高二数学椭圆训练题
高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线、上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:据此,可推断抛物线的方程为_____________.【答案】【解析】:由题意可知:点是椭圆的短轴的一个端点,或点是椭圆的长轴的一个端点.以下分两种情况讨论:①假设点是椭圆的短轴的一个端点,则可以写成经验证可得:若点在上,代入求得,即,剩下的4个点中也在此椭圆上.假设抛物线的方程为,把点代入求得p=2,∴,则只剩下一个点既不在椭圆上,也不在抛物线上满足条件.假设抛物线的方程为y2=-2px,经验证不符合题意.②假设点是椭圆的长轴的一个端点,则可以写成,经验证不满足条件,应舍去.综上可知:可推断椭圆的方程为.【考点】椭圆、抛物线的标准方程及其性质和分类讨论的思想方法是解题的关键.2.已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在斜率为,且过定点的直线,使与椭圆交于两个不同的点,且?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)不存在【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(I)依题意可设椭圆方程为,则右焦点,由题设:,解得:,故所求椭圆的方程为.(II)设存在直线符合题意,直线方程为,代入椭圆方程得:,设,为弦的中点,则由韦达定理得:,,因为不符合,所以不存在直线符合题意.【考点】(1)椭圆的方程;(2)直线与椭圆的综合问题.3.椭圆的焦距是()A.3B.6C.8D.10【答案】B【解析】由椭圆的方程知,∵a2=25,b2=16,∴c=∴的焦距2c=6.故选B.【考点】椭圆的性质.4.已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点.(1)求椭圆的方程;(2)求的取值范围.【答案】(1);(2).【解析】(1)利用题干中的两个条件,和椭圆本身的性质,得然后求解,代入即可;(2)由题干“过点的直线与椭圆交于不同的两点”.设直线的方程为,由得,设,的坐标分别为,,然后利用根与系数的关系,代换出,注意:k的范围.试题解析:(1)由题意得解得,.椭圆的方程为.(2)由题意显然直线的斜率存在,设直线的方程为,由得. 直线与椭圆交于不同的两点,,,解得.设,的坐标分别为,,则,,,.的范围为.【考点】椭圆定义,转化与化归思想,舍而不求思想的运用.5.已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且||=2,离心率. (1)求椭圆的方程;(2)过的直线与椭圆相交于A,B两点,若的面积为,求直线的方程.【答案】(1);(2)或.【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)椭圆C的方程是 4分(2)当直线轴时,可得的面积为3,不合题意。
高考数学专题《椭圆》习题含答案解析

专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( ) A B C .D .【答案】B 【解析】,选B . 2.(2019·北京高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】 椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点(1,)2,且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=22194x y +=235933e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则4y x =由2AB c =,可知OA c ==c =,解得3x =,所以1,33A c c ⎛⎫⎪ ⎪⎝⎭把点A代入椭圆方程得到2222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=, 因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析. 【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =. 则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+,43-, ∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围. 【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b +(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-. 从而()12n FP FP a c a c c -≤+--=. 再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤. 同理,当等差数列递减时,可解得1010d -≤<, 故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+ 【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解 【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,而1AF ==∴10AM MF +≤当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为109.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>点A (2,1)在椭圆C 上,O 是坐标原点. (1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2 【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解. 【详解】(1)由e =得:12c b a =,, 又点(21)A ,在椭圆上, 所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =, 因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-, 与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD = 10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △. 【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解. 【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,所以2224c a b =-=,① 又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>, 由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△. 即12F PF △.1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b +=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1,12⎡⎫⎪⎢⎣⎭B .⎣⎦C .2⎫⎪⎢⎪⎣⎭ D .⎫⎪⎣⎭【答案】C 【分析】练提升若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin baα=求椭圆离心率的范围. 【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 452b a α=≤︒=222a c ≤, ∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎣⎭. 故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠, ∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立, 在2AFF 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF e mnmn mn a+-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤. 故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.【答案】21 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q 为短轴的端点,故离心率πcos 42c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B =,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1)2;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立 对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤故离心率最大值为2当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________.【答案】2. 【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >, 因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c , 根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a , 解得112=+PF a a ,212=-PF a a , 在12F PF ∆中,由余弦定理,可得: 2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a , 整理得2221243=+c a a , 所以22121134+=e e ,又221212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎣⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y ,所以点03⎫⎪⎝⎭H y由λ=HQ PH ,所以λ=HQ PH0⎛⎫=- ⎪⎝⎭HQ x y y ,0,0⎫=⎪⎭PH x又λ=HQ PH ,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x 所以00x y y ==由220014x y +=221=y 则点Q 221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥ 所以234e ≥,则e ≥,又1e < 所以⎫∈⎪⎪⎣⎭e 故答案为:⎫⎪⎪⎣⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得. 【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝⎭【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围. 【详解】22194x y +=的焦点为1(F、2F , 如图所示:A 、B 、C 、D 四点, 此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角, 所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==. 因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝⎭.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y +=的两个焦点,P 是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66 【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值. 【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号, ∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号, ∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y+=, 由已知,得12||||26PF PF a +==,∴12||6||PF PF =-, ∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6 综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l. (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足263MN OP =,求直线n 的斜率. 【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x ,利用根与系数的关系,结合263MN OP =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率 【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b , 所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C ,原点O 到直线0bx cy bc +-=所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++. 因为263MN OP=,所以))2121P x x y y ⎫--⎪⎪⎝⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-, 即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )练真题A.⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可. 【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .2.(2018·全国高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14【答案】D 【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 3.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 4.(2019·全国高考真题(文))设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M 的坐标为(.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>. (1)证明:3ab ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立; (2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程. 【详解】(1)c e a ===b a ∴=,因此,3a b ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得b > 设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+ 由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=, 所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝ 所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y = 所以,直线l0y --=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->, 由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥,而()11,OP x y =,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++ ()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭, 因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-.。
高二数学椭圆试题

高二数学椭圆试题1.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)过的直线与椭圆C相交于A,B两点,若A B的面积为,求以为圆心且与直线相切的圆方程.【答案】(1)(2)【解析】解:(Ⅰ)根据题意,由于椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上,2c=2,利用定义可知椭圆C的方程为(Ⅱ)①当直线⊥x轴时,可得A(-1,-),B(-1,),A B的面积为3,不符合题意.②当直线与x轴不垂直时,设直线的方程为y=k(x+1).代入椭圆方程得:,显然>0成立,设A,B,则,,可得|AB|=又圆的半径r=,∴A B的面积=|AB| r==,化简得:17+-18=0,得k=±1,∴r =,圆的方程为【考点】直线与椭圆的位置关系点评:主要是考查了直线与椭圆的位置关系,属于中档题。
2.已知椭圆,对于任意实数,下列直线被椭圆截得的弦长与被椭圆截得的弦长不可能相等的是A.B.C.D.【答案】D【解析】解:由数形结合可知,当l过点(-1,0)时,直线l和选项A中的直线重合,故不能选A.当l过点(1,0)时,直线l和选项D中的直线关于y轴对称,被椭圆E所截得的弦长相同,故不能选C.当k=0时,直线l和选项B中的直线关于x轴对称,被椭圆E所截得的弦长相同,故不能选B.直线l斜率为k,在y轴上的截距为1;选项D中的直线kx+y-2="0" 斜率为-k,在y 轴上的截距为2,这两直线不关于x轴、y轴、原点对称,故被椭圆E所截得的弦长不可能相等.故选D【考点】直线和椭圆的位置关系点评:本题考查直线和椭圆的位置关系,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法3.若是椭圆与轴的两个交点,是该椭圆的两个焦点,则以为顶点的四边形的面积为()A.B.C.D.【答案】D【解析】椭圆16x2+25y2=400可变为=1,故a=5,b=4,由a2=b2+c2,可解得c=3,故焦距为6,短轴长为8又以A,B,C,D为顶点的四边形是一个菱形,且两对角线CD=6,AB=8故它的面积为×6×8=24,故选D。
高二数学椭圆试题

椭圆方程及性质的应用一、选择题(每小题4分,共48分)1.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A.(±13,0)B.(0,±10)C.(0,±13)D.(0,±)2.椭圆+=1与+=1(0<k<9)的关系为( )A.有相等的长、短轴B.有相等的焦距C.有相同的焦点D.有相等的离心率3.若椭圆的长轴长、短轴长和焦距成等差数列,则该椭圆的离心率是( )A. B. C. D.4.已知椭圆+=1及以下3个函数:①f(x)=x;②f(x)=sinx;③f(x)=cosx,其中函数图象能等分该椭圆面积的函数个数有( )A.1个 B.2个 C.3个 D.0个5.设AB 是椭圆+=1(a>b>0)的长轴,若把线段AB分为100等份,过每个分点作AB的垂线,分别交椭圆的上半部分于点P1,P2,…,P99,F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是( ) A.98a B.99a C.100a D.101a6.椭圆+=1的离心率为,则k的值为( )A.-21B.21C.-或21D.或217.过椭圆+y2=1的右焦点且与椭圆长轴垂直的直线与椭圆相交于A,B 两点,则|AB|等于( )A.4B.2C.1D.48.已知直线l过点(3,-1),且椭圆C:+=1,则直线l与椭圆C的公共点的个数为( )A.1B.1或2C.2D.09.直线y=kx-k+1与椭圆+=1的位置关系是( )A.相交B.相切C.相离D.不确定10.已知椭圆mx2+ny2=1与直线x+y=1相交于A,B两点,M为AB的中点,O 为坐标原点,若直线OM 的斜率为,则的值为( )A. B. C. D.211.如果AB 是椭圆+=1的任意一条与x轴不垂直的弦,O为椭圆的中心,e为椭圆的离心率,M为AB的中点,则k AB·k OM的值为( )A.e-1B.1-eC.e2-1D.1-e212.椭圆+=1中,以点M(-1,2)为中点的弦所在的直线斜率为( )A. B. C. D.-二、填空题(每小题4分,共20分)13.如图,F1,F2分别为椭圆+=1的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是.14.已知椭圆的中心在坐标原点,焦点在y轴上,且长轴长为12,离心率为,则椭圆方程为.15.设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.16.若点O和点F分别为椭圆+=1的中心和左焦点,点P 为椭圆上的任意一点,则·的最大值为.三、解答题17.设椭圆的中心在原点,焦点在x轴上,离心率e=,已知点P到这个椭圆上的点的最远距离为,求这个椭圆方程. 18.已知F1,F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的范围.(2)求证:△F1PF2的面积只与椭圆的短轴长有关.19.椭圆ax2+by2=1与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=2,OC的斜率为,求椭圆的方程.20.已知离心率为的椭圆C:+=1(a>b>0)过点M(,1).(1)求椭圆的方程.(2)已知与圆x2+y2=相切的直线l与椭圆C相交于不同两点A,B,O为坐标原点,求·的值.椭圆方程及性质的应用参考答案1【解析】选D.由条件知,椭圆的焦点在y轴上,且a=13,b=10,所以c2=a2-b2=169-100=69,所以焦点坐标为(0,±).2【解析】选B.对于椭圆+=1(0<k<9),c2=(25-k)-(9-k)=16,焦点在y轴上,所以它们有相等的焦距.3【解析】选B.由椭圆的长轴长、短轴长和焦距成等差数列,所以2×2b=2a+2c,即2b=a+c,所以5c2-3a2+2ac=0,等式两边同除以a2得5e2+2e-3=0,解得e=或e=-1(舍).4【解析】选B.我们知道:①f(x)=x,②f(x)=sinx都是奇函数,其图象关于原点对称,而椭圆+=1的图象也关于原点对称,故①②函数图象能等分该椭圆面积;而③f(x)=cosx是偶函数,其图象不关于原点对称,故f(x)=cosx的图象不能等分该椭圆面积.综上可知:只有①②满足条件. 5【解析】选D.设F2为椭圆的右焦点,根据椭圆的定义及对称性有:|F1P1|=|F2P99|,|F1P2|=|F2P98|,…,|F1P49|=|F2P51|,因此|F1P1|+|F1P99|=|F1P2|+|F1P98|=…=|F1P49|+|F1P51|=|F1A|+|F1B|=2a.故结果应为50×2a+|F1P50|=101a.6【解析】选C.当椭圆的焦点在x轴上时,a2=9,b2=4+k,得c2=5-k,由==,得k=-;。
高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆G:过点,,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.(1)求椭圆G的方程;(2)求四边形ABCD 的面积的最大值.【答案】(1),(2)【解析】(1)求椭圆方程一般方法为待定系数法,将A,B两点坐标代入椭圆方程,联立方程组解得:,(2)四边形可分割成三个三角形,即,其中三角形OAB面积确定,OC=OD,因此可用直线CD斜率表示高及底:设直线CD方程为y = kx,代入椭圆方程得,解得:,,又,,则试题解析:解:(1)将点A(0,5),B(-8,-3)代入椭圆G 的方程解得(2)连结OB,则,其中,分别表示点A,点B 到直线CD 的距离.设直线CD方程为y = kx,代入椭圆方程得,解得:,,又,则.【考点】椭圆方程,直线与椭圆位置关系2.设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为()A.B.C.D.【答案】C【解析】如下图所示,是底角为的等腰三角形,则有所以,所以又因为,所以,,所以所以答案选C.【考点】椭圆的简单几何性质.3.双曲线与椭圆的离心率互为倒数,则()A.B.C.D.【答案】B.【解析】由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为、,然后由题意得,即,将其两边平方化简即可得出结论.【考点】双曲线的几何性质;椭圆的几何性质.4.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
【考点】(1)椭圆、双曲线离心率的求法;(2)椭圆、双曲线中的三者关系。
5.已知定点A(1,0),B (2,0) .动点M满足,(1)求点M的轨迹C;(2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.【答案】(1)(2)(,1)【解析】(1)先对原函数求导,然后求出斜率,再利用进行整理即可.(2)先设方程为与联立,结合根与系数的关系以及判别式得到再由得,即可(1)由得, ∴.∴直线的斜率为,故的方程为,∴点A的坐标为(1,0). (2分)设,则(1,0),,,由得,整理,得. (4分)(2)方法一:如图,由题意知的斜率存在且不为零,设方程为①,将①代入,整理,得,设,,则②得(7分)令,则,由此可得,,且.∴由②知,.∴, (10分)∵,∴,解得且 (12分)又∵,∴,∴△OBE与△OBF面积之比的取值范围是(,1). (13分)方法二:如图,由题意知l’的斜率存在且不为零,设l’ 方程为①,将①代入,整理,得,设,,则② ; (7分)令,则,由此可得,,且.∴ (10分)∵, ∴,解得且 (12分)又∵,∴,∴△OBE与△OBF面积之比的取值范围是(,1). (13分)【考点】函数求导;根与系数的关系;斜率公式;不等式的解法.6.已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当<时,求实数取值范围.【答案】(1);( Ⅱ).【解析】(1)由题意知,所以.由此能求出椭圆C的方程.(2)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2-8k2x+8k2-2=0再由根的判别式和嘏达定理进行求解.解:(1)由题意知,所以.即. 2分又因为,所以,.故椭圆的方程为. 4分(2)由题意知直线的斜率存在.设:,,,,由得.,. 6分,.∵,∴,,.∵点在椭圆上,∴,∴. 8分∵<,∴,∴∴,∴,∴. 10分∴,∵,∴,∴或,∴实数t取值范围为.(12分)【考点】1. 椭圆的方程;2.直线与椭圆的方程.7.已知椭圆的中心在原点,焦点在轴上,且长轴长为12,离心率为,则椭圆的方程是() A.B.C.D.【答案】D【解析】依题意可设,其中即,且,所以,从而,所以椭圆的标准方程为,故选D【考点】椭圆的标准方程及其几何意义.8.在椭圆中,左焦点为, 右顶点为, 短轴上方端点为,若,则该椭圆的离心率为___________.【答案】【解析】由题意,得,∴.∵,∴,∴,∴.又∵,∴.【考点】椭圆的离心率.9.在平面直角坐标系中,若,且.(1)求动点的轨迹的方程;(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值.【答案】(1);(2).【解析】(1)设,则,,由可得,结合椭圆的定义可知,动点的轨迹是以为焦点,4为长轴长的椭圆,从而可以确定椭圆标准方程中的参数的取值,进而写出椭圆的方程即可;(2)设,直线:,联立直线的方程与(1)中椭圆的方程,消去得到,进而根据得,且,再计算出,然后由确定的横纵坐标,根据点在轨迹上,将点的坐标代入轨迹的方程并由的任意性,得到即,从中求解,并结合即可得到满足要求的的值.试题解析:(1)设,则,由可得∴动点到两个定点的距离的和为4∴轨迹是以为焦点的椭圆,且长轴长为设该椭圆的方程为则有且,所以所以轨迹的方程为(2)设,直线的方程为,代入消去得由得,且∴设点,由可得∵点在上∴∴又因为的任意性,∴∴,又,得代入检验,满足条件,故的值是.【考点】1.动点的轨迹问题;2.椭圆的定义及其标准方程;3.直线与圆锥曲线的综合问题.10.在平面直角坐标系xOy中,△ABC的顶点B、C的坐标为B(-2,0),C(2,0),直线AB,AC的斜率乘积为,设顶点A的轨迹为曲线E.(1)求曲线E的方程;(2)设曲线E与y轴负半轴的交点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与曲线E的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,试求的取值范围.【答案】(1);(2)【解析】(1)由于所求动点A满足直线AB,AC的斜率乘积为,所以直接设A的坐标,代入化简整理即得:,注意到△ABC中三个顶点不能共线,所以需去掉与轴相交的点,(2)要求的取值范围,首先求出函数解析式,由题意确定l1的斜率为k为自变量,因为M 为l1与曲线E的交点,所以列方程组解出点M坐标,从而得出弦长;同理,只需将代k就可得到,因此△DMN的面积S=,所以=,这可以看作关于1+k2的一个分式函数,即,可以利用函数单调性求出其取值范围.试题解析:解(1)设顶点A的坐标为(x,y),则kAB =,kAC= 2分因为kAB ×kAC=,所以,即.(或x2+4y2=4).所以曲线E的方程为. 4分(2)曲线E与y轴负半轴的交点为D(0,-1).因为l1的斜率存在,所以设l1的方程为y=kx-1,代入,得从而 6分用代k得所以△DMN的面积S= 8分则=因为k≠0且,k≠±2,令1+k2=t,则t>1,且,t≠5,从而=因为,且,所以且,从而且,,即∈ 10分.【考点】直接法求轨迹方程,直线与圆锥曲线关系,求函数范围11.椭圆的焦距为2,则m的取值是()A.7B.5C.5或7D.10【答案】C【解析】当时,当时,本题有两个注意点,一是焦距是即二是椭圆交点位置不定,需讨论.【考点】椭圆标准方程基本量12.平面内与两定点、()连线的斜率之积等于非零常数m的点的轨迹,加上、两点所成的曲线C可以是圆、椭圆或双曲线.求曲线C的方程,并讨论C的形状与m 值得关系.【答案】当时,曲线C的方程为,C是焦点在y轴上的椭圆;当时,曲线C的方程为,C是圆心在原点的圆;当时,曲线C的方程为, C是焦点在x轴上的椭圆;当时,曲线C 的方程为,C是焦点在x轴上的双曲线.【解析】设出动点M的坐标,利用斜率乘积求出曲线轨迹方程,然后讨论 m的值,判断曲线是圆、椭圆或双曲线时m的值的情况.试题解析:设动点为M,其坐标为,当时,由条件可得即,又的坐标满足,故依题意,曲线C的方程为. 4分当时,曲线C的方程为,C是焦点在y轴上的椭圆; 6分当时,曲线C的方程为,C是圆心在原点的圆; 8分当时,曲线C的方程为,C是焦点在x轴上的椭圆; 10分当时,曲线C的方程为,C是焦点在x轴上的双曲线. 12分【考点】(1)求轨迹方程;(2)圆锥曲线的综合应用.13.已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:、、、.(1)经判断点,在抛物线上,试求出的标准方程;(2)求抛物线的焦点的坐标并求出椭圆的离心率;(3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.【答案】(1);(2);(3)或.【解析】(1)先设抛物线,然后将或代入可得,从而确定了的方程,也进一步确定、不在上,只能在上;设:,把点、代入得,求解即可确定的方程;(2)由(1)中所求得的方程不难得到的焦点及椭圆的离心率;(3)先假设所求直线的方程(或,不过此时要先验证直线斜率不存在的情况),然后联立直线与椭圆的方程,消去消去,得,得到,再得到,要使,只须,从中求解即可得到,从而可确定直线的方程.试题解析:(1)设抛物线,则有,而、在抛物线上 2分将坐标代入曲线方程,得 3分设:,把点、代入得解得∴方程为 6分(2)显然,,所以抛物线焦点坐标为由(1)知,,所以椭圆的离心率为 8分(3)法一:直线过抛物线焦点,设直线的方程为,两交点坐标为,由消去,得 10分∴①② 12分由,即,得将①②代入(*)式,得,解得 14分所求的方程为:或 15分法二:容易验证直线的斜率不存在时,不满足题意 9分当直线斜率存在时,直线过抛物线焦点,设其方程为,与的交点坐标为由消掉,得, 10分于是,①即② 12分由,即,得将①、②代入(*)式,得解得 14分故所求的方程为或 15分.【考点】1.抛物线的标准方程及其几何性质;2.椭圆的标准方程及其几何性质;3.直线与圆锥曲线的综合问题.14.椭圆,为上顶点,为左焦点,为右顶点,且右顶点到直线的距离为,则该椭圆的离心率为()A.B.C.D.【答案】C【解析】由F(-c,0),B(0,b),可得直线FB:,利用点到直线的距离公式可得:A(a,0)到直线FB的距离=b,化简解出即可.【考点】椭圆的几何性质.15.已知点分别是椭圆为:的左、右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点,若直线与双曲线的一条渐近线平行,则椭圆的离心率为( )A.B.C.D.【答案】C【解析】将点代入:,得,∴,∵过点作直线的垂线交直线于点,,设,得,解得,∴.∵直线与双曲线的一条渐近线平行,∴,即,整理,得,解得,故选C.【考点】1、椭圆的几何性质;2、双曲线的性质.16.已知椭圆上一点到右焦点的距离是1,则点到左焦点的距离是()A.B.C.D.【答案】D【解析】根据椭圆的定义,点P到两个焦点距离和等于2a=即可.【考点】椭圆的定义.17.设是椭圆上一动点,是椭圆的两个焦点,则的最大值为 .【答案】4【解析】在中,设,由余弦定理可知,结合椭圆的性质化简得:;当点位于椭圆的上顶点时,有最大值,且,此时的最大值为4.【考点】椭圆的定义及性质、余弦定理、最值问题.18.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,,则该椭圆的离心率e 的范围是()A.B.C.D.【答案】B【解析】设则.又由于,所以即可得.所以点P在以OA为直径的圆上.及椭圆与该圆有公共点. 消去y得.由于过点A所以有一个根为,另一个根设为,则由韦达定理可得.又因为.所以解得.故选B.【考点】1.线的垂直问题转化到向量垂直问题.2.曲线的公共点转化为方程组的解得问题.3.区间根的问题.19.若椭圆的短轴为,它的一个焦点为,则满足为等边三角形的椭圆的离心率是() A.B.C.D.【答案】B 【解析】由为等边三角形可知,在直角三角形中,,且,所以其离心率.【考点】本题考查的知识点是椭圆的离心率的定义,以及椭圆的几何性质.20. 在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为( ) A .B .C .D .【答案】B【解析】由题意可知,,联立可得.【考点】椭圆的简单几何性质.21. 已知点P (4, 4),圆C :与椭圆E :有一个公共点A(3,1),F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切.(Ⅰ)求m 的值与椭圆E 的方程;(Ⅱ)设Q 为椭圆E 上的一个动点,求的取值范围.【答案】(1)。
高二数学椭圆解答题及答案

解 答 题1.椭圆的中心在原点,焦点在x 轴上,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近端点的距离是510-,求椭圆方程.2.已知椭圆12222=+by a x ,两顶点)0,(a A 、),0(b B ,右焦点F 到直线AB 的距离等于这焦点到原点的距离,求证:离心率2<e -1.3.已知P 点在椭圆1162522=+y x 上,且P 到椭圆左、右两焦点的距离之比为4:1,求P 到两准线的距离.4.椭圆中心在原点,焦点在x 轴上,离心率23=e ,它与直线1=+y x 交于P ,Q 两 点,且OQ OP ⊥,求椭圆方程.5.已知MN 是椭圆12222=+by a x 中垂直于长轴的弦,A 、B 是椭圆的长轴两端点,求直线MA 和NB 的交点P 的轨迹方程.6.已知动圆定点)4,0(F ,并和定圆100)4(22=++y x 相内切,求动圆圆心P 的轨迹 方程.7.已知椭圆192522=+y x 上三点),(11y x A ,),4(2y B ,),(33y x C 和焦点)0,4(F 的距离 依次成等差数列.①求31x x +;②求证线段AC 的垂直平分线过定点,并求出此定点的坐标.8.椭圆⎩⎨⎧==θθsin cos b y a x ()0>>b a 上有一点P ,使OA OP ⊥(O 为坐标原点,A 为椭圆长轴右端点),试求椭圆离心率e 的取值范围.9.已知A ,B 为椭圆19252222=+a y a x 上的两点,2F 是椭圆的右焦点.若 a BF AF 5822=+,AB 的中点到椭圆左准线的距离是23,试确定椭圆的方程.10.已知椭圆的焦点)1,0(1-F 和)1,0(2F ,直线4=y 是椭圆的一条准线,①求椭圆的方程;②又设P 点在这椭圆上,且121=-PF PF ,求21tan PF F∠的值 11.已知椭圆1222=+y x ,①求斜率为2的平行弦的中点轨迹方程;②过)1,2(A 引椭 圆的割线,求截得的弦的中点轨迹方程;③求过点)21,21(P 且被P 平分的弦所在的直线方程.参考答案:1.151022=+y x . 2.依题意知)0,(a A ,),0(b B ,可得直线AB 的方程为0=-+ab ay bx)0,(c F ∴到AB 的距离为2222)(ba c ab ba ab bc EF +-=+-=c b a c a b =+-∴22)(,即ab c b b a =++)(22由此可得121212222-=+=+<++==bb b b b a b ac e 12-<∴e3.设4112=PF PF ,结合a PF PF 221=+得22=PF ,又532==a c PR PF ,于是310=PR ,34022=-=PR c a PH4.设椭圆方程为()012222>>=+b a b y a x ,由23==a c e 可得2241a b =.由直线和椭圆方程联立消去y 可得048522=-+-a x x .设()11y x P ,,()22y x Q ,OQ OP ⊥得02121=+y y x x ,即()()0112121=--+x x x x ,化简得()0122121=++-x x x x ,由韦达定理得()01585422=+--a ,解出252=a ,故所求椭圆方程为1582522=+y x .5.设),(00y x M ,则),(00y x N -,又)0,(a A -,)0,(a B ,故得)(:00a x ax y y l AM ++=,)(:00a x a x y y l BN ---=,两式相乘得:)(22220220a x ax y y ---= 点),(00y x M 在椭 圆上,22202202b a y a x b =+∴,故2022220y ba a x -=-,代入上式便得交点P 的轨迹方程为12222=-b y a x 6.125922=+y x 7.①831=+x x ②中垂线方程为02512822=-+ky x ∴过定点)0,2564( 8.由已知()0,a A ,设()θθsin cos b a P ,,则()1cos sin -=θθa b k PA 、θθcos sin a b k PO =,由OA OP ⊥得()1cos sin 1cos sin -=⋅-θθθθa b a b ,化简得θcos 1122+=b a .因为P 在一、四象限,所以1cos 0<<θ,于是222>b a ,易求出22>=a c e ,所以⎪⎪⎭⎫ ⎝⎛∈122,e . 9.由椭圆方程可知54=e 、两准线间距离为a 25.设A ,B 到右准线距离分别为A d ,B d ,由椭圆定义有5422==BAd BF d AF ,所以()a d d BF AF B A 585422=+=+,则a d d B A 2=+,AB 中点M 到右准线距离为a ,于是M 到左准线距离为232325==-a a a ,1=a ,所求椭圆方程为192522=+y x . 10.①由椭圆方程为12222=+b x a y (0>>b a ),半焦距1=c ,由准线4=y ,有42=c a 可得42=a ,3222=-=c a b ,所求椭圆的方程为13422=+x y ②由椭圆定义有4221==+a PF PF 1' 由已知121=-PF PF2'由1'、2'解得251=PF ,232=PF ,又2221==c F F ,在21PF F ∆中由余弦定理有532cos 21221222121=-+=∠PF PF F F PF PF PF F 所以可得34tan 21=∠PF F 11.设弦的两端分别为),(11y x M 、),(22y x N ,MN 的中点为),(y x R ,则222121=+y x ,222222=+y x ,两式相减并除以)(12x x -得:0)(212121212=--⋅+++x x y y y y x x而x x x 221=+,y y y 221=+ 021212=--⋅+∴x x y y y x (*)①将21212=--x x y y 代入(*)式,得所求的轨迹方程为04=+y x (椭圆内部分)②将211212--=--x y x x y y 代入(*)式,得所求的轨迹方程为022222=--+y x y x (椭圆内部分)③将121=+x x ,121=+y y 代入(*)式,得:211212-=--x x y y ,故所求的直线方程为0=-y x。
高二数学椭圆试题
高二数学椭圆试题1.若点和点分别为椭圆的中心和右焦点,点为椭圆上的任意一点,则的最小值为A.B.C.D.1【答案】B【解析】设点,所以,由此可得,,所以【考点】向量数量积以及二次函数最值.2.已知椭圆的左,右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)求曲线的方程;(2)设、两点的横坐标分别为,,证明:.【答案】(1);(2)详见解析.【解析】(1)由椭圆的左右顶点分别为可得,,又由双曲线是为顶点,故可设双曲线的方程为,再由条件中双曲线离心率为,可建立关于的方程,从而得到双曲线的方程为;(2)根据题意可设直线的方程为,将直线方程与椭圆方程联立求,,消去后可得:,解得或,因此,同理,将直线方程与双曲线方程联立,消去后可得,从而得证. .试题解析:(1)依题意可得,,∴设双曲线的方程为,又∵双曲线的离心率为,∴,即,∴双曲线的方程为;(2)设点,(,,),设直线的方程为,联立方程组,整理得:或,∴,同理可得,联立方程组,∴. .【考点】1.双曲线的标准方程;2.直线与圆锥曲线相交综合题.3.已知线段,的中点为,动点满足(为正常数).(1)建立适当的直角坐标系,求动点所在的曲线方程;(2)若,动点满足,且,试求面积的最大值和最小值.【答案】(1);(2)的最小值为,最大值为1.【解析】(1)先以为圆心,所在直线为轴建立平面直角坐标系,以与的大小关系进行分类讨论,从而即可得到动点所在的曲线;(2)当时,其曲线方程为椭圆,设,,的斜率为,则的方程为,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式),求得△AOB面积,最后求出面积的最大值即可,从而解决问题.(1)以为圆心,所在直线为轴建立平面直角坐标系.若,即,动点所在的曲线不存在;若,即,动点所在的曲线方程为;若,即,动点所在的曲线方程为.……4分(2)当时,其曲线方程为椭圆.由条件知两点均在椭圆上,且设,,的斜率为,则的方程为,的方程为解方程组,得,同理可求得,面积=令则令所以,即当时,可求得,故,故的最小值为,最大值为1.【考点】直线与圆锥曲线的综合问题.4.与椭圆有公共焦点,且离心率的双曲线方程是()A.B.C.D.【答案】C【解析】椭圆焦点为,又,则,所以,焦点在x轴上,故选C.【考点】椭圆与双曲线的标准方程与几何性质.5.已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).(1)求椭圆的方程;(2)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.【答案】(1);(2)对称.【解析】(1)由圆方程可知圆心为,即,又因为离心率为,可得,根据椭圆中关系式,可求,椭圆方程即可写出;(2)由椭圆方程可知,将代入椭圆方程可得,可得,设直线,设,,然后和椭圆方程联立,消掉(或)得到关于的一元二次方程,再根据韦达定理得出根与系数的关系,可得两直线的斜率.若直线是关于直线对称时两直线倾斜角互补,所以斜率互为相反数,把求得的两直线斜率相加若为0,则说明两直线对称,否则不对称.试题解析:(1)由题意得, 由可得, 所以所以椭圆的方程为. 4分(2)由题意可得点所以由题意可设直线,设由得由题意可得,即且6分因为 8分, 10分所以直线关于直线对称 12分.【考点】1.椭圆的基础知识;2.直线与椭圆的位置关系;3.二次方程根与系数的关系.6.如图,椭圆经过点,离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.【答案】(1);(2).【解析】(1)将点代入椭圆的方程得到,结合离心率且,即可求解出,进而写出椭圆的标准方程即可;(2)依题意知,直线的斜率存在,先设直线的方程为,并设,联立直线的方程与椭圆的方程,消去得到,根据二次方程根与系数的关系得到,由直线及的方程确定点的坐标(含),进而得到,进而整理出(注意关注并应用共线得到),从而可确定的取值.试题解析:(1)由在椭圆上得,①依题设知,则②②代入①解得故椭圆的方程为(2)由题意可设的斜率为,则直线的方程为③代入椭圆方程并整理得设,则有④在方程③中令得,的坐标为从而注意到共线,则有,即有所以⑤④代入⑤得又,所以.故存在常数符合题意.【考点】1.椭圆的标准方程及其几何性质;2.直线与椭圆的综合问题;3.二次方程根与系数的关系.7.如图,椭圆经过点,离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.【答案】(1);(2).【解析】(1)将点代入椭圆的方程得到,结合离心率且,即可求解出,进而写出椭圆的标准方程即可;(2)依题意知,直线的斜率存在,先设直线的方程为,并设,联立直线的方程与椭圆的方程,消去得到,根据二次方程根与系数的关系得到,由直线及的方程确定点的坐标(含),进而得到,进而整理出(注意关注并应用共线得到),从而可确定的取值.试题解析:(1)由在椭圆上得,①依题设知,则②②代入①解得故椭圆的方程为(2)由题意可设的斜率为,则直线的方程为③代入椭圆方程并整理得设,则有④在方程③中令得,的坐标为从而注意到共线,则有,即有所以⑤④代入⑤得又,所以.故存在常数符合题意.【考点】1.椭圆的标准方程及其几何性质;2.直线与椭圆的综合问题;3.二次方程根与系数的关系.8.在平面直角坐标系xOy中,已知椭圆的左焦点为F,直线x-y-1=0,x-y+1=0与椭圆分别相交于点A,B,C,D,则AF+BF+CF+DF=.【答案】8【解析】椭圆的左焦点为,右焦点为,所以直线x-y-1=0过右焦点,直线x-y+1=0过左焦点,由对称性得,因此【考点】椭圆定义9.如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=, M, N是直线x=4上的两个动点,且·=0.(1)求椭圆的方程;(2)求MN的最小值;(3)以MN为直径的圆C是否过定点?【答案】(1)=1;(2);(3)(4-,0)和(4+,0) .【解析】(1)因为:,且过点P(1, ),列出关于a,b的方程,解得a,b.最后写出椭圆方程即可;(2)设点M(4,m),N(4,n)写出向量的坐标,利用向量的数量积得到mn=-15,又|MN|=|m-n|=|m|+|n|=|m|+≥,结合基本不等式即可求得MN的最小值;(3)利用圆心C的坐标和半径得出圆C的方程,再令y=0,得x2-8x+1=0从而得出圆C过定点.试题解析:(1)由已知可得∴椭圆的方程为=1 4分(2)设M(4,m),N(4,n),∵F1(-1,0),F2(1,0)=(5,m),=(3,n),由=0mn=-15<0 6分∴|MN|=|m-n|=|m|+|n|=|m|+≥2∴|MN|的最小值为2 10分(3)以MN为直径的圆C的方程为:(x-4)2+(y-)=()2 12分令y=0得(x-4)2=-=-mn=15x=4±所以圆C过定点(4-,0)和(4+,0) 14分【考点】1.圆与圆锥曲线的综合;2.椭圆的简单性质.10.点P在椭圆上运动,Q、R分别在两圆和上运动,则的最小值为【答案】【解析】因为两圆和的圆心为,正好为椭圆的左右焦点,所以【考点】椭圆定义11.已知椭圆上一点到右焦点的距离是1,则点到左焦点的距离是()A.B.C.D.【答案】D【解析】根据椭圆的定义,点P到两个焦点距离和等于2a=即可.【考点】椭圆的定义.12.已知椭圆:()和椭圆:()的离心率相同,且.给出如下三个结论:①椭圆和椭圆一定没有公共点;②;③其中所有正确结论的序号是________.【答案】①②【解析】设椭圆、的离心率分别为、,则依题意有即,所以,所以即,从而有,所以②正确;假设两椭圆有公共点,则方程组有解,两式相减可得,一方面由与可得,所以,从而,即不存在使得成立,所以假设不成立,故①正确;由与可得即,也就是,故③错误,综上可知,正确结论的序号是①②.【考点】椭圆的标准方程及其性质.13.已知抛物线的焦点与椭圆的一个焦点重合,它们在第一象限内的交点为,且与轴垂直,则椭圆的离心率为()A.B.C.D.【答案】B【解析】因为抛物线的焦点与椭圆的一个焦点重合.所以椭圆的c=1,又因为与轴垂直,所以交点T的坐标为(1,2)代入椭圆方程即可得,又因为c=1,所以(舍去).所以.通过计算四个选项可得应该选 B.本题由抛物线的焦点坐标,再列出一个关于的一个方程.即可求出e,但计算稍微复杂些,含根号式子的开方不熟练,可以通过把答案平方来求的结果.【考点】1.抛物线的知识.2.椭圆中三个基本量的方程.3.离心率的概念.4.双二次方程的解法.14.已知对k∈R,直线y-kx-1=0与椭圆恒有公共点,则实数m的取值范围是()A.B.C.D.【答案】C【解析】∵椭圆,∴且,直线恒过定点,欲使其与椭圆恒有公共点,只需让落在椭圆内或者椭圆上,即:,∴,选C.【考点】1、过定点的直线系;2、直线与椭圆的位置关系.15.设是椭圆的两个焦点,点M在椭圆上,若△是直角三角形,则△的面积等于()A.48/5B.36/5C.16D.48/5或16【答案】A【解析】由椭圆的方程可得 a=5,b=4,c=3,令|F1M|=m、|MF2|=n,由椭圆的定义可得 m+n=2a=10 ①,Rt△中,由勾股定理可得n2-m2=36 ②,由①②可得m=,n=,∴△的面积是=故选A。
高二数学椭圆试题答案及解析
高二数学椭圆试题答案及解析1.已知椭圆上存在两点、关于直线对称,求的取值范围.【答案】.【解析】解题思路:利用直线与直线垂直,设出直线的方程,联立直线与椭圆方程,消去,整理成关于的一元二次方程,利用中点公式和判别式求出的范围.规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解..试题解析:设直线方程为,联立得从而则中点是,则解得由有实数解得即于是则的取值范围是.【考点】1.直线与椭圆的位置关系;2.对称问题.2.已知椭圆:的离心率为,一条准线.(1)求椭圆的方程;(2)设为坐标原点,是上的点,为椭圆的右焦点,过点作的垂线与以为直径的圆交于两点.①若=,求圆的方程;②若是上的动点,求证:点在定圆上,并求该定圆的方程.【答案】(1);(2)或;(3)点在定圆上【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)根据圆的圆心坐标和半径求圆的标准方程.(3)直线和圆相交,根据半径,弦长的一半,圆心距求弦长,圆的弦长的常用求法:(1)几何法:求圆的半径,弦心距,弦长,则(2)代数方法:运用根与系数的关系及弦长公式.(4)与圆有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用直线与圆的位置关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点.试题解析:解:(1)由题意可知:,解得,所以椭圆的方程为由①知:,设,则圆的方程:直线的方程:所以圆的方程:或②证明:设,由①知,化简得消去得:所以点在定圆上.【考点】(1)椭圆的标准方程;(2)圆的标准方程;(3)与圆有关的探索问题.3.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
【考点】(1)椭圆、双曲线离心率的求法;(2)椭圆、双曲线中的三者关系。
高二数学椭圆试题
高二数学椭圆试题1.方程y=ax2+b与y2=ax2-b表示的曲线在同一坐标系中的位置可以是()【答案】D【解析】由y2=ax2-b化为,其表示椭圆,所以b<0,a<0抛物线开口向下,观察可得,D符合,故选D.【考点】本题主要考查由椭圆、抛物线的方程判断图象的方法。
点评:基础题,注意先判断曲线的形状,再分析焦点等位置.2.(本小题满分14分)已知椭圆的左、右焦点分别为,点是轴上方椭圆上的一点,且, , .(1)求椭圆的方程和点的坐标;(2)判断以为直径的圆与以椭圆的长轴为直径的圆的位置关系.【答案】(1),;(2)两圆内切。
【解析】(1)在椭圆上, ……….2分,…….3分, .所以椭圆的方程是:…………6分,…….8分(2)线段的中点∴以为圆心为直径的圆的方程为圆的半径………….10分以椭圆的长轴为直径的圆的方程为:,圆心为,半径为…11分圆与圆的圆心距为…….13分所以两圆内切.…….14分【考点】椭圆的定义;椭圆的标准方程;椭圆的简单性质;圆与圆的位置关系。
点评:圆与圆的位置关系:设两圆圆心分别为,,半径分别为,,||=d。
d>+⇔外离;d=+⇔外切;|-|<d<+⇔相交;d=|-|⇔内切;0<d<|-|⇔内含.3.(本小题满分12分)已知直线与椭圆相交于、两点,是线段上的一点,,且点M在直线上,(1)求椭圆的离心率;(2)若椭圆的右焦点关于直线的对称点在单位圆上,求椭圆的方程.【答案】解:设、两点的坐标分别为( I);(II)【解析】本试题主要是考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。
(1)结合已知中直线方程与椭圆方程联立,和设出点A,B的坐标,然后得到关于系数a,b的关系式,然后得到椭圆的方程中比例关系,进而研究其性质。
(2)由上可知,椭圆中b,c关系,然后利用对称性,设出点的坐标,借助于坐标关系式得到椭圆的方程。
解:设、两点的坐标分别为( I)由得:…………2分由知是的中点,点的坐标为………………………4分又点在直线上:…………………6分(II)由(1)知,设椭圆的右焦点坐标为,设关于直线的对称点为,则有解得:……………10分由已知,,. ………11分所求的椭圆的方程为……………12分4.已知F1、F2是椭圆+=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()A.11 B.10 C.9 D.16【答案】A【解析】因为|AF1|+|BF1|+,所以|AF1|+|BF1|=11.5.已知椭圆的长轴长为4,离心率为,分别为其左右焦点.一动圆过点,且与直线相切.(Ⅰ)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心的轨迹方程;(Ⅱ)在曲线上有两点,椭圆上有两点,满足与共线,与共线,且,求四边形面积的最小值.【答案】(i),(ⅱ). (Ⅱ)四边形PMQN面积的最小值为8.【解析】第一问中,、第二问中,由已知可得动圆圆心轨迹为抛物线,且抛物线的焦点为(1,0),准线方程为,则动圆圆心轨迹方程为.当直线的斜率不存在时,=4, 此时的长即为椭圆长轴长,=4,从而当直线的斜率存在时,设斜率为,则,直线的方程为直线的方程为,设,,,由,消去y可得由抛物线定义可知:解:由已知可得(ⅱ)由已知可得动圆圆心轨迹为抛物线,且抛物线的焦点为(1,0),准线方程x=-1,则动圆圆心轨迹方程为. ------------6分(Ⅱ)当直线的斜率不存在时,=4, 此时的长即为椭圆长轴长,=4,从而…………… 7分当直线的斜率存在时,设斜率为,则,直线的方程为直线的方程为,设,,,由,消去y可得由抛物线定义可知:……………9分由消去y得,令,∵k>0则t>1 ,则因为 , 所以所以四边形PMQN面积的最小值为8 ……………12分6.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为A.B.C.D.【答案】D【解析】点到椭圆的两个焦点的距离之和为7.已知为椭圆的左、右焦点,是坐标原点,过作垂直于轴的直线交椭圆于.(Ⅰ)求椭圆的方程;(Ⅱ)过左焦点的直线与椭圆交于、两点,若,求直线的方程.【答案】(1);(2)或 .【解析】本试题主要考查了椭圆的方程,直线与椭圆的位置关系的运用。
高二数学椭圆专题
高二数学椭圆专题训练指要熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题1.椭圆中心在坐标原点,对称轴为坐标轴,离心率为0.6,长、短轴之和为36,则椭圆方程为A.16410022=+y x B.11006422=+y x C.1100641641002222=+=+y x y x 或 D.110818102222=+=+y x y x 或 2.若方程x 2+ky 2=2,表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1)3.已知圆x 2+y 2=4,又Q (3,0),P 为圆上任一点,则PQ 的中垂线与OP 之交点M 轨迹为(O 为原点) A.直线 B.圆 C.椭圆 D.双曲线二、填空题4.设椭圆1204522=+y x 的两个焦点为F 1、F 2,P 为椭圆上一点,且PF 1⊥PF 2,则||PF 1|-|PF 2||=_________.5.(2002年全国高考题)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k =_________. 三、解答题6.椭圆2222by a x +=1(a >b >0),B (0,b )、B ′(0,-b ),A (a ,0),F 为椭圆的右焦点,若直线AB ⊥B ′F ,求椭圆的离心率.7.在面积为1的△PMN 中,tan M =21,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点P 的椭圆方程.8.如图,从椭圆2222by a x +=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM .(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,F 2是右焦点,求∠F 1QF 2的取值范围;(3)设Q 是椭圆上一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203,求此时椭圆的方程.参考答案一、1.C 2.D 3.C 二、4.25,40||||100)2(||||562|||:|212222121=⋅⇒⎪⎭⎪⎬⎫==+==+PF PF c PF PF a PF PF 提示 ∴(|PF 1|-|PF 2|)2=100-2×40=20. ||PF 1|-|PF 2||=25. 5.1 三、6.215- 7.以MN 所在直线为x 轴,线段MN 的中垂线为y 轴建立坐标系,可得椭圆方程为.1315422=+y x 8.(1)22 (2)[0,2π] (3)1255022=+y x 提示:(1)∵MF 1⊥x 轴,∴x M =-c ,代入椭圆方程求得y M =a b 2,∴k OM =-,,2ab k ac b AB -= ∵OM ∥AB ,∴-c b abac b =⇒-=2 从而e =22. (2)设|QF 1|=r 1,|QF 2|=r 2,∠F 1QF 2=θ,则r 1+r 2=2a ,|F 1F 2|=2c.由余弦定理,得cos θ=212222124r r c r r -+1242)(21221221221-=--+=r r a r r c r r r r≥,01)2(2212=-+r r a 当且仅当r 1=r 2时,上式取等号. ∴0≤cos θ≤1,θ∈[0,2π]. (3)椭圆方程可化为122222=+cy c x ,又PQ ⊥AB ,∴k PQ =-.21==bak ABPQ :y =2(x -c )代入椭圆方程,得5x 2-8cx +2c 2=0. 求得|PQ |=,526c F 1到PQ 的距离为d =,362c ∴.25320||2121=⇒=⋅=∆c d PQ S PQ F ∴椭圆方程为.1255022=+y x椭圆训练题:1. 椭圆19822=++y m x 的离心率21=e ,则m=__________ 2. 椭圆4x 2+2y 2=1的准线方程是_______________3. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,A 、B 为过F 1的直线与椭圆的两个交点,则△ABF 2的周长是____________4. 椭圆12222=+by a x ()0>>b a 上有一点P 到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,则P 点的坐标是_______________5. 椭圆12222=+by a x 焦点为F 1、F 2,P 是椭圆上的任一点,M 为P F 1的中点,若P F 1的长为s ,那么OM 的长等于____________6. 过椭圆1273622=+y x 的一个焦点F 作与椭圆轴不垂直的弦AB ,AB 的垂直平分线交AB 于M ,交x 轴于N ,则FN :AB =___________ 7. 已知椭圆的对称轴是坐标轴,离心率32=e ,长轴长是6,则椭圆的方程是____________ 8. 方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的值是______________ 9. 椭圆的两焦点把准线间的距离三等分,则这椭圆的离心率是______________10. 椭圆142222=+by b x 上一点P 到右焦点F 2的距离为b ,则P 点到左准线的距离是_______11. 椭圆⎪⎭⎫⎝⎛∈=+2,4,1csc sec 2222ππt t y t x ,这个椭圆的焦点坐标是__________ 12. 曲线()023122=+--+m my y m x 表示椭圆,那么m 的取值是______________13. 椭圆13422=+y x 上的一点()11,y x A ,A 点到左焦点的距离为25,则x 1=___________ 14. 椭圆()()19216122=-+-y x 的两个焦点坐标是______________15. 椭圆中心在原点,焦点在x 轴上,两准线的距离是5518,焦距为52,其方程为______ 16. 椭圆上一点P 与两个焦点F 1、F 2所成的∆PF 1F 2中,βα=∠=∠1221,F PF F PF ,则它的离心率e=__________17. 方程142sin 322=⎪⎭⎫ ⎝⎛+-παy x 表示椭圆,则α的取值是______________18. 若()()065562222=--+-λλλλy x 表示焦点在x 轴上的椭圆,则λ的值是________19. 椭圆192522=+y x 上不同的三点()()2211,,59,4,,y x C B y x A ⎪⎭⎫⎝⎛与焦点()0,4F 的距离成等差数列,则=+21x x ____________20. P 是椭圆192522=+y x 上一点,它到左焦点的距离是它到右焦点的距离的4倍,则P 点的坐标是_______________21. 中心在原点,对称轴在坐标轴上,长轴为短轴的2倍,且过()6,2-的椭圆方程是______ 22. 在面积为1的△PMN 中,2tan ,21tan -==N M ,那么以M 、N 为焦点且过P 的椭圆方程是_____________23. 已知△ABC ,()()0,3,0,3-B A 且三边AC 、AB 、BC 的长成等差数列,则顶点C 的轨迹方程是_________24. 椭圆1422=+y m x 的焦距为2,则m 的值是__________ 25. 椭圆14922=+y x 的焦点到准线的距离是____________ 26. 椭圆()112222=-+m y m x 的准线平行于x 轴,则m 的值是__________ 27. 中心在原点,准线方程为4±=x ,离心率为21的椭圆方程是_______ 28. 椭圆的焦距等于长轴长与短轴长的比例中顶,则离心率等于___________29. 中心在原点,一焦点为()50,01F 的椭圆被直线23-=x y 截得的弦的中点横坐标为21,则此椭圆方程是_________ 30. 椭圆的中心为()0,0,对称轴是坐标轴,短轴的一个端点与两个焦点构成面积为12的三角形,两准线间的距离是225,则此椭圆方程是_____________ 31. 过点()2,3-且与椭圆369422=+y x 有相同焦点的椭圆方程是____________32. 将椭圆192522=+y x 绕其左焦点逆时针方向旋转90︒,所得椭圆方程是_______ 33. 椭圆192522=+y x 上一点M 到右准线的距离是7.5,那么M 点右焦半径是______ 34. AB 是椭圆14322=+y x 的长轴,F 1是一个焦点,过AB 的每一个十等分点作AB 的垂线,交椭圆同一侧于点P 1,P 2,P 3,⋅⋅⋅⋅⋅⋅,P 9,则11912111BF F P F P F P AF ++⋅⋅⋅+++的值是________35. 中心在原点,一焦点为F (0,1),长短轴长度比为t ,则此椭圆方程是__________ 36. 若方程222x ky +=表示焦点在y 轴的椭圆,则k 的取值是__________37. 椭圆221123x y +=的焦点为F 1、F 2,点P 为椭圆上一点,若线段PF 1的中点在y 轴上,那么1PF :2PF =___________38. 经过)()122,M M --两点的椭圆方程是_____________39. 以椭圆的右焦点F 2(F 1为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于M 、N ,若直线MF 1是圆F 2的切线,则椭圆的离心率是___________40. 椭圆的两个焦点F 1、F 2及中心O 将两准线间的距离四等分,则一焦点与短轴两个端点连线的夹角是__________41. 点A (),0a 到椭圆2212x y +=上的点之间的最短距离是___________ 42. 椭圆2214x y +=与圆()2221x y r -+=有公共点,则r 的取值是________ 43. 若k R ∈,直线1y kx =+与椭圆2215x y m+=总有公共点,则m 的值是___________ 44. 设P 是椭圆上一点,两个焦点F 1、F 2,如果0211275,15PF F PF F ∠=∠=,则离心率等于__________45. P 是椭圆22143x y +=上任一点,两个焦点F 1、F 2,那么12F PF ∠的最大值是_______ 46. 椭圆2244x y +=长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,则此直角三角形的面积是__________47. 椭圆长轴长为6,焦距过焦点F 1作一倾角为α的直线交椭圆于M 、N 两点,当MN 等于短轴长时,α的值是_______48. 设椭圆22143x y +=的长轴两端点A 、B ,点P 在椭圆上,那么直线PA 与PB 的斜率之积是__________49. 倾斜角为4π的直线与椭圆2214x y +=交于A 、B 两点,则线段AB 的中点M 的轨迹方程是______________50. 已知点A (0,1)是椭圆上的一点,P 是椭圆上任一点,当弦长AP 取最大值时,点P的坐标是_____________1. 544-或 2. 1y =± 3. 20 4. ()()0,0,b b -或 5. 2s a - 6. 1:4 7.2222119559x y x y +=+=或 8.9252m <<9.10.11. (0, 12. ()1,+∞ 13. 114. ()()1,115.22194x y += 16.cos2cos 2αβαβ+- 17. ()37,,88k k k Z ππππ⎛⎫++∈⎪⎝⎭18.)19. 820. 1515,,4444⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭或21.222211148371352x y x y +=+=或 22. 2241153x y += 23. 2213627x y += 24. 53或25. 26. 102m m <≠且 27. 22143x y +=28. 29. 2212575x y += 30. 222211259925x y x y +=+=或 31.2211510x y += 32. ()()22441925x y +-+= 33. 634. 20 35. 222221111x y t t t +=-- 36. ()0,1 37. 7 38. 221155x y +=39.1 40.2π41. a a +42. ⎤⎥⎣⎦ 43. m ≥1且m ≠544.345. 60︒ 46. 1625 47. 566ππ或 48.34-49. 1,4y x x ⎛⎫⎛=-∈ ⎪⎝⎝⎭50. 133⎛⎫±- ⎪ ⎪⎝⎭一、选择题:本大题共12小题,每小题5分,共60分.请将唯一正确结论的代号填入题后的括号内.1.椭圆3m 2y mx 222++=1的准线平行于x 轴,则实数m 的取值范围是 ( )A .-1<m <3B .-23<m <3且m ≠0C .-1<m <3且m ≠0D .m <-1且m ≠02. a 、b 、c 、p 分别表示椭圆的半长轴、半短轴、半焦距、焦点到相应准线的距离,则它们的关系是 ( )A .p=22a bB .p=ba 2C .p=ca 2D .p=cb 23.短轴长为5,离心率为32的椭圆的两个焦点分别为F 1、F 2,过F 1作直线交椭圆于A 、B两点,则ΔABF 2的周长为 ( )A .24B .12C .6D .34.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线x=ca 2和定F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线x=-ca 2的距离之比为ac(a>c>0)的点的轨迹 是左半个椭圆D .到定直线x=ca 2和定点F(c ,0)的距离之比为ca (a>c>0)的点的轨迹是椭圆5.P 是椭圆4x 2+3y 2=1上任意一点,F 1、F 2是焦点,那么∠F 1PF 2的最大值是( )A .600B .300C .1200D .906.椭圆22b 4x +22b y =1上一点P 到右准线的距离是23b ,则该点到椭圆左焦点的距离是( )A .bB .23b C .3b D .2b 7.椭圆12x 2+3y 2=1的焦点为F 1和F 2,点P 在椭圆上,如果线段F 1P 的中点在y 轴上,那么|PF 1|是|PF 2|的 ( )A .7倍B .5倍C .4倍D .3倍8.设椭圆22a x +22b y =1(a>b>0)的两个焦点是F 1和F 2,长轴是A 1A 2,P 是椭圆上异于A 1、A 2的点,考虑如下四个命题:①|PF 1|-|A 1F 1|=|A 1F 2|-|PF 2|; ②a-c<|PF 1|<a+c ; ③若b 越接近于a ,则离心率越接近于1; ④直线PA 1与PA 2的斜率之积等于-22a b .其中正确的命题是 ( )A .①②④B .①②③C .②③④D .①④9.过点M(-2,0)的直线l 与椭圆x 2+2y 2=2交于P1、P2两点,线段P1P2的中点为P,设直线l 的斜率为k 1(k 1≠0),直线OP的斜率为k 2,则k 1k 2的值为 ( ) A .2B .-2C .21D .-2110.已知椭圆22ax +22b y =1(a>b>0)的两顶点A(a ,0)、B(0,b),右焦点为F ,且F 到直线AB的距离等于F 到原点的距离,则椭圆的离心率e 满足 ( )A .0<e<22B .22<e<1C . 0<e<2-1D .2-1<e<111.设F1、F2是椭圆2222b y ax +=1(a >b >0)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是( )A .2-3B .3-1C .23D .2212.在椭圆4x 2+3y 2=1内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是` ( )A .25B .27 C .3D .4二、填空题:本大题共4小题,每小题4分,共16分.请将最简结果填入题中的横线上. 13.椭圆3x 2+ky 2=1的离心率是2x 2-11x+5=0的根,则k= .14.如图,∠OFB=6π,SΔABF=2-3,则以OA为长半轴,OB 为短半轴,F为一个焦点的椭圆的标准方程为 .15.过椭圆3y 2x 22+=1的下焦点,且与圆x 2+y 2-3x +y +23=0相切的直线的斜率是 . 16.过椭圆9x 2+5y 2=1的左焦点作一条长为12的弦AB ,将椭圆绕其左准线旋转一周,则弦AB 扫过的面积为 .三、解答题:本大题共6小题,共74分.解答题应写出必要的计算步骤或推理过程. 17.(本小题满分12分)已知A 、B 为椭圆22a x +22a 9y 25=1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.18.(本小题满分12分)设中心在原点,焦点在x 轴上的椭圆的离心率为23,并且椭圆与圆x 2+y 2-4x-2y+25=0交于A 、B 两点,若线段AB 的长等于圆的直径. (1) 求直线AB 的方程; (2) 求椭圆的方程. 19.(本小题满分12分)已知9x 2+5y 2=1的焦点F 1、F 2,在直线l :x+y-6=0上找一点M ,求以F 1、F 2为焦点,通过点M 且长轴最短的椭圆方程.20.(本小题满分12分)一条变动的直线l 与椭圆4x 2+2y 2=1交于P 、Q 两点,M 是l 上的动点,满足关系|MP|·|MQ|=2.若直线l 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.21.(本小题满分12分)设椭圆22ax +22b y =1的两焦点为F 1、F 2,长轴两端点为A 1、A 2.(1) P 是椭圆上一点,且∠F 1PF 2=600,求ΔF 1PF 2的面积;(2) 若椭圆上存在一点Q ,使∠A 1QA 2=1200,求椭圆离心率e 的取值范围.22.(本小题满分14分)已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M、N,当|AM|=|AN|时,求m 的取值范围.椭圆训练试卷参考答案一、B D C D A A A A DC B C 二、13.4或4914.12y 8x 22=+15.5623±16.18π三、17.解:设A(x 1,y 1),B(x 2,y 2),由焦点半径公式有a-ex 1+a-ex 2=58a ,∴x 1+x 2=21a(∵e=54),即AB中点横坐标为41a ,又左准线方程为x=-45a ,∴41a+45a=23,即a=1,∴椭圆方程为x 2+925y 2=1.18.解:(1)直线AB 的方程为y=-21x+2; (2)所求椭圆的方程为12x 2+3y 2=1. 19.解:由9x2+5y 2=1,得F 1(2,0),F 2(-2,0),F 1关于直线l 的对称点F 1/(6,4),连F 1/F 2交l 于一点,即为所求的点M ,∴2a=|MF 1|+|MF 2|=|F 1/F 2|=45,∴a=25,又c=2,∴b 2=16,故所求椭圆方程为20x 2+16y 2=1.20.解:设动点M(x ,y),动直线l :y=x+m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=04y 2x ,m x y 22的解,消去y ,得3x 2+4mx+2m 2-4=0,其Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,x 1+x 2=-3m4, x 1x 2=34m 22-,故|MP|=2|x-x 1|,|MQ|=2|x-x 2|.由|MP||MQ|=2,得|x-x 1||x-x 2|=1,也即|x 2-(x 1+x 2)x+x 1x 2|=1,于是有|x 2+3mx 4+34m 22-|=1.∵m=y -x ,∴|x 2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆7x 2+7y 22=1夹在直线y=x ±6间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1.21.解:(1)设|PF 1|=r 1,|PF 2|=r 2,则S 21F PF ∆=21r 1r 2sin∠F 1PF 2,由r 1+r 2=2a ,4c 2=r 12+r 22-2cos∠F 1PF 2,得r 1r 2=212PF F cos 1b 2∠+.代入面积公式,得 S 21F PF ∆=2121PF F cos 1PF F sin ∠+∠b 2=b 2tg∠2PF F 21=33b 2.(2)设∠A 1QB=α,∠A 2QB=β,点Q(x 0,y 0)(0<y 0<b).tg θ=tg(α+β)=βα-β+αtg tg 1tg tg =22020000y x a 1y x a y x a --++-=220200a y x ay 2-+.∵220a x +220b y =1,∴x 02=a 2-22b a -y 02.∴tg θ=202220y bb a ay 2--=022y c ab 2-=-3.∴2ab 2≤3c 2y 0≤3c 2b ,即3c 4+4a 2c 2-4a 4≥0,∴3e 4+4e 2-4≥0,解之得e 2≥32,∴36≤e<1为所求.22.解:(1)用待定系数法.椭圆方程为22y 3x +=1.(2)设P为弦MN的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(3k 2+1)x 2+6kmx +3(m 2-1)=0.由Δ>0,得m 2<3k2+1 ①,∴x P =1k 3mk 32x x 2N M +-=+,从而,y P =kx p +m =1k 3m 2+.∴k AP =km 31k 3m 2++-.由MN⊥AP,得 km31k 3m 2++-=-k 1,即2m =3k 2+1 ②.将②代入①,得2m >m 2,解得0<m <2.由②得k 2=31m 2->0.解得m >21.故所求m 的取值范围为(21,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省新人教版数学高三单元测试20【椭圆】
本卷共100分,考试时间90分钟
一、选择题 (每小题4分,共40分)
为 ( )
A.(0,+∞) B.(0,2)
C.(1,+∞) D.(0,1)
2. 已知1F、2F是椭圆的两个焦点,满足12.0MFMF的点M总在椭圆
内部,则椭圆离心率的取值范围是( )
A.(0,1) B. 1(0,]2 C.2(0,)2
D.2[,1)2
3. 已知椭圆1121622yx的左焦点是1F,右焦点是2F,点P在椭圆上,
如果线段1PF的中点在y 轴上,那么 12:PFPF的值为
A.35 B.12 C.56
D.53
4. 已知椭圆的两个焦点为)0,5(1F,)0,5(2F,M是椭圆上一点,若
021MFMF
,821MFMF,则该椭圆的方程是( )
(A) 12722yx (B) 17222yx (C) 14922yx (D)
19422
yx
5. 设椭圆22221(00)xymnmn,的右焦点与抛物线28yx的焦点相
同,离心率为12,则此椭圆的方程为( )
A.2211216xy B.2211612xy C.2214864xy D.2216448xy
6. 椭圆22ax+22by=1(a>b>0)上一点A关于原点的对称点为B,F为其右
焦点,若AF⊥BF,设∠ABF=,且∈[12,4],则该椭圆离心率
的取值范围为( )
A.[22,1 ) B.[22,36] C.[36,1)
D.[22,23]
7. 设抛物线)0(22ppxy的焦点F恰好是椭圆12222byax0ba的
右焦点,且两条曲线的交点的连线过点F,则该椭圆的离心率为
(A)23 (B)32 (C)12 (D)36
8. 在椭圆22221(0)xyabab上有一点M,12,FF是椭圆的两个焦点,
若2212||||bMFMF,则椭圆离心率的范围是( )
A.]22,0( B.)1,22[ C.)1,23[ D.)1,2[
9. 设椭圆)0,0(12222nmnymx的右焦点与抛物线xy82的焦点相
同,离心率为21,则此椭圆的方程为 ( )
A.1161222yx B.1121622yx
C.1644822yx D.1486422yx