21|9s d ++==,当s =-d ==. 【点睛】 本题考查极坐标方程、参数方程、普通方程的互化、点到直线的距离公式,考查逻辑推理能力和运算求解能力,求解时注意点的参数设法.23.已知函数()|1||24|f x x x =++-.(1)求不等式()6f x ≤的解集;(2)若函数()y f x =的图象最低点为(),m n ,正数,a b 满足6ma mb +=,求23a b +的取值范围.【答案】(1)[]13,x ∈-(2)2325,6a b ⎡⎫+∈+∞⎪⎢⎣⎭【解析】(1)分类讨论去掉绝对值得分段函数求解即可;(2)由分段函数求出最低点,得236a b +=,构造1,利用均值不等式求解即可.【详解】(1)33,2()5,1233,1x x f x x x x x -≥⎧⎪=-+-<<⎨⎪-+≤-⎩,所以由()6f x ≤可得2336x x ≥⎧⎨-≤⎩,或1256x x -<<⎧⎨-+≤⎩,或1336x x ≤-⎧⎨-+≤⎩, 解得:[]2,3x ∈或()1,2x ∈-或1x =-.综上,[]13,x ∈-. (2)因为33,2()5,1233,1x x f x x x x x -≥⎧⎪=-+-<<⎨⎪-+≤-⎩,所以当2x =时,()min 3f x =,最低点为()2,3,即236a b +=,所以132a b +=. 23232313252323266a b b a a b a b a b ⎛⎫⎛⎫+=++=+++≥+= ⎪⎪⎝⎭⎝⎭, 当且仅当65a b ==时等号成立, 所以2325,6a b ⎡⎫+∈+∞⎪⎢⎣⎭【点睛】本题主要考查了含绝对值不等式的解法,分段函数的最值,均值不等式,属于中档题.。

2020届河南省六市高三第二次联合调研检测数学(理)试卷Word版含答案

2020届河南省六市高三第二次联合调研检测数学(理)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第Ⅱ卷22题,23题为选考题,其它题为必考题.考试结束后,将答题卡交回.注意事项:1.答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A ={(x ,y )|y =x +1,x ∈Z},集合B ={y |y =2x ,x ∈Z},则集合A ∩B 等于A .{1,2}B .(1,2)C .{(1,2)}D .2.若复数z 满足(3-4i )z =|3-4i |,则z 的虚部为A .-4B .45C .4D .-453.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2400名学 生中抽取30人进行调查.现将2400名学生随机地从1-2400编号,按编号顺序平均分成30组(1-80号,81-160号,…,2321-2400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是A .416B .432C .448D .4644.若等差数列{n a }的公差为2,且5a 是2a 与6a 的等比中项,则该数列的前n 项和n S 取最 小值时n 的值等于A .7B .6C .5D .45.设P 是正方体ABCD -A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、 平面ABA 1、平面ADA 1的距离相等,则符合条件的点PA .仅有一个B .有有限多个C .有无限多个D .不存在6.已知Rt △ABC ,点D 为斜边BC 的的中点,|AB u u u r |=AC uuu r |=6,AE u u u r =12ED u u u r , 则AE u u u r ·EB u u u r 等于A .-14B .-9C .9D .147.设变量x,y满足不等式组1x yx yx⎧⎪⎨⎪⎩+-4≤-3+3≤,≥则z=|x-y-4|的最大值为A.5 3B.72C.133D.68.函数22xx xf x-2-3()=的大致图象为9.设实数a,b,c分别满足a=125-,b1nb=1,3c3+c=1,则a,b,c的大小关系为A.c>b>a B.b>c>a C.b>a>c D.a>b>c10.在直角坐标系xOy中,F是椭圆C:22221x ya b+=(a>b>0)的左焦点,A、B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P、Q两点,连接PB交y轴于点E,连接AE交PQ于点M,若M 是线段PF的中点,则椭圆C的离心率为A.22B.12C.13D.1411.已知数列{na}中,1a=1,且对任意的m,n∈N*,都有m na+=ma+na+mn,则201911i ia∑==A.20192020B.20182019C.20181010D.2019101012.已知函数f(x)=sin2x的图象与直线2kx-2y-kπ=0(k>0)恰有三个公共点,这三个点的横坐标从小到大依次为x1,x2,x3,则(x1-x2)tan(x2-2x3)=A.-2 B.-12C.0 D.1第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分.13.已知tan(x+4π)=2,x是第三象限角,则cosx=_________.14.《易经》是中国传统文化中的精髓,右图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率)_________.15.抛物线y2=4x的焦点为F,其准线为直线l,过点M(5,25)作直线l的垂线,垂足为H,则∠FMH的角平分线所在的直线斜率是__________.16.我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺。

河南省六市2020届高三第二次模拟调研理科综合试题含答案

2020年河南省六市高三第二次模拟调研试题理科综合能力测试注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题}两部分。

答卷前,考生务必将自己的姓名、考生号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

.如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第I卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

.可能用到的相对原子质量:H-1 C-12 O -16 Na-23 K -39 Fe -56第I卷(选择题共126分)一、选择题(本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列关于人和动物体内有机物及细胞的叙述,错误的是A.脂肪和糖原彻底水解的产物都可作为纫胞呼吸的底物B.某些蛋白质和脂类物质可对人体的生命活动进行调节C.肾小管壁细胞内的细胞器都含蛋白质,其细胞膜上的蛋白质只能识别激素D.人体各种免疫细胞中都有DNA和RNA两种核酸2.今年春季感染人类的病毒是--种新型的RNA冠状病毒,下列有关说法错误的是A.冠状病毒没有细胞结构,只能寄生于活细胞中B.子代病毒通过裹泡排出细胞说明生物膜具有的结构特性是一定的流动性C.冠状病毒相对DNA病毒更容易发生变异,这是由于RNA分子是单链,DNA分子具有双螺旋的双链结构,因此RNA比DNA容易发生碱基增添、替换和缺失D.冠状病毒进人人体后,吞噬细胞可以对其进行识别和吞噬消灭。

这属于特异性免疫,是人体的第三道防线3.某哺乳动物(2N =20 )的两个精原细胞( DNA的两条链均被32P标记),一个只进行有丝分裂记为A,另一个只进行减数分裂记为B ,将这两个细胞均置于31P标记的培养液中培养,待它们都进入第二次分裂中期;此刻各有一个细胞分别记为A'、B'。

A' 和B' 分裂后产生的两个子细胞分别标记为A1、A2和B1、B2.下列有关叙述错误的是A.A1和A2均有10条染色体含32PB. A' 的每一条染色体中都只有一条染色单休含32p,而B'的20条染色单体都含32PC.A1和B2所含有的性染色体数目比为2:1D.A1和A2中含2个染色体组,而B1和B2中有1个染色体组4.因发现细胞在分子水平上感知氧气的基本原理,三位科学家在2019年获得诺贝尔生理学或医学奖。

河南省六市2020届高三数学第二次联考试题 理

河南省六市2020届高三数学第二次联考试题理(含解析)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.已知集合
,集合
,则集合
等于()
A.B.
C.
D.
【答案】Dபைடு நூலகம்
【解析】
【分析】
由题可得:集合是点集,集合是数集,由交集概念即可得解。【详解】由题可得:集合是点集,集合是数集,
所以
.
故选:D
【点睛】本题主要考查了集合的表示及交集运算,属于基础题。
2.若复数满足A.-4
【答案】B
【解析】
【分析】
整理
【详解】因为所以
得:
,则的虚部为()
B.C.4D.
,问题得解。

所以的虚部为:
故选:B
【点睛】本题主要考查了复数的模及复数的除法运算,还考查了复数的有关概念,考查计算能力,属于基础题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2020届河南省六市高三第二次联合调研检测数学(理)试题学校:___________姓名:___________班级:___________考号:___________ 注意事项:注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.设全集U =R ,集合{}(4)(1)0A x x x =-+≥,则U A =ð( ) A .(1,4]- B .[1,4)-C .(1,4)-D .[1,4]-答案:C由一元二次不等式求解可得集合A,求其补集即可. 解:因为(4)(1)0x x -+≥, 所以1x ≤-或4x ≥, 即{|1A x x =≤-或4}x ≥, 所以(1,4)U A =-ð, 故选:C 点评:本题主要考查了一元二次不等式的解法,集合的补集运算,属于容易题. 2.复数1z 在复平面内对应的点为(2,3),22z i =-+(i 为虚数单位),则复数12z z 的虚部为( ) A .85B .85-C .85iD .85i -答案:B根据复数对应的点知123z i =+,利用复数的除法法则计算12z z ,即可求解.解:因为复数1z 在复平面内对应的点为(2,3), 所以123z i =+,则122+3(23)(2)18182(2)(2)555z i i ii i z i i i +----====---+-+--, 所以复数的虚部为85-. 故选:B 点评:本题主要考查了复数的几何意义,复数的除法运算,复数的虚部,属于容易题.3.在ABC V 中,AB c =u u u r r ,AC b =u u u r r ,若点D 满足12BD DC =u u u r u u u r ,则AD =u u u r( )A .1233+r r b cB .2133b c +r rC .4133b c -r rD .1122b c +r r答案:A由条件即得()11123333AD AB BD AB BC AB AC AB AC AB =+=+=+-=+uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu ur uu u r . 解:12BD DC =u u u r u u u rQ ,13BD BC ∴=uu u r uu u r ,故有()11123333AD AB BD AB BC AB AC AB AC AB =+=+=+-=+uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu ur uu u r . 故选:A 点评:本题主要考查了向量的线性表示,向量的加减运算,是基础题.4.《易·系辞上》有“河出图,洛出书”之说.河图、洛书是中国古代流传下来的两幅神秘图案,蕴含了深奥的宇宙星象之理,被誉为“宇宙魔方”,是中华文化,阴阳术数之源.其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为1的概率为( )A .15B .725C .825D .925答案:D根据题意可知:阳数有:1,3,5,7,9,阴数有:2,4,6,8,10,这是一个古典概型,先得到从阳数和阴数中各取一数基本事件的总数,再找出其差的绝对值为1的基本事件的个数,然后代入公式求解. 解:由题意得:阳数有:1,3,5,7,9,阴数有:2,4,6,8,10, 从阳数和阴数中各取一数,基本事件的总数为:5525n =⨯= 其差的绝对值为1的基本事件有:()()()()()()()()()1,2,3,4,5,6,7,8,9,10,3,2,5,4,7,6,9,8,共9种所以其差的绝对值为1的概率为925p = 故选:D 点评:本题主要考查古典概型的概率,还考查了分析求解问题的能力,属于基础题.5.鲁班锁起源于中国古代建筑中首创的榫卯结构,相传由春秋时代鲁国工匠鲁班所作. 下图是经典的六柱鲁班锁及六个构件的图片,下图是其中一个构件的三视图,则此构件的体积为A .334000mm B .333000mm C .332000mm D .330000mm答案:C由三视图得鲁班锁的其中一个零件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长体的一个几何体,由此能求出该零件的体积.由三视图得鲁班锁的其中一个零件是:长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长体的一个几何体,如图,∴该零件的体积:V =100×20×20﹣40×20×10=32000(mm 3).故选C . 点评:本题考查几何体的体积的求法,考查几何体的三视图等基础知识,考查运算求解能力、空间想象能力,考查函数与方程思想、数形结合思想,是中档题.6.已知等差数列{}n a 的前n 项和为n S ,且856a a -=-,9475S S -=,则n S 取得最大值时n =( ) A .14 B .15C .16D .17答案:A利用已知条件算出基本量1,a d 后可得等差数列{}n a 的通项,根据通项的符号可得n S 何时取最大值. 解:设等差数列{}n a 的公差为d ,则11369364675d a d a d =-⎧⎨+--=⎩,解得1227d a =-⎧⎨=⎩,故292n a n =-,故当114n ≤≤时,0n a >;当15n ≥时,0n a <, 所以当14n =时,n S 取最大值. 故选:A. 点评:本题考查等差数列前n 项和的最值,一般地,此类问题可通过项的符号来确定何时取最7.设4log 9a =, 1.22b -=,138()27c -=,则( )A .a b c >>B .b a c >>C .a c b >>D .c a b >>答案:C先化简c ,再利用指数函数、对数函数的单调性比较大小即可得到三者的大小关系. 解:1383()272c -==,4222log 9log 3log 32a ===,因为98>,故3232>,所以32223log 3log 22>=,故a c >.又 1.2032212b -=<=<,故b c <,所以a c b >>. 故选:C. 点评:本题考查指数、对数的大小比较,此类问题可利用指数函数和对数函数的单调性来进行大小比较,注意两类函数底数的范围,必要时需利用中间数1来进行大小关系的传递.8.已知(4,4)A -,O 是坐标原点,(),P x y 的坐标满足200230x y y x y -≤⎧⎪≥⎨⎪-+≥⎩,则z OP AP =⋅u u u r u u u r 的最小值为( ) AB.85- C .3- D .315-答案:D先利用向量数量积的坐标形式计算z ,再画出二元一次不等式组对应的可行域,利用()()2222x y ++-的几何意义可求z 的最小值.解:(),OP x y =uu u r,()4,4AP x y =+-u u u r ,故()()222244228z x y x y x y =++-=++--.二元一次不等式组200230x y y x y -≤⎧⎪≥⎨⎪-+≥⎩对应的可行域如图所示:因为()()2222x y ++-表示的几何意义是点()2,2Q -到可行域内的点的距离的平方,而()2,2Q -到可行域内的点的距离的最小值为243145d --+==+ 故()()2222x y ++-的最小值为95,所以min 931855z =-=-. 故选:D. 点评:二元一次不等式组条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如34x y +表示动直线340x y z +-=的横截距的三倍 ()()2212x y -++(),P x y 与()1,2-的距离.9.抛物线()2:20C y px p =>的焦点为F ,过F 且倾斜角为60°的直线为l ,()3,0M -,若抛物线C 上存在一点N ,使,M N 关于直线l 对称,则p =( )A .2B .3C .4D .5答案:A,M N Q 关于过F 倾斜角为60o 的直线对称,MF NF ∴=,由抛物线定义知,NF等于点N 到准线的距离,即=2N p NF x +,由于()32pMF =-- ,()322N p px ∴+=--,3N x =,代入抛物线方程可得6N y =-,()63333MN k -==---,解得2p =,故选A.【 方法点睛】本题主要考查抛物线的定义和几何性质,以及点关于直线对称问题,属于难题. 与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为。

相关文档
最新文档