高二数学平面向量坐标表示及运算
版高中数学第二章平面向量24第2课时平面向量数量积的坐标运算学案苏教版

第2课时平面向量数量积的坐标运算学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示ijxy轴的正半轴同向的单位向量.设,轴、是两个互相垂直且分别与iijjij分别是多少?·思考1 ··,,ijaxybxyabij,(,取思考2 ,,,试将为坐标平面内的一组基底,设)=(,用),=2112ab. 表示,并计算·abab坐标间有何关系?若⊥,,则思考3axybxy).==((,),,梳理若向量2112ab=·数量积____________________________向量垂直平面向量的模知识点二ayxa |(1 思考若=,),试将向量的模|用坐标表示.1→ABBxyxAy (,如何计算向量,,思考2 若(的模?,))2211梳理向量的模及两点间的距离→AB=||→AxyBxyAB 为端点的向量(以,(),,)211222yyxx+--1122向量的夹角知识点三a·b ba xy b y baa x=θ的夹角,则),都是非零向量,θ=(,是),cos =(,与设,2121|a||b|xxyy+2112. =2222yyxx+·+1221类型一平面向量数量积的坐标运算abb a·b=10. 已知(1,2)与,同向,=例1a的坐标;求(1)ca b·ca·b c. ),求(及)(1)(2(2)若=,-2此类题目是有关向量数量积的坐标运算,灵活应用基本公式是前提,设向量一反思与感悟般有两种方法:一是直接设坐标,二是利用共线或垂直的关系设向量,还可以验证一般情况cbbcaa )··≠,即向量运算结合律一般不成立.(下·(·)ababa________. )·1,2),则(2向量+=(1,-1),==(-1 跟踪训练向量的模、夹角问题类型二BAxOyO.-(16,12),在平面直角坐标系5,15)中,是原点(如图).已知点(例2→→ABOA ||,|(1)求|;OAB. 求∠(2)利用向量的数量积求两向量夹角的一般步骤:反思与感悟 (1)利用向量的坐标求出这两个向量的数量积.22yax|+|=求两向量的模.(2)利用θ的值.θ代入夹角公式求cos ,并根据θ的范围确定(3)baba的取值范λ的夹角α=(λ,1),若与为钝角,求2 跟踪训练已知(1=,-1),围.向量垂直的坐标形式类型三baabab的值为垂直,则实数λλ1,0)(3,2)((1)例3 已知=-,=-,若向量+与-2 _____. 3→→kABCABABCACk是直角三角形,求(2,3),,若△=(1,的值.(2)在△中,)=利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关反思与感悟于三角形的问题中,未明确哪个角是直角时,要分类讨论.→→→OCtOCBCABxOyA,--1),在平面直角坐标系若中,已知((1,4),)⊥(-2,3),,(2跟踪训练3t________.则实数=baba的夹角为,-2),则________1.已知与=(3,-1),.=(1????1331→→??ABCBABC=,________.2.已知向量==,则∠,????2222mnmnmn),则λ-2,2),若(+=)⊥(________. 3.已知向量=(λ+1,1),=(λ+abab a·b b=____________. =5|=14.已知平面向量,且,,若,则向量=(4,-3),|ab=(-1,2)=(4,3),.5.已知ab的夹角的余弦值;与(1)求abab),求实数λ(的值.-λ )⊥(2+(2)若1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.a x,(若可以对比学习、注意区分两向量平行与垂直的坐标形式,3.二者不能混淆,记忆.=1 4 yb xy ab xyxy ab xxyy=-=0,⊥+?0.,则,,)=()∥?221112112224.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.5答案精析 问题导学 知识点一jjiiij 0. =1×1×cos 0=1·,思考1 ·==1×1×cos 0=1,·jyxaxiyjbi =,++=,思考2 ∵221122yyjyyjxxxyjxiyjxixyxyabxii . ()·(+=++)∴=··=(+)++2121122222121111ybabxxya 0. ?=·+思考3 =⊥0?2112yxxy +梳理2112yabxxy 0⊥+?=2211 知识点二yxiyjxa +,∈∵,=R ,思考122222222jiyyjxyxaxiyji ·jxixyi ·j . )++((=)∴2=(+2+ +)=22i ·jji 1,0=1,又∵,==222222yaxyxa =|++=∴,∴|,22yax .∴||+=→→→yyyOAxyxxABOBx -,,)-(,,思考2 ∵)==(-)-=(11221221→22yxABxy.-|+-=∴|1212题型探究ba λλ)(>0)=λ,=(λ,21 例解 (1)设a ·b λ=10则有,=λ+4a =(2,4)λ∴=2,∴.a ·bb ·c 10,=1×2-2×1=0,(2)∵=aab ·c 0)=0,∴=(ca ·b .=(20,-(10))1)=10(2,-11 跟踪训练→OA =(16,12)例2 解 (1)由,→AB ,=-12)(-21,3)-=(-516,15→22OA =|20|=1612+,得→22AB 152.|-|=+3= 6→→ABAO ·→→ABOABAO. =(2)cos ∠cos =, →→ABAO ||||→→→→ABABAOOA 300. =-=-[16×(-其中21,3)··21)+12×3]==-(16,12)·(-2300OAB .故cos ∠==2220×15OAB ∴∠=45°.ba ,1)∵,=(1,-1),=(λ 跟踪训练2 解2baab 1. =|=1+λλ,∴|-|=2|,·ba 为钝角,又∵的夹角,α ,1<0λ-?? ∴2?,2·1+λλ≠1- ,λ<1?? 即?2+1≠0.λλ+2??1. λ≠-<1∴λ且 1,1).∴λ的取值范围是(-∞,-1)∪(-1 (1)例3 - 7133±211. -(2)或或 2331 -跟踪训练3当堂训练π3 3.-1. 2.30° 434????,- 4. ??552552 (2)(1)5. 925 720XX —019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。
空间向量及其运算的坐标表示课件-2022-2023学年高二上学期数学人教A版选择性必修第一册

定理,存在唯一的有序数组(x,y,z),使 OA xi y j z k .
在单位正交基底 { i ,j ,k } 下与向量对应
z
的有序数组(x,y,z),叫做点A在空间直
A
角坐标系中的坐标,记作A(x,y,z),其
6.平面向量的夹角余弦值如何用坐标表示?
x1 x2 y1 y2
a b
cos
.
2
2
2
2
| a || b |
x1 y1 x2 y2
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
(a1+b1,a2+b2,a3+b3)
(1)+=
Ԧ
.
(a1-b1,a2-b2,a3-b3)
(2)-=
Ԧ
(λa1,λa2,λa3)
(3)λ=
Ԧ
(λ∈R).
a1b1+a2b2+a3b3
(4)·=
Ԧ
.
∙
=(a
Ԧ
1,a2,a3)=a1i+a2j+a3k,=(b1,b2,b3)
=b1i+b2j+b3k,所以 ·=(a
中x 叫做点A 的横坐标、y 叫做点A 纵坐标、
O
z 叫做点A 竖坐标.
x
y
在空间直角坐标系Oxyz中,给定向量 a ,作 OA a ,由空间向量基
本定理,存在唯一的有序数组(x,y,z),使 a xi y j z k .
有序实数组(x,y,z)叫做 a 在空间直角坐标系Oxyz中的坐标,上式可
高二数学选修课件:3-2-2平面的法向量与平面的向量表示

人 教 B 版 数 学
第三章
空间向量与立体几何
[例 1]
如图, ABCD 是直角梯形, ∠ABC=90° SA⊥ ,
人 教 B 版 数 学
1 平面 ABCD,SA=AB=BC=1,AD=2,求平面 SCD 与平 面 SAB 的法向量.
第三章
空间向量与立体几何
[分析] 解答本题可先建立空间直角坐标系,写出每
个平面内两个不共线向量的坐标,再利用待定系数法求出 平面的法向量.
人 教 B 版 数 学
[解析]
∵AD、AB、AS 是三条两两垂直的线段,
→ → → ∴以 A 为原点,以AD、AB、AS的方向为 x 轴,y 轴, 1 z 轴的正方向建立坐标系, A(0,0,0), 2, 则 D( 0,0), C(1,1,0), → =(1,0,0),是平面 SAB 的法向量, S(0,0,1),AD 2 设平面 SCD 的法向量 n=(1,λ,μ),
第三章
空间向量与立体几何
人 教 B 版 数 学
第三章
空间向量与立体几何
人 教 B 版 数 学
第三章
空间向量与立体几何
1.知识与技能
掌握平面的法向量的概念及性质. 理解平面的向量表示. 2.过程与方法 用向量的观点认识平面、利用平面的法向量证明平行人ຫໍສະໝຸດ 教 B 版 数 学或垂直问题.
3.情感态度与价值观 培养学生转化的数学思想,增强应用意识.
第三章
空间向量与立体几何
人 教 B 版 数 学
第三章
空间向量与立体几何
重点:平面法向量的概念及性质. 难点:利用法向量法解决几何问题.
人 教 B 版 数 学
第三章
空间向量与立体几何
人 教 B 版 数 学
高二数学向量知识点总结

高二数学《向量》知识点总结考点一:向量的概念、向量的大体定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的大体定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的概念、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮忙理解。
【命题规律】重点考查概念和公式,主要以选择题或填空题型出现,难度一般。
由于向量应用的普遍性,常常也会与三角函数,解析几何一并考查,若出此刻解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考常常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主如果向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用【内容解读】向量的坐标表示实际上就是向量的代数表示。
高二数学平面向量的正交分解及坐标表示

esball国际平台 [单选]临床医师在全面康复中应做到()A.是康复二级预防的组织者和执行者B.是康复医疗的执行者C.是康复三级预防的组织者D.是负责住院患者的医疗康复者E.是全面康复的执行者 [单选]外板以()为理论线。A.板的内缘B.板厚C.板的中心线 [单选]下列各种方法中最常用来普查筛检宫颈癌的是()A.子宫颈刮片细胞学检查B.碘试验C.宫颈锥切术D.阴道镜检查E.宫颈和宫颈管活组织检查 [单选]情报的()是情报分发范围的依据。A、合法性B、确实性C、可靠性D、秘密等级 [单选]小王总是怀疑自己家的门没有上锁,因此常常要反复检查,它的这种行为属于()。A.焦虑B.强迫行为C.强迫观念D.强迫恐惧 [单选]患者恶寒重,发热轻,无汗,头痛,肢体疼痛,鼻塞声重,时流清涕,喉痒,舌苔薄白而润,脉浮。其治法是()A.散寒解肌B.辛温解表C.调和营卫D.散寒止痛E.发汗解肌 [单选,A1型题]新生儿肺透明膜病的X线胸片特点,哪项不正确() [问答题,简答题]什么是测定? [单选]某企业从事汽车修理修配业务,则该企业适合的成本计算方法是A.品种法B.分批法C.逐步结转分步法D.平行结转分步法 [单选]致孕妇畸胎的病毒主要是()A.流感病毒B.脊髓灰质炎病毒C.冠状病毒D.风疹病毒E.登革病毒 [单选,A1型题]下列不应选用青霉素G的情况是()。A.梅毒B.伤寒C.鼠咬热D.气性坏疽E.钩端螺旋体病 [单选]在影响深度知觉的线索中,人们看远物纹理模糊,看近物纹理清楚,属于()因素的影响A.物质重叠B.空气透视C.线条透视D.结构极差 [单选]液体闪烁计数器主要用来测定()A.α射线B.β射线C.γ射线D.低能射线E.中微子 [单选]()编程是数控编程方法之一。A、自动B、手动C、机床D、机动 [单选]“应收账款”科目所属明细科目如有贷方余额,应在资产负债表()项目中反映。A.预付款项B.预收款项C.应收账款D.应付账款 [单选]患者男性,65岁,因脑血栓后遗症,长期卧床,生活不能自理,入院时护士发现其骶尾部皮肤发红,除去压力无法恢复原来的肤色,护士使用50%乙醇按摩局部皮肤的作用是()A.消毒皮肤B.润滑皮肤C.去除污垢D.促进血液循环E.降低局部温度 [单选]医疗单位使用毒性药品,每张处方不得超过()A.2日常用量B.3日常用量C.2日极量D.3日极量E.7日常用量 [单选]柴油机装设调速器的主要目的是当外界负荷变化,通过改变()来维持或限制柴油机规定转速()。A.喷油压力B.喷油定时C.循环供油量D.喷油时间 [单选]钻孔通孔时,要特别注意孔即将钻通时的()。A、主轴转速B、钻头压力C、切削力D、进刀量 [单选]人体的血液循环路径是().A、左心室—动脉—毛细血管—静脉—右心房B、左心室—静脉—毛细血管—动脉—右心房C、右心房—动脉—毛细血管—静脉—左心室 [单选]计算机病毒是(1)。特洛伊木马一般分为服务器端和客户端,如果攻击主机为A,目标主机为B,则(2)。空白(1)处应选择()A.编制有错误的计算机程序B.设计不完善的计算机程序C.已被破坏的计算机程序D.以危害系统为目的的特殊的计算机程序 [问答题,简答题]定(张力)减径机的传动形式有哪些? [问答题,案例分析题]某房地产开发商决定开发一地段,有以下三种方案可供选择:A方案:一次性投资开发多层住宅5万㎡建筑面积,需投入总成本费用(包括前期开发成本、施工建造成本、销售成本,下同)10000万元,从建造到销售总开发时间为18个月。B方案:将该地段分为一区、二区两个部分 发。一期工程在一区开发高层住宅3万平方米建筑面积,需投入总成本7000万元,开发时间为12个月。二期工程开发时,若一期工程销路好,且预计二期工程销售率100%,则在二区继续投入总成本9600万元开发高层住宅4万平方米建筑面积,开发时间15个月;若一期工程销路差,或将二区土地转让 性获转让收入3000万元;或在二区开发多层住宅3万㎡建筑面积,需投入总成本费用6500万元,开发时间为15个月。C方案:一次性投资开发高层住宅7万㎡建筑面积,需投入总成本费用16500万元,从建造到销售总开发时间为27个月。季利率为2%,资金时间价值系数见表2-13。资金时间价值系数表 案的售价和销售情况如表2-14所示。三个方案的售价与销售表2-14根据经验,多层住宅销路好的概率为0.7,高层住宅销路好的概率为0.6。问题: [名词解释]型深(D) [多选]使用IC卡进行劳务实名制管理可实现的管理功能有()。A.人员信息管理B.门禁管理C.工资管理D.实时跟踪E.考勤管理 [单选]具有泻下,清肝,杀虫功效的药物是()A.番泻叶B.大黄C.芒硝D.甘遂E.芦荟 [单选]双盘法兰铸铁管常应用于()。A.室外给水工程B.室外排水工程C.水处理厂输送污水D.输送硫酸及碱类介质 [单选]在实施光面爆破时,周边眼起爆间隔时间(),井巷壁面平整的效果就越有保证。A.越长B.较长C.越短 [单选,A2型题,A1/A2型题]只可外用,不宜内服的药物是()A.轻粉B.砒石C.升药D.炉甘石E.硼砂 [多选]标准摇酒壶的容量有()A.250mlB.350mlC.530mlD.210mlE.420ml [单选,A1型题]Apgar评分判断新生儿临床恶化的顺序()A.皮肤颜色-呼吸-反射-肌张力-心率B.皮肤颜色-反射-肌张力-呼吸-心率C.皮肤颜色-肌张力-反射-呼吸-心率D.皮肤颜色-呼吸-肌张力-反射-心率E.心率-皮肤颜色-肌张力-反射-呼吸 [多选]桩基础按施工方法可分为()。A.管柱B.沉桩C.钻孔灌注桩D.挖孔桩E.摩擦桩 [单选]外阴硬化性苔藓局部用药一般多长时间见效()A.1个月B.6个月C.2年D.3个月E.1年 [单选]根据企业国有资产法律制度的规定,下列表述中,不正确的是()。A.向国有资本控股公司、国有资本参股公司的股东会、股东大会提出董事、监事人选,但是应当由职工代表出任董事、监事的除外B.未经履行出资人职责的机构同意,国有资本控股公司的董事长不得兼任经理B.经任免机构 国有独资企业的董事、高级管理人员可以在其他企业兼职C.董事、高级管理人员不得兼任监事 [单选]在债的发生依据中,既未受人之托,也不负有法律规定的义务,而自觉为他人管理事务或提供服务的行为属于()。A.无权代理B.不当得利C.侵权行为D.无因管理 [填空题]乙炔装置AR476分析仪参比气是()。 [问答题,简答题]什么是旋转体的平衡原理? [多选]下列关于计算机撮合成交的说法正确的是()。A.计算机撮合成交是根据公开喊价的原理设计的B.一般将买卖申报单以价格优先、时间优先的原则进行排序C.当买人价大于、等于卖出价时自动撮合成交D.集合竞价采用最大成交量原则 [判断题]居住在境内的18周岁以下的中国公民实名证件为户口簿。()A.正确B.错误 [单选]我国古代数学家中将计算圆周率精确到小数点后第六位的是()。A.张衡B.祖冲之C.刘徽D.王孝通
高二数学平面向量的正交分解及坐标表示

[单选]下列分析中,()应考虑关联效果,对项目涉及的所有社会成员的有关效益和费用进行全面识别。A.社会分析B.风险分析C.经济分析D.经济影响分析 [多选]三水铝石的分子式为()。A、Al(OH)3B、Al2O3•3H2OC、γ—AlOOHD、γ—Al2O3•H2O [单选]计入残疾人福利企业安排残疾人就业人数之内的残疾人,应当()。A、在福利企业挂名B、在福利企业不定期上班C、在福利企业从事全日制工作D、在福利企业领取适当补助 [填空题]铂钴比色法测定水质色度时,色度标准溶液放在密封的玻璃瓶中,存放于暗处,温度不超过()℃,该溶液至少能稳定()个月。 [单选,A1型题]认知疗法的治疗目标是()A.改变患者的不良行为B.帮助患者建立理性的认知模式C.消除不良嗜好D.帮助患者自我实现E.挖掘患者的最大潜力 [问答题,简答题]张力减径机的作用是什么?一套张力减径机一般由几架组成? [判断题]为了保证錾子具有良好的硬度,应对錾子进行热处理,即淬火。()A.正确B.错误 [名词解释]后生动物 [单选,A2型题,A1/A2型题]胸外心脏按压的正确部位是()A.胸骨上中1/3交界处B.胸骨下1/3C.胸骨左缘第4肋间D.胸骨中下1/3交界处E.胸骨左缘第4肋间腋中线上 [单选,A2型题,A1/A2型题]管理过程中,在计划实施前采取预防措施防止问题的发生,而不是在实施中出现问题后的补救,这种控制类型称为()A.过程控制B.同期控制C.反馈控制D.前馈控制E.要素质量控制 [单选]〈HR〉在HTML中是标记()A.标题B.空格C.换行D.水平线 [单选,A1型题]医师中止执业活动二年以上,当其中止的情形消失后,需要恢复执业活动的,应当经所在地的县级以上卫生行政部门委托的机构或者组织考核合格,并依法申请办理()A.准予注册手续B.中止注册手续C.注销注册手续D.变更注册手续E.重新注册手续 [多选]单纯随机抽样的特点是()。A.要求每隔一定数量单位抽一个样本B.样本代表性较差C.每个抽样单位有同等的机会被抽中D.方法简便易行E.不适于抽样范围及工作量大的研究 [问答题,简答题]发电机强励值是多少? [多选]多层次监测原则的具体含义是()。A.以仪器监测为主,辅以巡检B.以位移监测为主,兼顾其他监测项目C.形成具有一定测点覆盖率的监测网D.以电测仪器为主,以机测仪器为辅E.以几何方法为主,以电测方法为辅 [单选]中国特色社会主义法律体系的核心是()。A.宪法B.刑法C.民法 [单选]某一阶段的咨询任务是保证项目按设计和计划的进度、质量、投资预算顺利实施建设,最后达到预期的目标和要求,这一阶段是()。A.项目准备阶段B.项目运营阶段C.项目前期阶段D.项目实施阶段 [单选,B型题]肾手术的备皮范围为()A.白乳头至耻骨联合平面,两侧到腋后线B.白剑突至大腿上1/3前内侧及外阴部,两侧到腋后线C.自脐平线至大腿上1/3包括外阴D.自乳头连线至耻骨联合,前后均过正中线E.自唇下至乳头连线,两侧至斜方肌前缘 [填空题]从原理上讲离心泵和离心风机都是介质流经叶轮叶道时,受到()的作用而获得()。 [单选]下列哪一项是腹水影响肝脏声像图的情况:()A.没有影响B.肝脏回声显示增强C.腹水使声波衰减导致肝回声减弱D.肝内管状结构不清 [单选]下列有关法律规范的效力等级和适用的说法哪一项是正确的?()A.地方性法规与规章具有同等效力B.规章具有同等效力C.部门规章之间对同一事项的规定不一致时,应由部门规章制定机关协商解决D.根据授权制定的地方性法规与法律规定不一致,不能确定如何适用时,由全国人大常委会 [单选]下列关于隧道衬砌裂缝病害防治的说法错误的是()。A.设计时应根据围岩级别选取衬砌形式及衬砌厚度B.钢筋保护层必须保证不小于3cmC.混凝土宜采用较大的水灰比,降低骨灰比D.混凝土温度的变化速度不宜大于5°C/h [问答题,简答题]《陕西省农村合作金融机构会计业务印章管理办法》规定,结算专用章的使用范围是什么? [单选]总行程由()和空驶行程构成。A.重车公里B.载重行程C.平均车日行程D.有效行程 [单选]诊断原发性肝癌最有价值的定性检查是()A.甲胎蛋白测定B.岩藻糖苷酶C.碱性磷酸酶测定D.γ-谷氨酰转肽酶测定E.γ-谷氨酰转酞酶同工酶Ⅱ [单选,A2型题,A1/A2型题]下列哪项是错误的()A.HbA--α2β2B.HbA2--ζ2γ2C.HbGower2--α2ε2D.HbF--α2γ2E.HbBart--γ4 [单选]下列属于颈椎病X线表现的有()A.可伴有小关节面硬化B.椎体边缘骨质增生、硬化C.椎间孔狭窄D.椎间隙变窄E.以上都是 [选]干线货物运输不是()货物运输。A.大运量B.快速C.短距离D.大范围 [单选]医学人道主义最基本的思想是A.尊重病人生命B.同情病人C.帮助病人解除痛蕾D.为病人尽义务E.A和D [单选]关于精神障碍的一级预防,下列说法哪项不对()A.是预防精神障碍最主动、最积极的措施B.主要针对病因已经明确的精神疾病C.传染性疾病、寄生虫病和营养不良等所致的精神障碍在我国已基本得到控制D.开展精神病流行病学调查和基础理论研究是一级预防的主要内容之一E.对首次接受 [单选,A1型题]儿童一日膳食中碳水化合物提供的能量应该占总能量的比例大约为()A.30%~50%B.50%~60%C.70%~80%D.65%~70%E.40%~60% [单选]先天性长Q-T综合征现已发现的基因亚型数目()A.9B.10C.11D.12E.13 [单选]陈旧性关节脱位是指脱位时间超过()A.1周B.2周C.3周D.4周E.5周 [单选]《铁路旅客运输规程》规定,随同成人进站身高不足()的儿童,可不买站台票。A.1.4mB.1.1mC.1.2mD.1.3m [单选]()属于水生植物。A、肾蕨B、晚香玉C、马蹄莲D、菖蒲 [多选]关节镜下可观察到的关节结构有()。A.滑膜形态B.软骨C.韧带D.内外侧半月板E.血管、神经 [单选]以下各项中可能成为行政主体的是()。A.国家权力机关B.人民检察院C.国家行政机关D.治安联防组织 [单选]某二级公路采用级配碎石做路面基层,其压实度要求达到()。A.≥98%B.≥96%C.≥95%D.≥93% [单选,A2型题,A1/A2型题]一颅脑外伤患者,可正确回答问题,可自动睁眼,右侧肢体偏瘫,刺痛可回缩,左侧肢体可随意运动。GCS评分为()。A.15分B.14分C.13分D.12分E.11分 [单选]根据企业所得税法律制度的规定,下列各项中,不属于企业所得税纳税人的是()。A.一人有限责任公司B.股份有限公司C.合伙企业D.外商投资有限责任公司
高二数学《平面向量的坐标表示》说课稿 3篇
高二数学《平面向量的坐标表示》说课稿1各位老师好:我是户县二中的李敏,今天讲的课题是《平面向量的坐标的表示》,本节课是高中数学北师大版必修4第二章第4节的内容,下面我将从四个方面对本节课的教学设计来加以说明。
一、学情分析本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。
而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、高考的考点分析:在历年高考试题中,平面向量占有重要地位,近几年更是有所加强。
这些试题不仅平面向量的相关概念等基本知识,而且常考平面向量的运算;平面向量共线的条件;用坐标表示两个向量的夹角等知识的解题技能。
考查学生在数学学习和研究过程中知识的迁移、融会,进而考查学生的学习潜能和数学素养,为考生展现其创新意识和发挥创造能力提高广阔的空间,相关题型经常在高考试卷里出现,而且经常以选择、填空、解答题的形式出现。
三、复习目标1.会用坐标表示平面向量的加法、减法与数乘运算.2.理解用坐标表示的`平面向量共线的条件.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.教学重难点的确定与突破:根据《20xx高考大纲》和对近几年高考试题的分析,我确定本节的教学重点为:平面向量的坐标表示及运算。
难点为:平面向量坐标运算与表示的理解。
我将引导学生通过复习指导,归纳概念与运算规律,模仿例题解决习题等过程来达到突破重难点。
四、说教法根据本节课是复习课,我采用了“自学、指导、练习”的教学方法,即通过对知识点、考点的复习,围绕教学目标和重难点提出一系列精心设计的问题,在教师的指导下,用做题来复习和巩固旧知识点。
五、说学法根据平时作业中的问题来看,学生会本节课遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算等方面。
平面向量的应用重难点解析版
突破6.4 平面向量的应用一、学情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的 运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高 考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、学法指导与考点梳理考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2),b ≠0 垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。
考点二 正弦定理和余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C常见 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解重难点题型突破1 平面向量在平面几何中的应用(奔驰定理)例1、(1).(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】 【分析】利用三角形面积公式,推出点O 到三边距离相等。
新高考高二上数学知识点
新高考高二上数学知识点一、集合与函数集合的表示方法、基本运算、集合间的关系函数的定义、函数的性质、函数的图像二、一次函数与二次函数一次函数的定义、一次函数的图像、一次函数的性质、解一次方程二次函数的定义、二次函数的图像、二次函数的性质、解二次方程三、立体几何平行线与平面、点、直线、平面的位置关系多面体的名称与性质、平行四边形与平行线性质、内角和定理四、数列与逻辑推理等差数列与等比数列的概念、性质与应用数列的通项公式、前n项和公式逻辑运算符的使用、命题和条件语句的转换五、数与代数式实数的性质与运算、有理数的性质与运算、无理数的性质与运算代数式的定义与基本性质、多项式的定义与基本运算、因式分解与分式六、立体几何与概率平面图形与立体图形的计算、几何变换的性质与应用事件与概率的概念、事件的关系与运算、概率的计算方法七、函数与方程反函数的概念与性质、复合函数的概念与计算、函数方程的解与应用一次方程组的概念与解法、二元二次方程组的解法八、三角函数三角比的定义与性质、三角函数的定义与性质、三角函数的计算三角函数的图像、解三角方程九、平面向量平面向量的定义与运算、平面向量的模与方向、平面向量的线性运算平面向量的坐标表示、平面向量的垂直定理、平面向量的共线定理十、概率与统计统计调查的基本概念与方法、频率分布与统计图表概率的基本概念与性质、概率的计算公式、概率的应用以上是新高考高二上数学的知识点概要,每个知识点都对应了具体的定义、性质、运算方法以及应用。
通过学习这些知识点,我们可以进一步提升数学能力,为高考做好充分准备。
希望同学们能够认真学习,并在实际应用中灵活运用,取得优异的成绩。
加油!。
高二数学平面向量的坐标运算
O i j =( 0 , 1 ) 0 =( 0 , 0)
2.3.2 平面向量的坐标表示
概念理解 1.以原点O为起点作 OA a ,点A的位置由谁确定? 由a 唯一确定 y 2.点A的坐标与向量a 的坐标的关系? 两者相同 j
一一对应 A(x, y)
a
a x
向量a
坐标(x ,y)
O i
3.两个向量相等的充要条件,利用坐标如何表示?
a-b=(2,1)-(-3,4)=(5,-3); 3a+4b=3(2,1)+4(-3,4)
=(6,3)+(-12,16)
=(-6,19)
2.3.3 平面向量的坐标运算
例3. 已知 ABCD的三个顶点A、B、C的坐标分别为
(-2,1)、( -1,3)、(3,4),求顶点D的坐标. 解:设顶点D的坐标为(x,y)
AB ( 1 ( 2), 3 1) (1, 2) DC ( 3 x ,4 y ) 由 AB DC,得
(1,2) (3 x,4 y )
1 3 x 2 4 y x 2 y 2
顶点D的坐标为( 2, 2)
A1
d 2i 3 j (2,3)
2.3.3平面向量的坐标运算
平面向量的坐标运算
1.已知a ( x1 , y1 ), b ( x2 , y2 ),求a+b,a-b. 解:a+b=( x1i + y1 j ) + ( x2 i + y2 j ) =( x1 + x2 )i+( y1+ y2 )j 即 a + b ( x1 x2 , y1 y2 ) a - b ( x1 x2 , y1 y2 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们知道,在平面直角坐标系, 每一个点都可用一对有序实数(即它 的坐标)表示,对直角坐标平面内的 每一个向量,如何表示?
a=xi+yj
y yj
→ → a
j
O → i xi
图 1
我们把(x,y)叫做向量a 的 (直角)坐标,记作 a=(x,y), 其中x叫做a 在x轴上的坐标, x y叫做a在y轴上的坐标,(x ,y) 叫做向量的坐标表示。
A1 x
同理,b=-2i+3j=(-2,3)
c=-2i-3j=(-2,-3)
j O c
d=2i-3j=(2,-3)
已知
→
a=(x1 ,y1 ) , b=(x 2 ,y2 )
→ →
→
你能得出
a+b
,a b
→ →
→ , λ a
的坐标吗?
已知,a=(x1,y1),b=(x2,y2),则 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j 即 a+b=(x1+x2,y1+y2) 同理可得 a-b=(x1-x2,y1-y2)
问题:
消去λ后得
x1y2-x2y1=0
也就是说,a//b(b≠0)的等价表示是
x1y2-x2y1=0
练习:下列向量组中,能作为表示它 们所在平面内所有向量的基底,正确 的有( )
(1)e1=( -1 , 2 ),e2=( 5 , 7 )
(2)e1=( 3 , 5 ),e2=( 6 , 10 ) (3)e1=( 2 , -3 ),e2=( 1/2 , -3/4 )
→ →
i= (1,0) j= (0,1) 0= (0,0)
→ → 其中i,j为向量 i,j
→
y yj a x
j O i xi
图 1
→ → 其中xi为x i,yj为y j
如图,在直角坐标平面内,以原 点O为起点作OA=a,则点A的位 y y A(x,y) 置由a唯一确定。 设OA=xi+yj,则向量OA的坐标 (x,y)就是点A的坐标;反过来, x
例5、已知 a=(4,2), b=(6,y), 且 a//b ,求 y 的值。
例6、已知A(-1,-1),B(1,3),C(2, 5),判断A、B、C三点的位置关系。
C B A
这就是说,两个向量和与差的坐标分别等 于这两个向量相应坐标的和与差。
结论: 一个向量的坐标等于表示此向量 的有向线段的终点的坐标减去始点的 坐标。
y
A(x1,y1)
如图,已知A(x1,y1),B(x2,y2), 则 AB= OB - OA
B(x2,y2) x
O
= (x2,y2) - (x1,y1) = (x2-x1,y2-y1)
你能在P点吗?
y A(x1,y1) B(x2,y2) O x
P
• 这就是说,实数与向量的积的坐 标等用这个实数乘以原来向量的 相应坐标。
例2 已知a=(2,1),b=(-3, 4),求a+b,a-b,3a+4b
例3 已知平行四边形ABCD的三个定点A、 B、C的坐标分别为(-2,1)、 (-1,3)、(3,4),求顶点D的坐标
a j O i x
点A的坐标(x,y)也就是向量OA
的坐标。因此,在平面直角坐标 系内,每一个平面向量都可以用 一对实数唯一表示。
例1 如图,用基底i,j分别表示向量a、b、c、 d ,并求出它们的坐标。
y b A i d A2 解:由图3可知a=AA1+AA2=2i+3j, ∴ a=(2,3)
a
例4 已知平行四边形ABCD的三个定点A、 B、C的坐标分别为(-2,1)、(-1, 3)、(3,4),求顶点D的坐标
平行四边形ABCD的对角线交于点O,且 知道AD=(3,7), AB=(-2,1),求OB 坐标。
设a=(x1,y1),b=(x2,y2),其中b是 共线向量如何用坐标来表 非零向量 ,那么可以知道,a//b的充 要条件是存在一实数 λ ,使 示呢? a= λb 这个结论如果用坐标表示,可写为 (x1,y1)= λ(x2,y2) 即 x1= λx2 y1= λy2
1、平面向量的坐标表示与平面向量分 解定理的关系。 2、平面向量的坐标是如何定义的? 3、平面向量的运算有何特点?
类似地,由平面向量的分解定理,对于平面上的
任意向量
和 λ→ a
2 2
→
a1 a ,均可以分解为不共线的两个向量 λ1→
→
→ → a 使得 a =λ λ + 1 1 2 a2
在平面上,如果选取互相垂直的向量作为 基底时,会为我们研究问题带来方便。