有理数总复习
有理数的运算知识点总复习附解析

有理数的运算知识点总复习附解析一、选择题1.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A 、如果a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误;B 、只有当a≠0时,有理数a 才有倒数,故选项错误;C 、负数的相反数大于这个数,故选项错误;D 、如果a a =-,那么a 是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.4.如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是6,……,则第2019次输出的结果是()A.1 B.3 C.6 D.8【答案】B【解析】【分析】把x=2代入程序中计算,以此类推得到一般性规律,即可确定出第2019次输出的结果.【详解】把x=2代入得:12×2=1,把x=1代入得:1+5=6,把x=6代入得:12×6=3,把x=3代入得:3+5=8,把x=8代入得:12×8=4,把x=4代入得:12×4=2,把x=2代入得:12×2=1,∵2019÷6=336…3,∴第2019次输出的结果为3,故选:B .【点睛】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.5.为促进义务教育办学条件均衡,2019年某地区计划投入4200000元资金为该地区农村学校添置实验仪器,4200000这个数用科学记数法表示为( )A .44210⨯B .64.210⨯C .84210⨯D .60.4210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4200000=4.2×106,故选:B .【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.暑期爆款国产动漫《哪吒之降世魔童》票房已斩获4930000000,开启了国漫市场崛起新篇章,4930000000用科学计数法可表示为( )A .49.3×108B .4.93×109C .4.933×108D .493×107【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:4930000000=4.93×109. 故选B .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.7.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( ) A .4 B .6 C .7 D .10【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时, n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.8.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.9.已知:||2||3||a b b c c amc a b+++=++,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4 B.3 C.2 D.1【答案】B【分析】根据绝对值的意义分情况说明即可求解.【详解】∵abc>0,a+b+c=0,∴a、b、c为两个负数,一个正数,a+b=﹣c,b+c=﹣a,c+a=﹣b,m23c a bc a b---=++,∴分三种情况讨论:当a<0,b<0,c>0时,m=1﹣2﹣3=﹣4,当a<0,c<0,b>0时,m=﹣1﹣2+3=0,当a>0,b<0,c<0时,m=﹣1+2﹣3=﹣2,∴x=3,y=0,∴x+y=3.故选:B.【点睛】本题考查了有理数的混合运算和绝对值,解答本题的关键是分类讨论.10.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为()A.2.56×107B.2.56×108C.2.56×l09D.2.56×l010【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:2.56亿=256000000=2.56×108,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为()A.1.361×104B.1.361×105C.1.361×106D.1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.若(x+y﹣1)2+|x﹣y+5|=0,则x=()A.﹣2 B.2 C.1 D.﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x即可.【详解】解:∵(x+y﹣1)2+|x﹣y+5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23xy=-⎧⎨=⎩,故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.13.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方.14.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】科学记数法表示:384 000=3.84×105km故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
有理数复习

(2)、|a|=3,|b-4|=3,求 a-b的值
设a,b,c为非零有理数,求下列式子 的值
a b c a b c
2.为体现社会对教师的尊重,教师节这一天,出租车司机小王 在东西方向的公路上免费接送老师,如果规定向东的方向为正 方向,向西为负,出租车的行程如下(单位:千米):+5,-4, +13,-10,-12,+3,-13,-17. (1)最后一名老师被送到目的地时,小王据出发地点的距离是 多少?
1、用四舍五入法,按括号内要求 取近似值。
(1) (2) (3) (4) 654340(精确到万位 ; 30542 (保留3个有效数字); -7.56×104 (保留2个有效数字); 1.578×106 (精确到万位)
2、下列用科学记数法表示的、由四舍五入法 得到的近似数,各精确到哪一位?各有几 个有效数字? ①1.5×10; ②3.79×104; ③5.040×102; ④5.040×106。
1
3 2 -3 -2
-1
5、绝对值: 几何定义:表示数的点离开原点的距离。 代数定义:正数的绝对值是它本身,零的绝对值
是零;负数的绝对值是它的相反数。 a
|a|= 0
a>0
a=0
–a
a<0
含绝对值的式子的化简
(1)、数a,b,c在数轴上对应位置如图,
化简:| a + b | + | b + c | - | c – a 。
1、有理数的概念:
整数与分数统称为有理数。 2、有理数的分类 有理数可分为正有理数、负有理数和零。
例: 把下列各数填入所属的 集合内: 2 3 4 22 20 , 7 , 7 , 0 , 3 , 2.75 , 0.01, 67 , , 2000 0 , , 2 5 4 7 7 1.正数集合 ; 3.分数集合 2.负数集合 ; ; ; ; ; ;
第一章有理数总复习

8.有理数的乘除法法则
(1)乘法法则:两数相乘,同号得 正,异号得负,并把绝对值相 乘。 (2)除法法则:两数相除,同号得 正,异号得负,并把绝对值相 除。
(3)除以一个数等于乘以这个 数的倒数 例题:求下列各数的倒数
1 1 0.2, , 6, 3 4
9.乘方
定义:求几个相同因数的乘积的运 算叫做乘方
4.相反数 (1)只有符号不同的两 个数互为相反数 (2)互为相反数的两个 数关于原点对称
5.绝对值
(1)数轴上表示数a的点与原点 的距离叫做数a的绝对值, 记做|a| (2)绝对值的求法
例题
若a >0,b <0,c<0 化简 a -b + b +c
6.比较大小
(1)正数大于0,0大于负 数 (2)两个负数比较大小,绝 对值大的反而小
第一章
有理数总复习
1.具有相反意义的量 (1)高于海平面200米记做 +300米 ,则低于海平 面250米记做( ) (2)如果+20米表示上升20 米,则-10米表示( )
2.有理数的分类 (1)有理数的定义 (2)有理数的分类 ①按定义分类 ②按性质分类
3.数轴 规定了原点,正方向和 单位长度的直线
注意:负数和分数乘方时要打括号
10.科学记数法 将一个大于10或小于-10的 数写成:
a 10
n
11.近似数 (1)精确度 (2)四舍五入法 例题:90600000(精确到千位) 640列各数大小 并用<连接起来
(-2), -(+3), -4 , 0 -
7.有理数的加减法法则
(1)加法法则:同号两数相加,取 相同的符号,并把绝对值相加,异 号两数相加,取绝对值较大加数的 符号,并用较大的绝对值减去较小 的绝对值
有理数总复习

a 10b第一章 有理数总复习知识点梳理:1.正数与负数:负数产生的必要性;具有相反意义的量。
2.有理数的分类:3.数轴、相反数、倒数、绝对值:(1)数轴的三要素是:________________________________(2)只有符号不同的两个数叫做互为____________,a 的相反数为___ ;(3)互为倒数的两个数乘积是 , 没有倒数;(4)一个正数的绝对值是____________;一个负数的绝对值是____________;零的绝对值是_______.(5)有理数的大小比较:方法一:0 一切正数,0 一切负数;两个负数作比较,绝对值大的 .方法二:在数轴上,________表示的数总比________表示的数大。
4.科学记数法:把一个大于10的数表示成a ×10n 的形式, (其中a 是____________ ,n 是____________ )5.近似数【自主学习、巩固训练】要求:自主完成下列各题,并把自己疑惑的、不懂的做好批注,时间10分钟.1. 在 -1,+7, 0, 23-, 516中,正数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个2.在–2,+3.5,0,32-,–0.7,11中.负分数有…………( ) A 、l 个 B 、2个 C 、3个 D 、4个3. 下列数据是近似数的是( )A.小白数学得了90分B. 小明身高约173cmC.数学课本有86页D.(1)班有45名同学4.如图 , ,那么下列结论正确的是( ) A .a 比b 大 B .b 比a 大C .a 、b 一样大D .a 、b 的大小无法确定5.我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A. 63×102千米B. 6.3×102千米或者有理数 有理数C. 6.3×104千米D. 6.3×103千米6.用数轴上的点表示下列有理数, 并求其相反数、倒数和绝对值。
经典《有理数》总复习_拔高题及易错题精选附答案

) +( 3 )]+[ ( 4 )+ ( )+ (15 )]
37
37
37
4
4
2
=0
1 (2) 0.125 12 ( 16) ( 2 2 )
解:原式 =[- 0.125× (- 16) ]×[ 12× ( =2× (- 30) =- 60
三、解答题 (共 82 分 )
1. ( 12 分)计算:
10
15
5
1
9
(1) ( 12 37 ) 3 37 ( 4.25) ( 37 ) ( 15 2 ) ( 4 )
10
15
1
51
9
解:原式 =( 12
1307
)+ (
3
5
37
)+(
15
4
4 )+ ( 137
)+ (15
9
21)+ (
4)
=[ ( 12 )+ (
它跳第 100 次落下时,落点处离 O 点的距离是
个单位.
三、解答题 (共 82 分 )
1. ( 12 分)计算:
10
15
5
1
9
(1) ( 12 37 ) 3 37 ( 4.25) ( 37 ) ( 15 2 ) ( 4 )
1 (2) 0.125 12 ( 16) ( 2 2 )
2. (5 分)计算 1- 3+ 5- 7+ 9- 11+… +97- 99.
值.其中 x 和 y 满足 (x 12)2 |1 3 y | 0 .
1
1111
1
1
(4) 2 1 3 2 4 3 … 1000 999
5. (6 分) 已知 a 1 b 2 2 0 ,求 (a+ b) 2016+ a2017.
有理数全章复习

有理数全章复习理解有理数的概念和性质:有理数是指可以表示为两个整数的比值的数,这里的整数可以是正整数、负整数或零。
有理数的性质主要包括有理数的加减乘除运算性质、有理数大小的比较,以及有理数的乘方、开方运算等。
一、有理数的加减乘除运算性质:1.有理数的加法性质:-交换律:a+b=b+a-结合律:(a+b)+c=a+(b+c)-存在零元素:a+0=a-存在相反元素:a+(-a)=02.有理数的减法性质:-减法的定义:a-b=a+(-b)-减法与加法的关系:a-b=a+(-b)3.有理数的乘法性质:-交换律:a*b=b*a-结合律:(a*b)*c=a*(b*c)-分配律:a*(b+c)=a*b+a*c4.有理数的除法性质:-除法的定义:a÷b=a*(1/b)二、有理数的大小比较:1.同号比大小:正数大于负数,负数小于正数;正数之间、负数之间,绝对值大的数大。
2.异号比大小:两个数绝对值相比,绝对值大的数小。
三、有理数的乘方和开方运算:1.有理数的乘方:-正数的指数性质:a^m*a^n=a^(m+n)-负数的指数性质:a^(-m)=1/a^m-零的指数性质:a^0=1(a≠0)- 乘方的分配律:(ab)^n = a^n * b^n2.有理数的开方:-非负数的开方:√a*√a=a(a≥0)- 开方的分配律:√(ab) = √a * √b有理数的应用:1.在数轴上表示有理数:-正数表示:从0向右的数轴上的点表示,数值与点的位置对应。
-负数表示:从0向左的数轴上的点表示,数值与点的位置对应。
-零的表示:数轴上的0点表示。
2.数与有理数的运算:-数的加减法:将数转换为有理数进行运算。
-有理数与有理数的加减法:按照有理数的加减法规则进行运算。
3.比例与比例运算:-比例的定义:两个比例相等叫做比例,表示为a:b=c:d。
- 比例的性质:比例的两个比值相等,乘法性质:a:b = ac:bd。
-比例方程的解法:根据比例的性质,设置比例方程求解。
有理数总复习超级经典必考题型
有理数总复习五个概念:负数、有理数、相反数、绝对值、非负数一个工具:数轴三个符号:负号、绝对值号、乘方符号五种运算:有理数的加、减、乘、除、乘方五条运算律:加法交换律、结合律;乘法交换律,结合律、分配律类型一:考查正负数、相反数、数轴(多以小题形式出现,要搞清楚正负数的意义,相反数的表示方法,以及数轴的一些基本概念,注意多解性。
大题会结合表格来考)例1:我们把零上16°记作+16℃,则零下2℃可记作_______。
例2:若“神舟十号”发射点火前15秒记为-15秒,那么发射点火后10秒应记为________。
例3:如果“盈利10%”记为+10%,那么“亏损6%”记为_______。
例4:下列说法中正确的是()A、没有最大的正数,但有最大的负数B、没有最小的负数,但有最小的正数C、没有最小的有理数,也没有最大的有理数D、有最小的自然数,也有最小的整数例5:下列说法正确的有()(1)整数就是正整数和负整数;(2)零是整数,但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整数就是分数A 1个B 2个C 3个D 4个例6:数轴上到原点的距离等于4的点所表示的数为________。
例7:已知a,b两数在数轴上的对应点如图所示,则下列结论正确的是()A A.a-2>b-2B B.b-a>0C C.ab<0 D.2a<2b例8:若m-4的相反数是-11,求3m+1的值.练1:如果+10%表示“增加10%”,那么“减少8%”可以记作_____。
练2:汽车向东行驶5千米记作5千米,那么汽车向西行驶5千米记作_____。
练3:如果上升10米记作+10米,那么下降5米记作_____米.练4:在下列选项中,具有相反意义的量是()A.胜二局与负三局B.盈利3万元与支出3万元C.气温升高3℃与气温为-3℃D.向东行20米和向南行20米练5:数轴上与原点的距离为5的数是_______。
有理数全章复习(按知识点分类复习)
第一章 有理数全章复习考点一:用正负数表示相反意义的量1、 七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分2、如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( ) A .-500元B .-237元C .237元D .500元3.有4包真空小包装火腿,每包以标准克数〔450克〕为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的( )A .+2B .-3C .+3D .+44.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差 ( )A .B .C .D .考点二:有理数的分类1、_______、_______和_________成为整数,__________和__________统称为分数。
___________和_________统称为有理数。
练习稳固:1、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………〔 〕 A 、l 个 B 、2个 C 、3个 D 、4个2、不超过3)23(-的最大整数是………………………………………〔 〕 A 、–4 B –3 C 、3 D 、43.在数8.3、-4、0、-〔-5〕、+6、-|-10|、1中,正数有____ 个; 4、以下说法中正确的个数有 ( )①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A 1B 2C 3D 45、在数+8.3,-4,-0.8,0,90,-|-24|中,__________是正数,____________不是整数。
6、比132-大而比123小的所有整数的和为 __________ 。
初中数学有理数知识点总复习附答案
初中数学有理数知识点总复习附答案一、选择题1.下列说法中不正确的是( )A .-3 表示的点到原点的距离是|-3|B .一个有理数的绝对值一定是正数C .一个有理数的绝对值一定不是负数D .互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A 、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A 选项正确,不符合题意;B 、若这个有理数为0,则0的绝对值还是0,故B 选项错误,符合题意;C 、根据绝对值的意义,|a|的绝对值表示在数轴上表示a 的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C 选项正确,不符合题意;D 、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D 选项正确,不符合题意, 故选B .【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a 的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.2.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.3.-6的绝对值是()A.-6 B.6 C.- 16D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.4.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 5.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.6.在有理数2,-1,0,-5中,最大的数是()A.2 B.C.0 D.【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位=,则a的值为().长度,得到点C.若OC OBA.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.8.如果x取任意实数,那么以下式子中一定表示正实数的是( )A.x B.C.D.|3x+2|【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x可以取全体实数,不符合题意;B.≥0, 不符合题意;C. >0, 符合题意;D. |3x+2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.9.在实数-3、0、5、3中,最小的实数是()A.-3 B.0 C.5 D.3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A.考点:有理数的大小比较.10.下面说法正确的是()A.1是最小的自然数;B.正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 2a .14.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】 根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =,101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.。
有理数复习(有答案)
>有理数综合复习基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。
2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。
4、如果a+b=0,那么a 、b 一定是( )。
5、将毫米的厚度的纸对折20次,列式表示厚度是( )。
~6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。
8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。
9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。
10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。
二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。
》3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。
4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
>5、计算:-21 +65-127+209-3011+4213-5615+7217能力培训题>知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓展训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )A .1B .2C .3D .42、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[基础练习] 1☆如图所示的图形为四位同学画的数轴,其中正确的是 ( )
2☆在数轴上画出表示下列各数的点,并按从大到小的顺 序排列,用“>”号连接起来。 4, -|-2|, -4.5, 1, 0。
-2,-1 3★ ①比-3大的负整数是_______; ②已知m是整数且 -3,-2,-1,0,1,2 -4<m<3,则m为_______________。 ③有理数中, 最大的负整数是__,最小的正整数是__。最大的非正 -1 1 数是__。 0④与原点的距离为三个单位的点有__个, 2 -3 他们分别表示的有理数是__和__。 +3
判断: ①带“-”号的数都是负数
×
②-a一定是负数 ④0℃表示没有温度
×
×
③不存在既不是正数,也不是负数的数 × 增加-20%,实际的意思是 . 减20%
甲比乙小3 甲比乙大-3表示的意思是.
整 2.有理数: 数和分数统称有理数。
整数 有理数 分数 正有理数 有理数 正整数 零 负整数 正分数 负分数 正整数 正分数 负整数 负分数 自然数
× 7、①互为相反的两个数在数轴上位于原点两旁( ) ②在一个数前面添上“-”号,它就成了一个负数( ) × ③ 只要符号不同,这两个数就是相反数(×)
5.倒 数
乘积是1的两个数互为倒数.
1)a的倒数是 2)0没有倒数 ; 3)若a与b互为倒数,则ab=1. 4)倒数是它本身的是______.
下列各数,哪两个数互为倒数? 1 ,-1,+(-8),1, 1 8, ( ) 8 8
两数相乘,同号得正,异号得负, 并把绝对值相乘; 任何数同0相乘,都得0. ① 几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正. ② 几个数相乘,有一个因数为0, 积就为0.
4)有理数除法法则
①除以一个数等于乘上这个数的倒数; 即
a÷b=a×
4.相反数
只有符号不同的两个数, 其中一个是另一个的相反数。 1)数a的相反数是-a
(a是任意一个有理数);
2)0的相反数是0. 3)若a、b互为相反数,则a+b=0.
-4
-2 2 4
-4 -3 –2 –1
0
1
2
3
4
5、用-a表示的数一定是(D)
A .负数 B. 正数 C .正数或负数 D.正数或负数或0 6、一个数的相反数是最小的正整数,那么这个数 是(A) A .–1 B. 1 C .±1 D. 0
③ 一个数同0相加,仍得这个数。
2)有理数减法法则
即
减去一个数,等于加上这个数的相反数.
a-b=a+(-b)
例:分别求出数轴上两点间的距离: ①表示2的点与表示-7的点; ②表示-3的点与表示-1的点。 解:①2-(-7)=2+7=9
(或︱-7-2︱=︱-9︱=9)
②-1-(-3)=-1+3=2
3)有理数的乘法法则
特殊值法
1、若a>0,b<0,且|a|<|b|,则a+b___0 2、若x<0,y>0,且|x|<|y|,则x+y__0
• 4、蜗牛在井里距井口1米处它每天白天向 上爬30cm,晚上又下滑20cm,则蜗牛爬出井口 需要的天数为 ( ) (A)11 (B)10 (C)9 (D)8
解:
(1)43.8精确到十分位.有3个有效数字:4,3,8;
(2)0.03086精确到十万分位,有四个有效数字:3,0,8,6;
(3)2.4万精确到千位,有2个有效数字:2,4; (4) 6×104 精确到万位,有1个有效数字:6 ; (5) 6.0×104 精确到千位,有2个有效数字:6 ,0;
• 6★5.47×105精确到 位,有 个有效数字。 • 7★3.4030×105保留两个有效数字是 ________,精确到千位是 。 • 8★★某数由四舍五入得到3.240,那么原来 的数一定介于 和 之间。 • 9★★用四舍五入法求30951的近似值(要 求保留三个有效数字),结果 是 。
C、(+7)-(-15)+(-12)-(+7)
D、1-4+7-10+13-16+19-22
乘法三结合 1、积为整数结合 解 题 技 能
2、两个倒数结合
3、能约分的结合
A、4 0.07 25
1 1 4 B、 50 4 5 7
5 3 2 C、 3 17 7 5
七年级数学上学期
一、有理数的基本概念
1.负数 2.有理数 3.数轴 4.互为相反数 5.互为倒数 6.有理数的绝对值 7.有理数大小的比较 8.科学记数法、近似数与有效数字
二、有理数的运算
加、减、乘、除、乘方运算
一、有理数的基本概念
1.负数: 在正数前面加“—”的数;
0既不是正数,也不是负数。 判断: 1)a一定是正数; × 2)-a一定是负数; × 3)-(-a)一定大于0;× 4)0是正整数。 ×
专题训练1 充分利用概念
互为相反数的两个数的和为0,互为倒数的积为1.绝 对值是正数的有两个,且它们互为相反数
例:已知a、b互为相反数,c,d互为倒数,m 是绝对值最小的数,求代数式
(a m b) (m cd )
2007
非负数性质的应用
1 、已知:(a b) | b 4 | 0, 求a b 的值
4)乘法结合律 5)分 配 律
加法四结合
1.凑整结合法
2.同号结合法
3.两个相反数结合法 解 题 技 能
4.同分母或易通分的分数结合法
A、5.6+(-0.9)+4.4+(-8.1)+(-1)
2 1 1 1 B、4 6 3 2 3 2 3 4
非负整数集有
2 1 负分数有: -3.14,- ,5 4 2 1 非负数有: 12,0,-(- ),|-8|, 9 2
3.数 轴
规定了原点、正方向和单位长度的直线.
-3 –2 –1
0
1
2
3
4
1)在数轴上表示的两个数, 右边的数总比左边的数大; 2)正数都大于0,负数都小于0; 正数大于一切负数; 3)所有有理数都可以用数轴上 的点表示。
2
2
2
2、若(a - 1) 2 与 | b - 2 | 互为相反数,求 3 b3 a
数形结合的思想方法
已知︱a︱>︱b︱,且a<0,b>0,试比较 a,b,-a,-b的大小 分类讨论的思想
比较1+a与1-a的大小。
练习 1、已知有理数a、b、c在数轴上的 位置如图,化简|a|-|a+b|+|c-a|+|b+c||
4
2.运算顺序
1)有括号,先算括号里面的; 2)先算乘方,再算乘除,
最后算加减;
3)对只含乘除,或只含加减的 运算,应从左往右运算。
3.有理数的运算律 1)加法交换律
a+b=b+a ab=ba
(ab)c=a(bc) a(b+c)=ab+ac
2)加法结合律 (a+b)+c=a+(b+c) 3)乘法交换律
1 b
(b≠0)
② 两数相除,同号得正,异号得负, 并把绝对值相除; 0除以任何一个不等于0的数,都 得0.
5)有理数的乘方
即a· · ·· a= aa · ··
n 个
①求n个相同因数的积的运算,叫做乘方。
a
n
幂
a
n
指数
底数
②正数的任何次幂都是正数; 负数的奇次幂是负数, 负数的偶次幂是正数.
-3的平方是(9 ) 平方是9的数是( ±3)
零 负有理数
2 2 1 1 例:在 -3.14, , , , - 12 -3 0,-(- ),|-8|, ,- 中, 5 9 2 4 哪些是整数、分数、正整数、负分数、非负数
整数有: ,-3, 8 12 0,2 2 1 1 分数有: , , -(- ), ,-3.14 5 9 2 4
正整数有: 12,|-8|
0,±1 1)绝对值小于2的整数有________。 零和正数 2)绝对值等于它本身的数有___________。
3)绝对值不大于3的负整数有__________。 -1,-2,-3
4)数a和b的绝对值分别为2和5,且在数轴上 表示a的点在表示b的点左侧,则b的值为
5
.
练习2
1、若(x-1)2+|y+4|=0,则3x+5y=______ ∵X-1=0,y+4=0, ∴x=1 ,y=-4 ∴3x+5y=3×1+5×(-4)=3-20=-17
• (1)2×32和(2×3)2有什么区别? 各等于什么? 9 • (2)32和23有什么区别?各等于 ±3 什么? (3)-34和(-3)4有什么区别?各 等于什么?
练习 1)在 1210中,12是 底 数,10是
数,读作 ; 指 12的10次方 12的10次幂
2 的底数是 2) 3
例:在数轴上表示绝对值不小于2而又不大
于5.1的所有整数;并求出绝对值小于4的所 有整数的和与积
-5 -4 -3 -2
2 3 4 5
2 3 4 5
-6 -5 -4Leabharlann -3 -2 -10 0 1
6
绝对值小于4的所有整数的和:
(-3)+(-2)+(-1)+1+2+3+0=
0 0
绝对值小于4的所有整数的积: (-3)×(-2)×(-1)×0 × 1×2×3=