高二数学期末复习题

合集下载

高二数学期末考试题及答案

高二数学期末考试题及答案

高二数学期末考试题及答案Learn standards and apply them. June 22, 2023一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.1.若抛物线y 2=2px 的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 A .-2B .2C .-4D .42.理已知向量a =3,5,-1,b =2,2,3,c =4,-1,-3,则向量2a -3b +4c 的坐标为A .16,0,-23B .28,0,-23C .16,-4,-1D .0,0,9文曲线y =4x -x 2上两点A 4,0,B 2,4,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为A .1,3B .3,3C .6,-12D .2,43.过点0,1作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有A .1条B .2条C .3条D .4条4.已知双曲线222112x y a -=的离心率2,则该双曲线的实轴长为 A .2 B .4C .23D .435.在极坐标系下,已知圆C 的方程为=2cos θ,则下列各点中,在圆C 上的是A .1,-3πB .1,6πC .2,34πD 2,54π6.将曲线y =sin3x 变为y =2sin x 的伸缩变换是A .312x x y y '=⎧⎪⎨'=⎪⎩B .312x xy y '=⎧⎪⎨'=⎪⎩C .32x x y y '=⎧⎨'=⎩D .32x xy y'=⎧⎨'=⎩7.在方程sin cos 2x y θθ=⎧⎨=⎩为参数表示的曲线上的一个点的坐标是A .2,-7B .1,0C .12,12D .13,238.极坐标方程=2sin 和参数方程231x ty t =+⎧⎨=--⎩t 为参数所表示的图形分别为A .圆,圆B .圆,直线C .直线,直线D .直线,圆9.理若向量a =1,,2,b =2,-1,2,a 、b 夹角的余弦值为89,则=A .2B .-2C .-2或255D .2或-255文曲线y =e x +x 在点0,1处的切线方程为 A .y =2x +1 B .y =2x -1 C .y =x +1 D .y =-x +110.理已知点P 1的球坐标是P 14,2π,53π,P 2的柱坐标是P 22,6π,1,则|P 1P 2|=A .21B .29C .30D .42文已知点P 在曲线fx =x 4-x 上,曲线在点P 处的切线垂直于直线x +3y =0,则点P 的坐标为A .0,0B .1,1C .0,1D .1,011.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若点M 在以AB 为直径的圆的内部,则此双曲线的离心率e 的取值范围为A .32,+∞B .1,32C .2,+∞D .1,212.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为A .5B .10C .20D 15二、填空题:本大题共4小题,每小题4分,共16分.请将答案填在试卷的答题卡中.13.理已知空间四边形ABCD 中,G 是CD 的中点,则1()2AG AB AC -+=.文抛物线y =x 2+bx +c 在点1,2处的切线与其平行直线bx +y +c =0间的距离是 .14.在极坐标系中,设P 是直线l :cos θ+sin θ=4上任一点,Q 是圆C :2=4cos θ-3上任一点,则|PQ |的最小值是________.15.理与A -1,2,3,B 0,0,5两点距离相等的点Px ,y ,z 的坐标满足的条件为__________.文函数fx =ax 3-x 在R 上为减函数,则实数a 的取值范围是__________.16.如图,已知双曲线以长方形ABCD 的顶点A 、B 为左、右焦点,且双曲线过C 、D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为_____________________.三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分双曲线与椭圆2212736x y +=有相同焦点,且经过点15,4,求其方程.18.本题满分12分在直角坐标系xOy 中,直线l 的参数方程为:415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数,若以O为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为=2cos θ+4π,求直线l 被曲线C 所截的弦长.19.本题满分12分已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M-3,m到焦点的距离为5,求抛物线的方程和m的值.20.本题满分12分文已知函数fx=x2x-a.1若fx在2,3上单调,求实数a的取值范围;2若fx在2,3上不单调,求实数a的取值范围.理本题满分12分如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=219,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.1求EF的长;2证明:EF⊥PC.参考答案一、 选择题:本大题共12小题,每小题3分,共36分.内为文科答案二、填空题:本大题共4小题,每小题4分,共16分.13.理12BD 文32214.21-15.理2x -4y +4z =11 文a ≤0 16.x 2-23y =1 三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分解:椭圆2213627y x +=的焦点为0,3,c =3,………………………3分 设双曲线方程为222219y x a a-=-,…………………………………6分 ∵过点15,4,则22161519a a-=-,……………………………9分 得a 2=4或36,而a 2<9,∴a 2=4,………………………………11分双曲线方程为22145y x -=.………………………………………12分18.本题满分12分解:将方程415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数化为普通方程得,3x +4y +1=0,………3分将方程2θ+4π化为普通方程得,x 2+y 2-x +y =0, ……………6分 它表示圆心为12,-12,半径为22的圆, …………………………9分则圆心到直线的距离d =110, …………………………………………10分 弦长为2211721005r d -=-=. …………………………………12分20.文本题满分12分解:由fx =x 3-ax 2得f ′x =3x 2-2ax =3xx -23a.…………3分 1若fx 在2,3上单调,则23a ≤0,或0<23a≤2,解得:a ≤3.…………6分∴实数a 的取值范围是-∞,3.…………8分 2若fx 在4,6上不单调,则有4<23a<6,解得:6<a <9.…………11分 ∴实数a 的取值范围是6,9.…………12分20.理本题满分12分解:1以A 为原点,AB ,AD ,AP 分别为x ,y ,z 轴建立直角坐标系,…………2分由条件知:AF =2,…………3分∴F 0,2,0,P 0,0,219,C 8,6,0.…4分从而E 4,3,19,∴EF =222(40)(32)(190)-+-+-=6.…………6分 2证明:EF =-4,-1,-19,PC =8,6,-219,…………8分 ∵EF PC ⋅=-4×8+-1×6+-19×-219=0,…………10分 ∴EF ⊥PC .…………12分第一课件网系列资料 .。

2023-2024学年重庆市高二(下)期末数学试卷(含答案)

2023-2024学年重庆市高二(下)期末数学试卷(含答案)

2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。

四川省成都市2023-2024学年高二上学期期末复习数学试题(三)含解析

四川省成都市2023-2024学年高二上学期期末复习数学试题(三)含解析

成都高2025届高二期末考试数学复习试题(三)(答案在最后)一、单选题(共8个小题,每个小题5分,共40分)1.设直线l sin 20y θ++=,则直线l 的倾斜角的取值范围是()A.[)0,πB.πππ2π,,3223⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C.π2π,33⎡⎤⎢⎥⎣⎦D.π2π0,,π33⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U 【答案】D 【解析】【分析】根据直线斜率的范围求倾斜角的取值范围.sin 20y θ++=的倾斜角为[)0πa a Î,,,则由直线可得tan a q =Î,所以π2π0,,π33a 轾轹÷Î犏÷犏臌滕,故选:D2.能够使得圆x 2+y 2-2x +4y +1=0上恰有两个点到直线2x +y +c =0距离等于1的c 的一个值为()A.2B.C.3D.【答案】C 【解析】【分析】利用圆心到直线的距离大于1且小于3,列不等式求解即可.【详解】由圆的标准方程()()22124x y -++=,可得圆心为()1,2-,半径为2,根据圆的性质可知,当圆心到直线的距离大于1且小于3时,圆上有两点到直线20x y c ++=的距离为1,由()1,3d =可得(c ∈-⋃,经验证,3c =∈,符合题意,故选C.【点睛】本题主要考查圆的标准方程,点到直线距离公式的距离公式以及圆的几何性质,意在考查数形结合思想的应用,属于中档题.3.若椭圆的中心为原点,对称轴为坐标轴,短轴的一个端点与两焦点构成个正三角形,焦点到椭圆上点的)A.221129x y +=B.221129x y +=或221912x y +=C.2213612x y += D.以上都不对【答案】B 【解析】【分析】由短轴的一个端点与两焦点构成个正三角形可得b =,由焦点到椭圆上点的最短距离为a c -,结合222a b c =+可得.【详解】由题意,当椭圆焦点在x 轴上,设椭圆方程为:22221x ya b+=,由题意b =,a c -=所以2a c ===,c =a =,3b =,所以椭圆方程为:221129x y +=,当椭圆焦点在y 轴上时,同理可得:221912x y+=,故选:B4.某市经济开发区的经济发展取得阶段性成效,为深入了解该区的发展情况,现对该区两企业进行连续11个月的调研,得到两企业这11个月利润增长指数折线图(如下图所示),下列说法正确的是()A.这11个月甲企业月利润增长指数的平均数没超过82%B.这11个月的乙企业月利润增长指数的第70百分位数小于82%C.这11个月的甲企业月利润增长指数较乙企业更稳定D.在这11个月中任选2个月,则这2个月乙企业月利润增长指数都小于82%的概率为411【答案】C 【解析】【分析】根据折线图估算AC ,对于B 项把月利润增长指数从小到大排列,计算1170⨯%=7.7可求,对于D 项用古典概型的概率解决.【详解】显然甲企业大部分月份位于82%以上,故利润增长均数大于82%,A 不正确;乙企业润增长指数按从小到大排列分别是第2,1,3,4,8,5,6,7,9,11,10又因为1170⨯%=7.7,所以从小到大排列的第8个月份,即7月份是第70百分位,从折线图可知,7月份利润增长均数大于82%,故B 错误;观察折现图发现甲企业的数据更集中,所以甲企业月利润增长指数较乙企业更稳定,故C 正确;P (2个月乙企业月利润增长指数都小于82%)26211C 3C 11==,故D 错误.故选:C.5.已知空间三点(4,1,9),(10,1,6),(2,4,3)A B C -,则下列结论不正确的是()A.||||AB AC =B.点(8,2,0)P 在平面ABC 内C.AB AC ⊥D.若2AB CD =,则D 的坐标为31,5,2⎛⎫-- ⎪⎝⎭【答案】D 【解析】【分析】根据空间两点距离公式判断A ,根据数量积的坐标运算判断B ,根据共面向量基本定理判断C ,根据向量的坐标运算判断D.【详解】因为||7AB ==,||7AC ==,故A 正确;因为(6,2,3)(2,3,6)126180AB AC →→⋅=--⋅--=--+=,所以AB AC ⊥,故C 正确;因为(6,2,3),(2,3,6)AB AC →→=--=--,(4,1,9)AP →=-,所以(4,1,9)AP AB AC →→→=+=-,所以点(8,2,0)P 在平面ABC 内,故B 正确;因为92(1,9,))(62(22,31,8,,),92AB CD ==------=-- ,显然不成立,故D 错误.故选:D6.已知某人收集一个样本容量为50的一组数据,并求得其平均数为70,方差为75,现发现在收集这些数据时,其中得两个数据记录有误,一个错将80记录为60,另一个错将70记录为90,在对错误得数据进行更正后,重新求得样本的平均数为X ,方差为2s ,则()A.270,75X sB.270,75X s ><C.270,75X s =>D.270,75X s =<【答案】D 【解析】【分析】根据平均数与方差的定义判断.【详解】因为80706090+=+,因此平均数不变,即70X =,设其他48个数据依次为1248,,,a a a ,因此()()()()()222221248707070607090705075a a a -+-++-+-+-=⨯ ,()()()()()22222212487070708070707050a a a s -+-++-+-+-=⨯ ,()250751004001004000s -=--=-<,∴275s <,故选:D .7.如图所示,在直三棱柱111ABC A B C -中,ACBC ⊥,且3BC =,4AC =,13CC =,点P 在棱1AA 上,且三棱锥A PBC -的体积为4,则直线1BC 与平面PBC 所成角的正弦值等于()A.4B.4C.5D.5【答案】C 【解析】【分析】利用锥体的体积公式可求得2PA =,然后以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面PBC 所成角的正弦值.【详解】由已知得1AA ⊥底面ABC ,且AC BC ⊥,所以111344332A PBC P ABC ABC V V S PA PA --==⨯⨯=⨯⨯⨯⨯=△,解得2PA =.如图所示,以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()0,0,0C 、()0,4,2P 、()3,0,0B 、()10,0,3C ,则()3,0,0CB = ,()0,4,2CP = ,()13,0,3BC =-.设平面BCP 的法向量为(),,n x y z =,则由00n CB n CP ⎧⋅=⎨⋅=⎩可得30420x y z =⎧⎨+=⎩,即020x y z =⎧⎨+=⎩,得0x =,令1y =,得2z =-,所以()0,1,2n =-为平面BCP 的一个法向量.设直线1BC 与平面PBC 所成的角为θ,则11110sin cos ,5n BC n BC n BC θ⋅=<>==⋅.故选:C.【点睛】方法点睛:求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角;(2)向量法,sin cos ,AB n AB n AB nθ⋅=<>=⋅ (其中AB 为平面α的斜线,n为平面α的法向量,θ为斜线AB 与平面α所成的角).8.已知F 1,F 2分别为双曲线C :221412x y -=的左、右焦点,E 为双曲线C 的右顶点.过F 2的直线与双曲线C的右支交于A ,B 两点(其中点A 在第一象限),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则ME NE -的取值范围是()A.44,33⎛⎫-⎪⎝⎭B.,33⎛⎫- ⎪ ⎪⎝⎭C.3333,55⎛⎫- ⎪⎪⎝⎭ D.,33⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】【分析】利用平面几何和内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,根据θ∈(60∘,90∘],将ME NE -表示为θ的三角函数可求得范围.【详解】解:设1212,,AF AF F F 上的切点分别为H 、I 、J ,则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a ,∴122-=HF IF a ,即122-=JF JF a.设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=,得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合.同理可得12BF F △的内心在直线JM 上,设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan 22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ,当2πθ=时,||||0ME NE -=;当2πθ≠时,由题知,2,4,===b a c a,因为A ,B 两点在双曲线的右支上,∴233ππθ<<,且2πθ≠,所以tan θ<tan θ>,∴3133tan 3θ-<<且10tan θ≠,∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ.故选:B.二、多选题(共4个小题,每个小题5分,共20分)9.已知甲罐中有五个相同的小球,标号为1,2,3,4,5,乙罐中有四个相同的小球,标号为1,4,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于6”,事件B =“抽取的两个小球标号之积小于6”,则()A.事件A 与事件B 是互斥事件B.事件A 与事件B 不是对立事件C.事件A B ⋃发生的概率为1920D.事件A 与事件B 是相互独立事件【答案】ABC 【解析】【分析】由两球编号写出事件,A B 所含有的基本事件,同时得出所有的基本事件,然后根据互斥事件、对立事件的定义判断AB ,求出A B ⋃的概率判断C ,由公式()()()P AB P A P B =判断D .【详解】甲罐中小球编号在前,乙罐中小球编号在后,表示一个基本事件,事件A 含有的基本事件有:16,25,26,34,35,36,44,45,46,54,55,56,共12个,事件B 含有的基本事件有:11,14,15,21,31,41,51,共7个,两者不可能同时发生,它们互斥,A 正确;基本事件15发生时,事件,A B 均不发生,不对立,B 正确;事件A B ⋃中含有19个基本事件,由以上分析知共有基本事件20个,因此19()20P A B =,C 正确;123()205P A ==,7()20P B =,()0P AB =()()P A P B ≠,,A B 不相互独立,D 错.故选:ABC .10.在如图所示试验装置中,两个长方形框架ABCD 与ABEF 全等,1AB =,2BC BE ==,且它们所在的平面互相垂直,活动弹子,M N 分别在长方形对角线AC 与BF 上移动,且(0CM BN a a ==<<,则下列说法正确的是()A.AB MN⊥ B.MN 2C.当MN 的长最小时,平面MNA 与平面MNB 所成夹角的余弦值为13D .()25215M ABN a V-=【答案】ABC 【解析】【分析】建立空间直角坐标系,写出相应点的坐标,利用空间向量数量积的运算即可判断选项A ;利用空间两点间距离公式即可判断选项B ;根据二面角的余弦值推导即可判断选项C ;根据棱锥的体积计算公式即可判断选项D .【详解】由题意可知:,,BA BC BE 两两互相垂直,以点B 为坐标原点,,,BA BE BC为,,x y z 轴正方向,建立空间直角坐标系,建系可得525525,0,2,,,05555a a a a M N ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()25250,,2,1,0,055a a MN BA ⎛⎫∴=-= ⎪ ⎪⎝⎭,0,AB MN AB MN ∴⋅=∴⊥,故选项A 正确;又MN===∴当2a=时,min||MN=,故选项B正确;当MN最小时,,,2a M N=分别是,AC BF的中点,取MN中点K,连接AK和BK,,AM AN BM BN==,,AK MN BK MN∴⊥⊥,AKB∠∴是二面角A MN B--的平面角.BMN中,,2BM BN MN===,可得2BK==,同理可得2AK=,由余弦定理可得331144cos322AKB∠+-==,故选项C 正确;2125252522365515M ABN ABNa aV S h-⎛⎫-=⨯⨯=⨯-=⎪⎪⎝⎭,故选项D错误.故选:ABC.11.抛物线有如下光学性质:由其焦点射出的光线经拋物线反射后,沿平行于拋物线对称轴的方向射出.反之,平行于拋物线对称轴的入射光线经拋物线反射后必过抛物线的焦点.已知抛物线2:,C y x O=为坐标原点,一束平行于x轴的光线1l从点41,116P⎛⎫⎪⎝⎭射入,经过C上的点()11,A x y反射后,再经C上另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则()A.PB 平分ABQ ∠B.121y y =-C.延长AO 交直线14x =-于点D ,则,,D B Q 三点共线D.2516AB =【答案】ACD 【解析】【分析】对于A ,根据题意求得()1,1A ,11,164B ⎛⎫- ⎪⎝⎭,从而证得PA AB =,结合平面几何的知识易得PB 平分ABQ ∠;对于B ,直接代入12,y y 即可得到1214y y =-;对于C ,结合题意求得11,44D ⎛⎫-- ⎪⎝⎭,由,,D B Q 的纵坐标相同得,,D B Q 三点共线;对于D ,由选项A 可知2516AB =.【详解】根据题意,由2:C y x =得1,04F ⎛⎫⎪⎝⎭,又由//PA x 轴,得()1,1A x ,代入2:C y x =得11x =(负值舍去),则()1,1A ,所以141314AF k ==-,故直线AF 为4134y x ⎛⎫=- ⎪⎝⎭,即4310x y --=,依题意知AB 经过抛物线焦点F ,故联立24310x y y x --=⎧⎨=⎩,解得11614x y ⎧=⎪⎪⎨⎪=-⎪⎩,即11,164B ⎛⎫- ⎪⎝⎭,对于A ,412511616PA =-=,2516AB =,故PA AB =,所以APB ABP ∠=∠,又因为//PA x 轴,//BQ x 轴,所以//PA BQ ,故APB PBQ =∠∠,所以ABP PBQ ∠=∠,则PB 平分ABQ ∠,故A 正确;对于B ,因为12141,y y =-=,故1214y y =-,故B 错误;对于C ,易得AO 的方程为y x =,联立14y x x =⎧⎪⎨=-⎪⎩,故11,44D ⎛⎫-- ⎪⎝⎭,又//BQ x 轴,所以,,D B Q 三点的纵坐标都相同,则,,D B Q 三点共线,故C 正确;对于D ,由选项A 知2516AB =,故D 正确.故选:ACD..12.己知椭圆222:1(02)4x y C b b+=<<的左,右焦点分别为1F ,2F ,圆22:(2)1M x y +-=,点P 在椭圆C 上,点Q 在圆M 上,则下列说法正确的有()A.若椭圆C 和圆M 没有交点,则椭圆C的离心率的取值范围是2,1⎛⎫⎪ ⎪⎝⎭B.若1b =,则||PQ 的最大值为4C.若存在点P 使得213PF PF =,则0b <≤D.若存在点Q使得12QF =,则1b =【答案】ACD 【解析】【分析】A 根据已知,数形结合得01b <<时椭圆C 和圆M 没有交点,进而求离心率范围;B 令(,)P x y ,求得||MP =,结合椭圆有界性得max ||MP =即可判断;C 由题设123,1PF PF ==,令(,)P x y,进而得到((222291x y x y⎧++=⎪⎨⎪-+=⎩,结合点在椭圆上得到公共解(0,2]x =求范围;D将问题化为圆心为的圆与圆22:(2)1M x y +-=有交点.【详解】由椭圆C 中2a =,圆M 中圆心(0,2)M ,半径为1,如下图示,A :由于02b <<,由图知:当01b <<时椭圆C 和圆M 没有交点,此时离心率,12e ⎛⎫⎪ ⎪⎝==⎭,对;B :当1b =时,令(,)P x y,则||MP =,而224(1)x y =-,所以||MP =,又11y -≤≤,故max ||MP =所以||PQ1+,错;C :由1224PF PF a +==,若213PF PF =,则123,1PF PF ==,由12(F F ,令(,)P x y ,且2221)(4x y b =-,则((222291x y x y⎧++=⎪⎨⎪+=⎩,即2222(4)200(4)120b x b x ⎧-+-=⎪⎨--+=⎪⎩,所以(0,2]x =,则23b ≤,且02b <<,故0b <≤D :令(,)Q x y,若12QF =,所以2222(3[(]x y x y +=-+,则222(4)0x b y -+-+=,所以222(3(4)x y b -+=-,Q轨迹是圆心为的圆,而(0,2)M与的距离为,要使点Q 存在,则1|1-≤≤,可得22(1)0b -≤,且02b <<,即1b =,对;故选:ACD【点睛】关键点点睛:对于C ,根据已知得到123,1PF PF ==,设(,)P x y ,利用两点距离公式得到方程组,求出公共解(0,2]x =为关键;对于D ,问题化为圆心为的圆与圆22:(2)1M x y +-=有交点为关键.三、填空题(共4个小题,每个小题5分,共20分)13.若直线1x y +=与直线2(1)40m x my ++-=平行,则这两条平行线之间的距离是__.【答案】322【解析】【分析】由题意结合直线平行的性质可得2m =-,再由平行线间的距离公式即可得解.【详解】 直线1x y +=与直线2(1)40m x my ++-=平行,∴2(1)4111m m +-=≠-,解得2m =-,故直线1x y +=与直线2(1)40m x my ++-=即为直线10x y +-=与直线20x y ++=,2=,故答案为:2.【点睛】本题考查了直线平行性质的应用,考查了平行线间距离公式的应用,属于基础题.14.曲线1y =+与直线l :y =k (x -2)+4有两个交点,则实数k 的取值范围是________.【答案】53124,纟çúçú棼【解析】【分析】首先画出曲线表示的半圆,再判断直线l 是过定点()24,的直线,利用数形结合判断k 的取值范围.【详解】直线l 过点A (2,4),又曲线1y =+0,1)为圆心,2为半径的半圆,如图,当直线l 与半圆相切,C 为切点时,圆心到直线l 的距离d =r,2=,解得512k =.当直线l 过点B (-2,1)时,直线l 的斜率为()413224-=--,则直线l 与半圆有两个不同的交点时,实数k 的取值范围为53124,纟çúçú棼.故答案为:53124,纟çúçú棼15.数学兴趣小组的四名同学各自抛掷骰子5次,分别记录每次骰子出现的点数,四名同学的部分统计结果如下:甲同学:中位数为3,方差为2.8;乙同学:平均数为3.4,方差为1.04;丙同学:中位数为3,众数为3;丁同学:平均数为3,中位数为2.根据统计结果,数据中肯定没有出现点数6的是______同学.【答案】乙【解析】【分析】假设出现6点,利用特例法,结合平均数和方差的计算公式,即可求解.【详解】对于甲同学,当投掷骰子出现结果为1,2,3,3,6时,满足中位数为3,平均数为:()11233635x =++++=,方差为()()()()()22222211323333363 2.85S ⎡⎤-+-+-+-+-⎣⎦==,可以出现点数6;对于乙同学,若平均数为3.4,且出现点数6,则方差221(6 3.4) 1.352 1.045S >-=>,所以当平均数为3.4,方差为1.04时,一定不会出现点数6;对于丙同学,当掷骰子出现的结果为1,2,3,3,6时,满足中位数为3,众数为3,可以出现点数6;对于丁同学,当投掷骰子出现的结果为2,2,2,3,6时,满足平均数为3,中位数为2,可以出现点数6.综上,根据统计结果,数据中肯定没有出现点数6的是乙同学.故答案为:乙16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为e ,点P 在椭圆上,连接1PF 并延长交C 于点Q ,连接2QF ,若存在点P 使2PQ QF =成立,则2e 的取值范围为___________.【答案】)11,1⎡-⎣【解析】【分析】设11,QF m PF n ==,所以存在点P 使2PQ QF =等价于()2min0,PQ QF -≤由2112am n b +=可求222PQ QF m n a -=+-的最小值,求得22b a的范围,从而得到2e 的取值范围.【详解】设11,QF m PF n ==,则22QF a m =-.显然当P 靠近右顶点时,2PQ QF >,所以存在点P 使2PQ QF =等价于()22min0,22PQ QF PQ QF m n a -≤-=+-,在12PF F △中由余弦定理得22221121122cos PF PF F F PF F F θ=+-⋅⋅,即()2222422cos a n n c n c θ-=+-⋅⋅,解得2cos b n a c θ=-,同理可得2cos b m a c θ=+,所以2112a m n b +=,所以()(2223112223222b b b n m m n m n a m n a m n a +⎛⎫⎛⎫+=++=++≥ ⎪ ⎝⎭⎝⎭,所以22min1)(22)22b m n a a a++-=-,当且仅当n =时等号成立.由221)202b a a+-≤得2212b a ≤-,所以2111e -≤<.故答案为:)11,1⎡-⎣【点睛】关键点点睛:求离心率范围关键是建立,,a b c 的不等式,此时将问题转化为()2min0PQ QF -≤,从而只需求222PQ QF m n a -=+-的最小值,求最小值的方法是结合焦半径性质211112aPF QF b+=使用基本不等式求解.四、解答题(共7个题,17题10分,18题—22题每题12分,共70分)17.在平面直角坐标系xOy 中,存在四点()0,1A ,()7,0B ,()4,9C ,()1,3D .(1)求过A ,B ,C 三点的圆M 的方程,并判断D 点与圆M 的位置关系;(2)若过D 点的直线l 被圆M 截得的弦长为8,求直线l 的方程.【答案】(1)228870x y x y +--+=,D 在圆M 内;(2)43130x y +-=或1x =.【解析】【分析】(1)设出圆的一般方程,利用待定系数法计算可得圆的方程,把D 坐标代入圆的方程判定位置关系即可;(2)对直线分类讨论,设出直线方程,利用直线与圆相交,已知弦长求直线方程.【小问1详解】设圆M 方程为220x y Dx Ey F ++++=,把A ,B ,C 三点坐标代入可得:10,4970,1681490,E F D F D E F ++=⎧⎪++=⎨⎪++++=⎩解得8D =-,8E =-,7F =,所以圆M 方程是228870x y x y +--+=,把D 点坐标代入可得:1982470+--+<,故D 在圆M 内;【小问2详解】由(1)可知圆M :()()224425x y -+-=,则圆心()4,4M ,半径=5r ,由题意可知圆心到直线l 的距离是3,当直线l 斜率存在时,设直线l 方程为:()1330y k x kx y k =-+⇒-+-=,3=,解得43k =-,故直线l 的方程为43130x y +-=;当直线l 斜率不存在时,则直线l 方程为:1x =,此时圆心到直线l 的距离是3,符合题意.综上所述,直线l 的方程为43130x y +-=或1x =.18.我校举行的“青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组[50,60)80.16第2组[60,70)a ▓第3组[70,80)200.40第4组[80,90)▓0.08第5组[90,100]2b 合计▓▓(1)求出a ,b ,x ,y 的值;(2)在选取的样本中,从成绩是80分以上的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差(同一组的数据用该组区间的中点值作代表).【答案】(1)a =16,b =0.04,x =0.032,y =0.004(2)35(3)中位数为70.5,平均数为70.2,方差为96.96【解析】【分析】(1)利用频率=100%⨯频数样本容量,及频率组距表示频率分布直方图的纵坐标即可求出a ,b ,x ,y ;(2)由(2)可知第四组的人数,已知第五组的人数是2,利用组合的计算公式即可求出从这6人中任选2人的种数,再分两类分别求出所选的两人来自同一组的情况,利用互斥事件的概率和古典概型的概率计算公式即可得出.(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差.【小问1详解】由题意可知,样本容量n =8500.16=,∴b =250=0.04,第四组的频数=50×0.08=4,∴508202416a =----=.y =0.0410=0.004,x =1650×110=0.032.∴a =16,b =0.04,x =0.032,y =0.004.【小问2详解】由题意可知,第4组共有4人,记为A ,B ,C ,D ,第5组共有2人,记为X ,Y .从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学,有AB ,AC ,AD ,BC ,BD ,CD ,AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY ,共15种情况.设“随机抽取的2名同学中至少有1名同学来自第5组”为事件E ,有AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY 共9种情况.所以随机抽取的2名同学中至少有1名同学来自第5组的概率是P (E )=93155=.∴随机抽取的2名同学中至少有1名同学来自第5组的概率35.【小问3详解】∵[50,70)的频率为:0.160.320.48+=,[70,80)的频率为0.4,∴中位数为:0.50.48701070.50.4-+⨯=,平均数为:550.16650.32750.4850.08950.0470.2⨯+⨯+⨯+⨯+⨯=.方差为:()()()()()222225570.20.166570.20.327570.20.48570.20.089570.20.0496.96⨯+⨯+⨯+⨯+⨯﹣﹣﹣﹣﹣=.19.已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52pMF =.(1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.【答案】(1)M 的坐标为()4,4,C 的方程为24y x =;(2)直线l 过定点()0,4-.【解析】【分析】(1)利用抛物线定义求出0x ,进而求出p 值即可得解.(2)设出直线l 的方程x my n =+,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系即可作答.【小问1详解】抛物线2:2C y px =的准线:2px =-,于是得0522p p MF x =+=,解得02x p =,而点M 在C 上,即2164p =,解得2p =±,又0p >,则2p =,所以M 的坐标为()4,4,C 的方程为24y x =.【小问2详解】设()()1122,,,A x y B x y ,直线l 的方程为x my n =+,由24x my n y x =+⎧⎨=⎩消去x 并整理得:2440y my n --=,则()2160m n ∆=+>,124y y m +=,124y y n =-,因此,121222121212444444144444444MA MB y y y y k k y y x x y y ----⋅=⋅==⋅=--++--,化简得()121240y y y y ++=,即4n m =,代入l 方程得4x my m =+,即()40x m y -+=,则直线l 过定点()0,4-,所以直线l 过定点()0,4-.【点睛】思路点睛:直线与圆锥曲线相交,直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.20.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AD AB ⊥,//AB DC ,PA ⊥底面ABCD ,点E 为棱PC 的中点.22AD DC AP AB ====.()1证明://BE 平面PAD .()2若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AD C --的余弦值.【答案】()1证明见解析;()210.【解析】【分析】()1在PD 上找中点G ,连接AG ,EG ,利用三角形中位线性质得出12EG CD =,因为底面ABCD 是直角梯形,2CD AB =,所以能得出EG 平行且等于AB ,得出四边形ABEG 为平行四边形,再利用线面平行的判定,即可证出//BE 平面PAD ;()2根据BF AC ⊥,求出向量BF的坐标,进而求出平面FAD 和平面ADC 的法向量,代入向量夹角公式,可得二面角F AD C --的余弦值.【详解】解:()1证明:在PD 上找中点G ,连接AG ,EG ,图象如下:G 和E 分别为PD 和PC 的中点,∴EG //CD ,且12EG CD =,又 底面ABCD 是直角梯形,2CD AB =∴AB //CD ,且12AB CD =,∴AB GE //且AB GE =.即四边形ABEG 为平行四边形.∴AG E //B .AG ⊂平面PAD ,BE ⊄平面PAD ,∴//BE 平面PAD.()2以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()002P ,,,()1,1,1E ,()1,2,0BC = ,()2,2,2CP =-- ,()2,2,0AC = .由F 为棱PC 上一点,设()2,2,2CF CP λλλλ==-- ()01λ≤≤,所以()12,22,2BF BC CF λλλ=+=-- ()01λ≤≤,由BF AC ⊥,得()()2122220BF AC λλ⋅=-+-= ,解得34λ=,即113,,222BF ⎛⎫=- ⎪⎝⎭ ,()1131131,0,0,,,,222222AF AB BF ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭,设平面FAD 的法向量为(),,n a b c = ,由00n AF n AD ⎧⋅=⎨⋅=⎩ 可得113022220a b c b ⎧++=⎪⎨⎪=⎩所以030b a c =⎧⎨+=⎩,令1c =,则3a =-,则()3,0,1n =- ,取平面ADC 的法向量为()0,0,1m = ,则二面角F AD C --的平面角α满足:cos 10m n m nα⋅===⋅ ,故二面角F AD C --的余弦值为10.【点睛】本题考查线面平行的判定,空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,属于难题.21.已知O 为坐标原点,()120F -,,()220F ,,点P 满足122PF PF -=,记点P 的轨迹为曲线.E (1)求曲线E 的方程;(2)过点()220F ,的直线l 与曲线E 交于A B ,两点,求+ OA OB 的取值范围.【答案】(1)()2211.3y x x -=≥(2)[)4∞+,【解析】【分析】(1)根据双曲线的定义,易判断点P 的轨迹是双曲线的右支,求出,a b 的值,即得;(2)设出直线方程与双曲线方程联立消元得到一元二次方程,推出韦达定理,依题得出参数m 的范围,将所求式等价转化为关于m 的函数式,通过整体换元即可求出其取值范围.【小问1详解】因()120F -,,()220F ,,且动点P 满足12122PF PF F F -=<,由双曲线的定义知:曲线E 是以12F F ,为焦点的双曲线的右支,且2c =,1a =,则2223b c a =-=,故曲线E 的方程为()2211.3y x x -=≥【小问2详解】当直线l 的斜率为0时,直线l 与双曲线的右支只有一个交点,故不符题意.如图,不妨设直线l 方程为:2x my =+,设()11A x y ,,()22B x y ,,联立22213x my y x =+⎧⎪⎨-=⎪⎩,得()22311290m y my -++=,由韦达定理得1221221231931m y y m y y m -⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,2121222124()443131m x x m y y m m -+=++=+=---,2212121212234(2)(2)2()431m x x my my m y y m y y m +⋅=++=+++=--.由题意:()()22212221223101243190403134031m m m x x m m x x m ⎧-≠⎪-⨯-⨯>⎪⎪⎪⎨+=->⎪-⎪+⎪⋅=->⎪-⎩,解得:210.3m ≤<OA OB +=====,令2131t m =-,因210,3m ≤<故1t ≤-,而OA OB +== ,在(],1t ∞∈--为减函数,故4OA OB +≥ ,即OA OB + 的取值范围为[)4∞+,.22.如图,已知椭圆22122:1(0)x y C a b a b+=>>与等轴双曲线2C 共顶点(±,过椭圆1C 上一点P (2,-1)作两直线与椭圆1C 相交于相异的两点A ,B ,直线PA 、PB 的倾斜角互补,直线AB 与x ,y 轴正半轴相交,分别记交点为M ,N .(1)求直线AB 的斜率;(2)若直线AB 与双曲线2C 的左,右两支分别交于Q ,R ,求NQ NR 的取值范围.【答案】(1)12-(2)11(1,9+【解析】【分析】(1)先求出椭圆方程,联立直线与椭圆方程,利用韦达定理求解A ,B 坐标,直接计算直线AB 斜率即可.(2)联立直线与双曲线的方程,利用求根公式表示出Q ,R 的坐标,化简NQ NR 的表达式,整理求出NQ NR的取值范围即可得出结果.【小问1详解】由题椭圆22122:1(0)x y C a b a b+=>>,顶点(±,可得a =(2,1)P -在椭圆1C 上,即24118b +=,得22b =,所以椭圆方程为22182x y +=,设等轴双曲线2C :222x y m -=,0m >,由题意等轴双曲线2C 的顶点为(±,可得2=8m ,所以双曲线2C 的方程为:228x y -=,因为直线PA 、PB 的倾斜角互补,且A ,B 是不同的点,所以直线PA 、PB 都必须有斜率,设直线PA 方程为(2)1y k x =--,联立22(2)1182y k x x y =--⎧⎪⎨+=⎪⎩,整理得2222(14)(168)161640k x k k x k k +-+++-=,A 和P 点横坐标即为方程两个根,可得221681+4A P k k x x k ++=,因为=2P x ,所以22882=14A k k x k +-+,代入直线PA 可得2244114A k k y k--=+,即2222882441(,)1414k k k k A k k+---++,又因为直线PA 、PB 的倾斜角互补,将k 换成k -,可得2222882441(,)1414k k k k B k k --+-++,两点求斜率可得出12AB k =-所以直线AB 的斜率为12-【小问2详解】由(1)可设直线AB 的方程:12y x n =-+,又因为直线AB 与x ,y 轴正半轴相交,则0n >,联立方程组2212182y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,整理得2224480x nx n -+-=,22Δ168(48)0n n =-->,解得02n <<.联立直线AB 和双曲线方程221(02)28y x n n x y ⎧=-+<<⎪⎨⎪-=⎩,消去y 得22344320x nx n +--=,利用求根公式可得23n x -±=,所以1Q R x NQ NR x ====,又因为204n <<,所以2632n >,则11>,即29<,所以1121019NQNR+<<,所以NQNR 的取值范围为11210(1,9+【点睛】方法点睛:(1)解答直线与圆锥曲线题目时,时常把两个曲线的方程联立,消去一个未知数建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率不存在的特殊情况.。

高二数学期末考试题目

高二数学期末考试题目

高二数学期末考试题目高二数学期末考试题 姓名:一、选择题(每题3分,共45分)1、经过点M (-4,0)和N (0,3),的直线斜率是( )A -43B 43C -34D 34 2、直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A.213,B.--213,C.--123, D.-2,-3 3、直线3x-2y+6=0的y轴截距是( )A. 2 B . -2 C 3 D -34、过点(3,-1)且平行于直线x+2y-6=0的直线是( )A.x+2y-6=0B.x+2y+1=0C.x-y-7=0D.2x-y+7=05、直线3x+2y+m =0与直线2x-3y+n =0的位置关系是( )A .平行或重合B 相交但不垂直C 。

相交且垂直D 与m, n 的取值有关6、直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )A.重合B.平行C.垂直D.相交但不垂直7、椭圆5x 2+9y 2=45 的离心率是( )A.143B.2149C.23D.328、已知在双曲线的实轴在y 轴上,它的两条渐近线方程分别是2x ±3y=0,实轴长为12,则它的方程是( )A.x y 2236161-=B.y x 221443241-=C.y x 2236811-=D.y x 2212271-= 9、椭圆x y 2225161+=的焦点坐标是( ) A.(3,0),(-3,0) B.(0,3),(0,-3)C.(,),(,)410410-D.(,),(,)041041-10、双曲线14922=-y x 的渐近线方程是( ) A.3x+2y=0 B . 3x+2y=1C .2x+3y=0D .2x+3y=111、准线方程为X=1的抛物线标准方程为( )A. y2=2x B . y2=-2x C y2=4x D y2=-4x12、某城市电话号码由8位数字组成,左起第一位不能用0和1,此城市最多可以安装电话门数为( )A.108 B .8⨯ 107 C 8⨯1010 D.7813、用1,2,3,4,5,五个数字可以组成没有重复数字的三位数( )个A. 12 B .15 C 60 D 12514、 如图,抛物线形拱桥的顶点距水面2当水面升高1米后,拱桥内水面宽度是( ) (A)62米 (B)66米(C)32米 (D)36米15、直线125=+y x 和坐标轴所围成的三角形的面积是( ) (A)10 (B)7 (C)5 (D)2二、填空题(每题3分,共36分) 1、直线3x+4y-12=0与坐标轴围成的三角形的面积是--------------------。

高二数学期末复习题库

高二数学期末复习题库

高二数学期末复习题库一、选择题1. 若函数f(x) = 2x^3 - 3x^2 + 5x - 7,求f(1)的值。

A. -3B. 0C. 2D. 52. 已知等差数列的首项a1=3,公差d=2,求第10项a10的值。

A. 23B. 25C. 27D. 293. 圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标和半径。

A. 圆心(3,4),半径5B. 圆心(4,3),半径5C. 圆心(3,4),半径3D. 圆心(4,3),半径34. 已知三角形ABC的三边长分别为a=5,b=7,c=8,求其面积。

A. 12B. 15C. 18D. 205. 函数y = sin(x) + cos(x)的周期是多少?A. πB. 2πC. 3πD. 4π二、填空题6. 已知直线l1: 2x + 3y - 6 = 0与直线l2: x - 4y + 8 = 0,求它们的交点坐标。

交点坐标为:________。

7. 求函数y = x^2 - 4x + 4的顶点坐标。

顶点坐标为:________。

8. 已知向量a = (1, 2),b = (3, 4),求向量a与向量b的点积。

点积为:________。

9. 已知方程x^2 - 6x + 9 = 0,求它的根。

根为:________。

10. 已知正弦函数y = sin(ωx + φ),其中ω = 2,φ = π/4,求函数的周期。

周期为:________。

三、解答题11. 证明:对于任意实数x,等式e^x ≥ x + 1恒成立。

12. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。

13. 解不等式:|x - 2| + |x + 3| ≥ 5。

14. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数f'(x)。

15. 利用向量的知识证明勾股定理。

四、应用题16. 某工厂生产产品的成本函数为C(x) = 100 + 30x,其中x为生产数量。

高二数学期末难题汇编

高二数学期末难题汇编

高二数学期末难题汇编一.选择题(共13小题)1.已知椭圆C:的两个焦点F1,F2与短轴的两个端点B1,B2都在圆x2+y2=1上,P是C上除长轴端点外的任意一点,∠F1PF2的平分线交C的长轴于点M,则|MB1|+|MB2|的取值范围是()A.B.C.D.2.已知点P为双曲线﹣=1(a>0,b>0)的右支上一点,F1,F2为双曲线的左、右焦点,使(+)(﹣)=0(O为坐标原点),且||=||,则双曲线离心率为()A.B.+1C.+1D.﹣3.已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|>|PF2|,线段PF1的垂直平分线过F2,若椭圆的离心率为e1,双曲线的离心率为e2,则的最小值为()A.B.3C.6D.4.已知F是双曲线E:(a>0,b>0)的左焦点,过点F且倾斜角为30°的直线与曲线E的两条渐近线依次交于A,B两点,若A是线段FB的中点,且C是线段AB的中点,则直线OC的斜率为()A.﹣B.C.﹣3D.35.正方体ABCD﹣A1B1C1D1的棱长为1,点E,F分别在线段AC,D1B上,且=λ(λ∈(0,+∞)),直线EF与直线AD1,B1C所成的角为θ1,θ2,又f(λ)=|EF|[cos(θ1+θ2)+sin(θ1+θ2)],则f(λ)随着λ增大时()A.f(λ)先增大后减小,且最小值为1B.f(λ)先减小后增大,且最小值为1C.f(λ)先减小后增大,且最小值为D.f(λ)先增大后减小,且最小值为6.如图,二面角α﹣AB﹣β的大小为60°,棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则直线AB与CD所成角的余弦值为()A.B.C.D.7.过点P(1,3)的动直线交圆C:x2+y2=4于A、B两点,分别过A、B作圆C的切线,如果两切线相交于点Q,那么点Q的轨迹为()A.直线的一部分B.直线C.圆的一部分D.射线8.若O为坐标原点,A(2,0),点P(x,y)坐标满足,则||cos∠AOP的最大值为()A.6B.5C.4D.39.已知F1、F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率之积的最小值为()A.B.C.D.110.已知E,F为双曲线的左右焦点,抛物线y2=2px(p>0)与双曲线有公共的焦点F,且与双曲线交于A、B不同两点,若5|AF|=4|BE|,则双曲线的离心率为()A.B.C.D.11.已知p:函数y=|x﹣a|在[3,+∞)上是增函数,q:函数y=lg(x﹣a)在[3,+∞)是增函数,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.在平面直角坐标系内,到点A(1,2)和直线l:x+y﹣3=0距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线13.设x,y满足约束条件,则的最大值是()A.﹣B.C.D.二.填空题(共9小题)14.已知点P在圆C:(x﹣4)2+y2=4上,点A(6,0),M为AP的中点,O为坐标原点,则tan∠MOA 的最大值为.15.已知椭圆=1(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在一点P 使,则该椭圆的离心率的取值范围为.16.若圆x2+y2=25与圆x2+y2﹣6x+8y+m=0的公共弦的长为8,则m=.17.设点集M={(x,y)|x cosθ+y sinθ﹣sinθ﹣1=0(0≤θ≤2π)},集合M在坐标平面xoy内形成区域的边界构成曲线C,曲线C的中心为T,圆N:(x﹣2﹣5cosθ)2+(y﹣5sinθ)2=1,过圆N上任一点P分别作曲线C的两切线PE,PF,切点分别为E,F,则的范围为.18.若f(x)=x4+3x3+x+1,用秦九韶算法计算f(π)时,需要乘法m次,加法n次,则m+n=.19.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线﹣y2=1的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于.20.给出下列结论:动点M(x,y)分别到两定点(﹣4,0),(4,0)连线的斜率之乘积为﹣,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左右焦点,则下列命题中:(1)曲线C的焦点坐标为F1(﹣5,0),F2(5,0);(2)曲线C上存在一点M,使得S△F1MF2=9;(3)P为曲线C上一点,P,F1,F2是直角三角形的三个顶点,且|PF1|>|PF2|,的值为;(4)设A(1,1),动点P在曲线C上,则|P A|+|PF1|的最大值为8+;其中正确命题的序号是.21.已知命题,则¬p为.22.下列说法中,错误的有(写出你认为错误的所有说法的序号).①若a,b均为正数,则;②若x∈(0,),则sin x+的最小值为2;③a>b>0,则a+>b+;④若a>b>1,则.三.解答题(共18小题)23.已知椭圆M:的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点.(1)求椭圆M的方程;(2)若直线y=kx+m(k≠0)与圆E:x2+y2=相切于点P,且交椭圆M于A,B两点,射线OP于椭圆M交于点Q,设ΔOAB的面积与ΔQAB的面积分别为S1,S2.①求S1的最大值;②当S1取得最大值时,求的值.24.如图,圆M:(x﹣2)2+y2=1,点P(﹣1,t)为直线l:x=﹣1上一动点,过点P引圆M的两条切线,切点分别为A,B.(1)若t=1,求两条切线所在的直线方程;(2)求直线AB的方程,并写出直线AB所经过的定点的坐标;(3)若两条切线P A,PB与y轴分别交于S、T两点,求|ST|的最小值.25.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,点A为椭圆的左顶点,点B为上顶点,|AB|=且|AF1|+|AF2|=4.(1)求椭圆C的方程;(2)过点F2作直线l交椭圆C于M、N两点,记AM、AN的斜率分别为k1、k2,若k1+k2=3,求直线l的方程.26.已知椭圆C:的长轴长是焦距的2倍,且过点.(1)求椭圆C的方程;(2)设P(x,y)为椭圆C上的动点,F为椭圆C的右焦点,点P'满足.证明:为定值.27.已知双曲线的方程是4x2﹣9y2=36.(1)求双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|•|PF2|=16,求∠F1PF2的大小.28.已知椭圆C:=1(a>b>0)的离心率是,原点到直线=1的距离等于.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.29.已知椭圆的长轴长为4,焦距为.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;(ⅱ)求直线AB的斜率的最小值.30.如图,椭圆,抛物线,过C2上一点P(异于原点O)作C2的切线l交C1于A,B两点,切线l交x轴于点Q.(1)若点P的横坐标为1,且|﹣|=,求p的值.(2)求△OAB的面积的最大值,并求证当△OAB面积取最大值时,对任意的p>0,直线l均与一个定椭圆相切.31.为了分析某个高三学生的学习状态.现对他前5次考试的数学成绩x,物理成绩y进行分析.下面是该生前5次考试的成绩.数学120118116122124物理7979778283附..(1)已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程;(2)我们常用R2来刻画回归的效果,其中R2越接近于1,表示回归效果越好.求R2.(3)已知第6次考试该生的数学成绩达到132,请你估计第6次考试他的物理成绩大约是多少?32.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.33.某公司2017年元旦晚会现场,为了活跃气氛,将在晚会节目表演过程中进行抽奖活动.(1)现需要从第一排就座的6位嘉宾A、B、C、D、E、F中随机抽取2人上台抽奖,求嘉宾A和嘉宾B至少有一人上台抽奖的概率;(2)抽奖活动的规则是:嘉宾通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该嘉宾中奖;若电脑显示“谢谢”,则不中奖.求该嘉宾中奖的概率.34.已知圆F的圆心坐标为(1,0),且被直线x+y﹣2=0截得的弦长为.(1)求圆F的方程;(2)若动圆M与圆F相外切,又与y轴相切,求动圆圆心M的轨迹方程;(3)直线l与圆心M轨迹位于y轴右侧的部分相交于A、B两点,且•=﹣4,证明直线l必过一定点,并求出该定点.35.以椭圆C:+=1(a>b>0)的中心O为圆心,以为半径的圆称为该椭圆的“伴随”.(1)若椭圆C的离心率为,其“伴随”与直线x+y﹣2=0相切,求椭圆C的方程.(2)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于AB两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.36.如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;(Ⅱ)假设直线PQ过点T(5,﹣2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.37.已知椭圆C:的离心率为,右顶点A是抛物线y2=8x的焦点.直线l:y=k(x﹣1)与椭圆C相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)如果,点M关于直线l的对称点N在y轴上,求k的值.38.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.39.已知命题p:(x﹣2)(x+3)≤0;命题q:1﹣a≤x≤1+a(a>0).(1)若a=6,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围.(2)若¬q是¬p的充分条件,求实数a的取值范围.40.已知抛物线C:y2=2px(p>0)经过点(1,﹣2),过点M(8,﹣4)的直线与抛物线C交于A,B两点.(1)求抛物线C的方程;(2)在抛物线C上是否存在定点N,使得=0?若存在,求出点N的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共13小题)1.已知椭圆C:的两个焦点F1,F2与短轴的两个端点B1,B2都在圆x2+y2=1上,P是C上除长轴端点外的任意一点,∠F1PF2的平分线交C的长轴于点M,则|MB1|+|MB2|的取值范围是()A.B.C.D.【解答】解:由题意可知b=c=1,故a=,故F1(﹣1,0),F2(1,0),B1(0,﹣1),B2(0,1),∵PM是∠F1PF2的平分线,∴=,设M(m,0),则,∴m=﹣1,∵P是椭圆上除长轴端点外的点,∴﹣1<PF1<+1,∴﹣<m<,又|MB1|+|MB2|=2,∴2≤|MB1|+|MB2|<,故选:B.2.已知点P为双曲线﹣=1(a>0,b>0)的右支上一点,F1,F2为双曲线的左、右焦点,使(+)(﹣)=0(O为坐标原点),且||=||,则双曲线离心率为()A.B.+1C.+1D.﹣【解答】解:|PF1|﹣|PF2|=2a,||=||,∴|PF2|=(+1)a,∵(+)(﹣)=0,∴||=||,设Q为PF2的中点,∴+=2,﹣=,∴⊥,∴△OPF2为等边三角形,∴c=(+1)a,∴e==+1,故选:C.3.已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|>|PF2|,线段PF1的垂直平分线过F2,若椭圆的离心率为e1,双曲线的离心率为e2,则的最小值为()A.B.3C.6D.【解答】解:由题意可知:F1F2=F2P=2c,又∵F1P+F2P=2a1,F1P﹣F2P=2a2,∴F1P+2c=2a1,F1P﹣2c=2a2,两式相减,可得:a1﹣a2=2c,∵==,∴===4+2+,∵2+≥2=2,当且仅当时等号成立,∴的最小值为6,故选:C.4.已知F是双曲线E:(a>0,b>0)的左焦点,过点F且倾斜角为30°的直线与曲线E的两条渐近线依次交于A,B两点,若A是线段FB的中点,且C是线段AB的中点,则直线OC的斜率为()A.﹣B.C.﹣3D.3【解答】解:F(﹣c,0),设B(x0,),则A(,),把A点坐标代入方程y=﹣x可得=﹣•,整理可得x0=,∴A(﹣,),B(,),∴C(,),故k OC=,又直线BF的斜率为=tan30°=,∴=,∴k OC=3.故选:D.5.正方体ABCD﹣A1B1C1D1的棱长为1,点E,F分别在线段AC,D1B上,且=λ(λ∈(0,+∞)),直线EF与直线AD1,B1C所成的角为θ1,θ2,又f(λ)=|EF|[cos(θ1+θ2)+sin(θ1+θ2)],则f(λ)随着λ增大时()A.f(λ)先增大后减小,且最小值为1B.f(λ)先减小后增大,且最小值为1C.f(λ)先减小后增大,且最小值为D.f(λ)先增大后减小,且最小值为【解答】解:时,|EF|=,θ1=θ2=45°,f()=|EF|[cos(θ1+θ2)+sin(θ1+θ2)]=,排除A,B;λ=1时,|EF|=1,θ1=θ2=45°,f(1)=|EF|[cos(θ1+θ2)+sin(θ1+θ2)]=1;λ=0时,|EF|=,θ1=0,θ2=90°,f(0)=|EF|[cos(θ1+θ2)+sin(θ1+θ2)]=,∴f(λ)先减小后增大.故选:C.6.如图,二面角α﹣AB﹣β的大小为60°,棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则直线AB与CD所成角的余弦值为()A.B.C.D.【解答】解:二面角α﹣AB﹣β的大小为60°,棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,AB=4,AC=6,BD=8,∴=++,∴2=+2||•||•cos120°=36+16+64﹣2×6×8×=68,∴CD=2,在平面α内过B作BE⊥AB,过C作CE∥AB,交BE于点E,连结DE,则四边形ABEC是长方形,∠DBC=60°,BE=AC=6,CE=AB=4,且∠DCE是直线AB与CD所成角(或所成角的补角),∴DE===2,∴cos∠DCE===,∴直线AB与CD所成角的余弦值为.故选:A.7.过点P(1,3)的动直线交圆C:x2+y2=4于A、B两点,分别过A、B作圆C的切线,如果两切线相交于点Q,那么点Q的轨迹为()A.直线的一部分B.直线C.圆的一部分D.射线【解答】解:设A(m,n),Q(x,y),根据圆的对称性可得Q点是经过C点垂直于AB的直线与A点切线的交点∵圆x2+y2=4的圆心为C(0,0)∴切线AQ的斜率为k1=﹣=﹣,得得AQ方程为y﹣n=﹣(x﹣m),化简得y=﹣x+…①又∵直线P A的斜率k P A=,∴直线CQ的斜率k2=﹣=,得直线CQ方程为y=x…②①②联解,消去m、n得x+3y﹣4=0,即为点Q轨迹所在直线方程由于直线x+3y﹣4=0与圆C:x2+y2=4相交,所以直线位于圆上或圆内的点除外故选:A.8.若O为坐标原点,A(2,0),点P(x,y)坐标满足,则||cos∠AOP的最大值为()A.6B.5C.4D.3【解答】解:满足的可行域如图所示,又∵||cos∠AOP=,∵=(2,0),=(x,y),∴||•cos∠AOP==x.由图可知,平面区域内x值最大值为5||•cos∠AOP的最大值为:5故选:B.9.已知F1、F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率之积的最小值为()A.B.C.D.1【解答】解:如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,∠F1PF2=,则:在△PF1F2中由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化简得:a12+3a22=4c2,又因为,∴e1e2≥,故选:C.10.已知E,F为双曲线的左右焦点,抛物线y2=2px(p>0)与双曲线有公共的焦点F,且与双曲线交于A、B不同两点,若5|AF|=4|BE|,则双曲线的离心率为()A.B.C.D.【解答】解:根据双曲线和抛物线的对称性得|BF|=|AF|=|BE|,∵|BE|﹣|BF|=2a,∴|BE|﹣|BE|=|BE|=2a,则|BE|=10a,|BF|=8a,∵抛物线y2=2px(p>0)与双曲线有公共的焦点F,∴=c,且x=﹣c是抛物线的准线,则|BD|=|BF|=8a,设B(x,y),则由抛物线的性质得x+c=8a,即x=8a﹣c,代入抛物线方程y2=2px=4cx得y2=4c(8a﹣c),则|DE|2=y2=4c(8a﹣c),在直角三角形BDE中,BE2=DE2+BD2,即100a2=64a2+4c(8a﹣c),即36a2﹣32ac+4c2=0,即c2﹣8ac+9a2=0,解e2﹣8e+9=0,得e==4±,∵0<a<b,∴e==>,∴e=4+,故选:A.11.已知p:函数y=|x﹣a|在[3,+∞)上是增函数,q:函数y=lg(x﹣a)在[3,+∞)是增函数,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵p:函数y=|x﹣a|在[3,+∞)上是增函数,∴a≤3,∵q:函数y=lg(x﹣a)在[3,+∞)是增函数,∴a<3,∴p是q的必要不充分条件.故选:B.12.在平面直角坐标系内,到点A(1,2)和直线l:x+y﹣3=0距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线【解答】解:将点A(1,2)代入直线l:x+y﹣3=0,可得A在直线l上,则到点A(1,2)和直线l:x+y﹣3=0距离相等的点的轨迹是过A垂直于直线l的直线.故选:A.13.设x,y满足约束条件,则的最大值是()A.﹣B.C.D.【解答】解:先画出满足条件的平面区域,如图示:由z=的几何意义是可行域内的点与D(﹣2,0)连线的斜率,由图形可知AD的斜率取得最大值,代入A(3,4),即可得到z最大值,∴z的最大值是,故选:C.二.填空题(共9小题)14.已知点P在圆C:(x﹣4)2+y2=4上,点A(6,0),M为AP的中点,O为坐标原点,则tan∠MOA 的最大值为.【解答】解:设P(4+2cosθ,2sinθ),又A(6,0),且M为AP的中点,∴M(5+cosθ,sinθ),∴tan∠MOA=,令y=,则sinθ﹣y cosθ=5y,∴sin(θ+φ)=5y,即sin(θ+φ)=,(tanφ=﹣y).由,解得.∴tan∠MOA的最大值为.故答案为:.15.已知椭圆=1(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在一点P 使,则该椭圆的离心率的取值范围为.【解答】解:在△PF1F2中,由正弦定理得:则由已知得:,即:a|PF1|=c|PF2|设点(x0,y0)由焦点半径公式,得:|PF1|=a+ex0,|PF2|=a﹣ex0则a(a+ex0)=c(a﹣ex0)解得:由椭圆的几何性质知:x0>﹣a则,整理得e2+2e﹣1>0,解得:或,又e∈(0,1),故椭圆的离心率:,故答案为:.16.若圆x2+y2=25与圆x2+y2﹣6x+8y+m=0的公共弦的长为8,则m=﹣55或5.【解答】解:x2+y2=25①x2+y2﹣6x+8y+m=0②两式相减得6x﹣8y﹣25﹣m=0.圆x2+y2=25的圆心为(0,0),半径r=5.圆心(0,0)到直线6x﹣8y﹣25﹣m=0的距离为=.则公共弦长为2=8∴r2﹣d2=16.∴d2=9.∴d==3.解得,m=﹣55或d=5故答案为:﹣55或5.17.设点集M={(x,y)|x cosθ+y sinθ﹣sinθ﹣1=0(0≤θ≤2π)},集合M在坐标平面xoy内形成区域的边界构成曲线C,曲线C的中心为T,圆N:(x﹣2﹣5cosθ)2+(y﹣5sinθ)2=1,过圆N上任一点P分别作曲线C的两切线PE,PF,切点分别为E,F,则的范围为[﹣,].【解答】解:∵点T(0,1)到直线x cosθ+y sinθ﹣sinθ﹣1=0的距离d=,∴曲线C是以T(0,1)为圆心,以1为半径的圆,设∠EPF=2α则=1×1×cos2α=2cos2α﹣1,在Rt△PTE中,cosα=由圆的几何性质得﹣1≤|PT|≤+1,∴≤cosα≤,由此可得﹣≤≤,故答案为:[﹣,]18.若f(x)=x4+3x3+x+1,用秦九韶算法计算f(π)时,需要乘法m次,加法n次,则m+n=6.【解答】解:f(x)=x4+3x3+x+1=(((x+3)x+0)x+1)x+1,用秦九韶算法计算f(π)时,乘法运算与加法运算的次数和=3+3=6,故答案为6.19.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线﹣y2=1的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于.【解答】解:设M点到抛物线准线的距离为d,则⇒p=8,所以抛物线方程为y2=16x,M的坐标为(1,4);又双曲线的左顶点为,渐近线为,所以,由题设可得,解得.故答案为:20.给出下列结论:动点M(x,y)分别到两定点(﹣4,0),(4,0)连线的斜率之乘积为﹣,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左右焦点,则下列命题中:(1)曲线C的焦点坐标为F1(﹣5,0),F2(5,0);(2)曲线C上存在一点M,使得S△F1MF2=9;(3)P为曲线C上一点,P,F1,F2是直角三角形的三个顶点,且|PF1|>|PF2|,的值为;(4)设A(1,1),动点P在曲线C上,则|P A|+|PF1|的最大值为8+;其中正确命题的序号是③④.【解答】解:设M(x,y),则k MA•k MB=,化简得(x≠±4)曲线C是以F1(﹣,0),F2(,0)为焦点的椭圆,对于(1),曲线C的焦点坐标为F1(﹣5,0),F2(5,0)错;对于(2),因为b2=9,要使S△F1MF2=9,必须要存在点M,使∠F1MF2=900∵c==3,∴不存在M,使得S△F1MF2=9,故错;对于(3),由(2)得,P为曲线C上一点,P,F1,F2是直角三角形的三个顶点,且|PF1|>|PF2|,则必有PF1⊥F1F2|PF1|=,|PF2|=2a﹣|PF1|=,∴的值为,正确;对于(4),则|P A|+|PF1|=2a+|P A|﹣|PF2|≤2a+|P A|=8+,故正确;故答案为:③④21.已知命题,则¬p为.【解答】解:命题为全称命题,则命题的否定为,故答案为:.22.下列说法中,错误的有②④(写出你认为错误的所有说法的序号).①若a,b均为正数,则;②若x∈(0,),则sin x+的最小值为2;③a>b>0,则a+>b+;④若a>b>1,则.【解答】解:①由基本不等式的性质知,≥=,即①正确;②∵x∈(0,),∴sin x∈(0,1),由基本不等式的性质知,sin x+≥2=2,当且仅当sin x=,即sin x=1时,等号成立,而sin x<1,∴等号不成立,取不到最小值2,即②错误;③a+﹣(b+)=(a﹣b)+=(a﹣b)(1+),∵a>b>0,∴a﹣b>0,ab>0,∴a+﹣(b+)>0,即a+>b+,③正确;④==,∵a>b>1,∴b﹣a<0,a﹣1>0,∴<0,即,④错误.∴错误的有②④.故答案为:②④.三.解答题(共18小题)23.已知椭圆M:的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点.(1)求椭圆M的方程;(2)若直线y=kx+m(k≠0)与圆E:x2+y2=相切于点P,且交椭圆M于A,B两点,射线OP于椭圆M交于点Q,设ΔOAB的面积与ΔQAB的面积分别为S1,S2.①求S1的最大值;②当S1取得最大值时,求的值.【解答】解:(1)由题意可得,解得a2=4,b2=1∴椭圆M的方程+y2=1(2)①直线y=kx+m(k≠0)与圆E:x2+y2=相切于点P,∴=,即4m2=3+3k2,设A(x1,y1),B(x2,y2),将直线y=kx+m(k≠0)代入椭圆C的方程,得(1+4k2)x2+8kmx+4m2﹣4=0,△=64k2m2﹣4(1+4k2)(4m2﹣4)=4(16k2﹣4m2+4).∵4m2=3k2+3.∴△=4(13k2+1)>0,∴x1+x2=﹣,x1x2=,∴|AB|=|x1﹣x2|=•=•,设点O到直线l的距离为d=,故△OAB的面积为:S1=|AB|•d=••=≤=1,当3k2+3=13k2+1,即k2=等号成立,故S1的最大值为1.②设Q(x3,y3),由直线y=kx+m(k≠0)与圆E相切于点P,可得OQ⊥AB,∴,可得x32=,y32=,∴|OQ|===,∵|OP|=,∴|PQ|=|OQ|﹣|OP|=﹣,∴===.24.如图,圆M:(x﹣2)2+y2=1,点P(﹣1,t)为直线l:x=﹣1上一动点,过点P引圆M的两条切线,切点分别为A,B.(1)若t=1,求两条切线所在的直线方程;(2)求直线AB的方程,并写出直线AB所经过的定点的坐标;(3)若两条切线P A,PB与y轴分别交于S、T两点,求|ST|的最小值.【解答】解:(1)t=1时,P(﹣1,1),设圆M的过点P的切线方程为y=k(x+1)+1,即kx﹣y+k+1=0,故M(2,0)到直线kx﹣y+k+1=0的距离d==1,解得k=0或k=﹣,∴切线方程为y=1,3x+4y﹣1=0.(2)|PM|=,|AM|=1,∴|P A|2=|PM|2﹣|AM|2=t2+8,故以P为圆心,以|P A|为半径的圆P的方程为(x+1)2+(y﹣t)2=t2+8,显然线段AB为圆P和圆M的公共弦,∴直线AB的方程为:(x+1)2﹣(x﹣2)2+(y﹣t)2﹣y2=t2+8﹣1,即3x﹣ty﹣5=0,显然直线AB过定点(,0).(3)设切线方程为y﹣t=k(x+1),即kx﹣y+k+t=0,故M(2,0)到直线kx﹣y+k+t=0的距离d==1,即8k2+6kt+t2﹣1=0,设P A,PB的斜率分别为k1,k2,则k1+k2=﹣,k1k2=,把x=0代入kx﹣y+k+t=0,得y=k+t,∴|ST|=|k1+t﹣(k2+t)|=|k1﹣k2|===,∴当t=0时,|ST|取得最小值.25.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,点A为椭圆的左顶点,点B为上顶点,|AB|=且|AF1|+|AF2|=4.(1)求椭圆C的方程;(2)过点F2作直线l交椭圆C于M、N两点,记AM、AN的斜率分别为k1、k2,若k1+k2=3,求直线l的方程.【解答】解:(1)依题意可得,,解得,∴椭圆C的方程为;(2)由(1)设M(x1,y1),N(x2,y2),F2(1,0),设直线l的方程为x=my+1,联立方程可得,消去x并整理可得(3m2+4)y2+6my﹣9=0,∴,∵x1=my1+1,x2=my2+1,∴,∵k1+k2=3,即,∴2my1y2+3(y1+y2)﹣3x1x2﹣6(x1+x2)﹣12=0,代入得,,解得m=﹣3,∴直线l的方程为x+3y﹣1=0.26.已知椭圆C:的长轴长是焦距的2倍,且过点.(1)求椭圆C的方程;(2)设P(x,y)为椭圆C上的动点,F为椭圆C的右焦点,点P'满足.证明:为定值.【解答】解:(1)由题意可得a=2c,,a2=b2+c2,解得:a2=4,b2=3,所以椭圆的方程为:;(2)证明:由(1)可得A(﹣2,0),B(2,0),F(1,0),因为P(x,y)为椭圆C上的动点,点P'满足,所以;所以,=,所以:,所以可证为定值2.27.已知双曲线的方程是4x2﹣9y2=36.(1)求双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|•|PF2|=16,求∠F1PF2的大小.【解答】解:(1)解:由4x2﹣9y2=36得,所以a=3,b=2,,所以焦点坐标,,离心率,渐近线方程为.(2)解:由双曲线的定义可知||PF1|﹣|PF2||=6,∴==,则∠F1PF2=60°.28.已知椭圆C:=1(a>b>0)的离心率是,原点到直线=1的距离等于.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.【解答】解:(Ⅰ)由题意可得,解得a2=4,b2=3,∴椭圆的标准方程为.证明:(Ⅱ)设A(x1,y1),B(x2,y2),联立,消y整理可得(3+4k2)x2+8mkx+4(m2﹣3)=0,△=64m2k2﹣16(3+4k2)(m2﹣3)>0,即3+4k2﹣m2>0,∴x1+x2=﹣,x1x2=,又,∵以AB为直径的圆过椭圆的右顶点D(2,0),∴k AD k BD=﹣1,即,∴y1y2+x1x2﹣2(x1+x2)+4=0,∴,∴7m2+16mk+4k2=0.解得:,且均满足3+4k2﹣m2>0,当m1=﹣2k时,l的方程为y=k(x﹣2),直线过定点(2,0),与已知矛盾;当时,l的方程为,直线过定点.∴直线l过定点,定点坐标为.29.已知椭圆的长轴长为4,焦距为.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;(ⅱ)求直线AB的斜率的最小值.【解答】解:(Ⅰ)设椭圆的半焦距为c.由题意知,所以.所以椭圆C的方程为.(Ⅱ)证明:(ⅰ)设P(x0,y0)(x0>0,y0>0),由M(0,m),可得P(x0,2m),Q(x0,﹣2m).所以直线PM的斜率k1==,直线QM的斜率k2==﹣,此时=﹣3.所以为定值﹣3.(ⅱ)设A(x1,y1),B(x2,y2).直线P A的方程为y=kx+m,直线QB的方程为y=﹣3kx+m.联立整理得(2k2+1)x2+4mkx+2m2﹣4=0.由,可得,所以.同理.所以,,所以.由m>0,x0>0,可知k>0,所以,等号当且仅当时取得,此时,即,所以直线AB的斜率的最小值为.30.如图,椭圆,抛物线,过C2上一点P(异于原点O)作C2的切线l交C1于A,B两点,切线l交x轴于点Q.(1)若点P的横坐标为1,且|﹣|=,求p的值.(2)求△OAB的面积的最大值,并求证当△OAB面积取最大值时,对任意的p>0,直线l均与一个定椭圆相切.【解答】解:(1)点,由对称性不妨设.于是,于是Q(﹣1,0).所以点Q是C1的左焦点.设∠AQO=α.焦准距为m=2.类比抛物线的焦半径算法可得.于是,于是,所以p=6.(2)设P(x0,y0).于是l:y0y=px+px0.于是Q(﹣x0,0).令,则l:x=ty﹣x0.联立.设A(x1,y1),B(x2,y2)...当且仅当取等,且满足△>0.所以△OAB的面积的最大值为.注意到即为.这个等式类似于△=;于是猜想椭圆.联立得:;==0;故当△OAB面积取最大值时,直线l均与一个定椭圆相切.31.为了分析某个高三学生的学习状态.现对他前5次考试的数学成绩x,物理成绩y进行分析.下面是该生前5次考试的成绩.数学120118116122124物理7979778283附..(1)已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程;(2)我们常用R2来刻画回归的效果,其中R2越接近于1,表示回归效果越好.求R2.(3)已知第6次考试该生的数学成绩达到132,请你估计第6次考试他的物理成绩大约是多少?【解答】解:(1)计算=×(120+118+116+122+124)=120,=×(79+79+77+82+83)=80;===;=﹣=80﹣×120=﹣10,所以y关于x的线性回归方程是=x﹣10;(2)由题意,填表得y79797782838078.57781.583计算相关系数=1﹣=1﹣==0.9375;所以R2接近于1,表示回归效果越好;(3)第6次考试该生的数学成绩达到132,计算=×132﹣10=89,预测他的物理成绩为89分.32.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0.又a>0,所以a<x<3a.当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值范围是2<x<3.(2)¬p是¬q的充分不必要条件,即¬p⇒¬q,且¬q推不出¬p.即q是p的充分不必要条件,则,解得1<a≤2,所以实数a的取值范围是1<a≤2.33.某公司2017年元旦晚会现场,为了活跃气氛,将在晚会节目表演过程中进行抽奖活动.(1)现需要从第一排就座的6位嘉宾A、B、C、D、E、F中随机抽取2人上台抽奖,求嘉宾A和嘉宾B至少有一人上台抽奖的概率;(2)抽奖活动的规则是:嘉宾通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该嘉宾中奖;若电脑显示“谢谢”,则不中奖.求该嘉宾中奖的概率.【解答】解:(1)6位嘉宾,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(2)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件,得到的区域为图中的阴影部分,由2x﹣y﹣1=0,令y=0,可得x=,令y=1,可得x=1,∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为S阴=(1+)×1=.∴该代表中奖的概率为=.34.已知圆F的圆心坐标为(1,0),且被直线x+y﹣2=0截得的弦长为.(1)求圆F的方程;(2)若动圆M与圆F相外切,又与y轴相切,求动圆圆心M的轨迹方程;(3)直线l与圆心M轨迹位于y轴右侧的部分相交于A、B两点,且•=﹣4,证明直线l必过一定点,并求出该定点.【解答】解:(1)设圆F的方程为(x﹣1)2+y2=r2,r>0,由圆心到直线x+y﹣2=0的距离为d==,由弦长公式可得=2,解得r=1,可得圆F的方程为(x﹣1)2+y2=1;(2)设M的坐标为(x,y),由动圆M与圆F相外切,又与y轴相切,可得M到点F的距离比它到y轴的距离大1,即为M到点F的距离比它到直线x=﹣1的距离相等,由抛物线的定义,可得动圆圆心M的轨迹方程为y2=4x;(3)证明:设l:x=ty+b代入抛物线y2=4x,消去x得y2﹣4ty﹣4b=0设A(x1,y1),B(x2,y2)则y1+y2=4t,y1y2=﹣4b,∴•=x1x2+y1y2=(ty1+b)(ty2+b)+y1y2=t2y1y2+bt(y1+y2)+b2+y1y2=﹣4bt2+4bt2+b2﹣4b=b2﹣4b令b2﹣4b=﹣4,∴b2﹣4b+4=0∴b=2.∴直线l过定点(2,0).35.以椭圆C:+=1(a>b>0)的中心O为圆心,以为半径的圆称为该椭圆的“伴随”.(1)若椭圆C的离心率为,其“伴随”与直线x+y﹣2=0相切,求椭圆C的方程.(2)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于AB两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.【解答】解:(1)∵椭圆C:+=1(a>b>0)的离心率为,其“伴随”与直线x+y﹣2=0相切,∴,解得a=2,b=1,∴椭圆C的方程为=1.(2)由(1)知椭圆E的方程为+=1,(i)设P(x0,y0),|=λ,由题意可知,Q(﹣λx0,﹣λy0),由于+y02=1,又+=1,即(+y02)=1,所以λ=2,即|=2;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,①则有x1+x2=﹣,x1x2=,所以|x1﹣x2|=,由直线y=kx+m与y轴交于(0,m),则△AOB的面积为S=|m|•|x1﹣x2|=|m|•=2,设=t,则S=2,将直线y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△>0可得m2<1+4k2,②由①②可得0<t<1,则S=2在(0,1)递增,即有t=1取得最大值,即有S,即m2=1+4k2,取得最大值2,由(i)知,△ABQ的面积为3S,即△ABQ面积的最大值为6.36.如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;(Ⅱ)假设直线PQ过点T(5,﹣2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.【解答】(Ⅰ)证明:设直线PQ的方程为x=my+n,点P、Q的坐标分别为P(x1,y1),Q(x2,y2).直线方程代入抛物线方程,消x得y2﹣4my﹣4n=0.由△>0,得m2+n>0,y1+y2=4m,y1•y2=﹣4n.∵P(x1,y1),Q(x2,y2),A(1,2)=(x1﹣1,y1﹣2),=(x2﹣1,y2﹣2)∵AP⊥AQ,∴,∴(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=0.∴(y1﹣2)(y2﹣2)[(y1+2)(y2+2)+16]=0,∴(y1﹣2)(y2﹣2)=0或(y1+2)(y2+2)+16=0.∴n=2m﹣1或n=2m+5,∵△>0恒成立,∴n=2m+5.∴直线PQ的方程为x﹣5=m(y+2),∴直线PQ过定点(5,﹣2).(Ⅱ)解:假设存在以PQ为底边的等腰三角形APQ,由第(Ⅰ)问可知,将n用2m+5代换得直线PQ 的方程为x=my+2m+5.设点P、Q的坐标分别为P(x1,y1),Q(x2,y2),直线方程代入抛物线方程,消x得y2﹣4my﹣8m﹣20=0.∴y1+y2=4m,y1•y2=﹣8m﹣20.∴PQ的中点坐标为(2m2+2m+5,2m).由已知得,即m3+m2+3m﹣1=0.设g(m)=m3+m2+3m﹣1,则g′(m)=3m2+2m+3>0,∴g(m)在R上是增函数.又g(0)=﹣1<0,g(1)=4>0,∴g(m)在(0,1)内有一个零点.∴函数g(m)在R上有且只有一个零点,即方程m3+m2+3m﹣1=0在R上有唯一实根.所以满足条件的等腰三角形有且只有一个.37.已知椭圆C:的离心率为,右顶点A是抛物线y2=8x的焦点.直线l:y=k(x﹣1)与椭圆C相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)如果,点M关于直线l的对称点N在y轴上,求k的值.【解答】解:(Ⅰ)抛物线y2=8x,所以焦点坐标为(2,0),即A(2,0),所以a=2.又因为e==,所以c=.所以b=1,所以椭圆C的方程为.…(4分)(Ⅱ)设P(x1,y1),Q(x2,y2),因为,所以=(x1+x2﹣4,y1+y2),所以M(x1+x2﹣2,y1+y2).由直线l:y=k(x﹣1)与椭圆C联立,得(4k2+1)x2﹣8k2x+4k2﹣4=0,得x1+x2﹣2=﹣,y1+y2=,即M(﹣,).设N(0,y3),则MN中点坐标为(﹣,),因为M,N关于直线l对称,所以MN的中点在直线l上,所以=k(﹣﹣1),解得y3=﹣2k,即N(0,﹣2k).由于M,N关于直线l对称,所以M,N所在直线与直线l垂直,所以,解得k=±.…(14分)38.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.【解答】解:(1)∵甲班学生的平均分是85,∴,∴x=5,∵乙班学生成绩的中位数是83,∴y=3;(2)甲班7位学生成绩的方差为s2==40;。

高二数学期末考试题及答案

高二数学期末考试题及答案

高二数学期末考试题及答案一、选择题1. 设集合$A=\{x \mid x\text{是正整数},1\leqslant x\leqslant 10\}$,若集合$B$表示$A$中能除以5但不能除以4,且单位数为偶数的数所构成的集合,则集合$B$的元素个数是()。

A. 1B. 2C. 3D. 42. 已知实数$x$满足$x+\frac{1}{x}=3$,则$x^n+\frac{1}{x^n}$的值为()。

A. $n$B. $3n$C. $3^n$D. $2^n$3. 已知函数$f(x)=\log_2(x-a)+\log_2(x-b)$,其中$a>b$,则函数的定义域为()。

A. $[a,+\infty)$B. $[b,a]$C. $[a,+\infty)\backslash [b,+\infty)$D. $(-\infty,a)\backslash [b,a]$4. 摩天轮在运行过程中,以正比例的方式将载客量从40人逐渐增加到80人,然后又逐渐减少到40人。

从摩天轮开始运行到载客量减半,共用去了旋转的$\frac{1}{4}$的时间。

假设摩天轮的一次旋转用时不变,那么完成一个旋转用时是()。

A. 8分钟B. 10分钟C. 12分钟D. 16分钟5. 已知数列$\{a_n\}$满足$a_1=1$,$a_n=\frac{a_{n-1}}{n}+\frac{1}{n(n+1)}$,则数列$\{a_n\}$的极限值为()。

A. 0B. 1C. $\frac{1}{2}$D. $\frac{2}{3}$二、填空题6. 若直线$2x+y-3=0$与圆$x^2+y^2-4x-2y+4=0$相切,则切点坐标为()。

7. 已知函数$f(x)=(x^2-2x)e^{-mx}+c$,若曲线$y=f(x)$过点$(0,1)$且切线斜率为1,则$m$的值为()。

8. 设$A$,$B$是两个$n$阶矩阵,且$AB=BA$,则$|AB-BA|$的值为()。

高二数学试卷期末题及答案

高二数学试卷期末题及答案

一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 2x + 1,则f(x)的图像是:A. 一个开口向上的抛物线,顶点在(1, 0)B. 一个开口向下的抛物线,顶点在(1, 0)C. 一个开口向上的抛物线,顶点在(0, 1)D. 一个开口向下的抛物线,顶点在(0, 1)2. 若a, b, c是等差数列,且a + b + c = 12,a + c = 8,则b的值为:A. 4B. 6C. 8D. 103. 在△ABC中,若∠A = 30°,∠B = 45°,则∠C的度数是:A. 105°B. 120°C. 135°D. 150°4. 下列哪个方程的解集是空集:A. x^2 + 1 = 0B. x^2 - 4 = 0C. x^2 - 2x + 1 = 0D. x^2 + 2x + 1 = 05. 若复数z满足|z - 1| = |z + 1|,则z在复平面上的轨迹是:A. 以(0, 0)为圆心,1为半径的圆B. 以(0, 0)为圆心,2为半径的圆C. x = 0的直线D. y = 0的直线6. 下列函数中,是奇函数的是:A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = x^47. 若等比数列{an}的首项为2,公比为3,则第5项an是:A. 24B. 27C. 81D. 2438. 在平面直角坐标系中,点P(2, 3)关于直线y = x的对称点是:A. (3, 2)B. (2, 3)C. (3, 3)D. (2, 2)9. 下列哪个数是等差数列1, 3, 5, ...的第10项:A. 19B. 20C. 21D. 2210. 若log2x + log2(4x) = 3,则x的值是:A. 2B. 4C. 8D. 16二、填空题(每题5分,共50分)11. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项an = ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.已知点O 是ABC ∆所在平面内一点,
,+=+=+则O
是ABC ∆的( )
A.内心
B.外心
C.垂心
D.重心 11.设a ,b 为正数,且a + b = 1,则b
a 1
21+的最小值是__________________。

10.如果所示,b,c 在平面α内,A c b B c a =⋂=⋂,,且
c b c a b a ⊥⊥⊥,,,若,,b D a C ∈∈E 在直线AB 上
(C,D,E 均异于A,B),则ACD ∆是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
@已知点P(x , y)的坐标满足条件⎪⎩

⎨⎧≥-+≤≤03331y x y x ,那么z = x – y 的取值范围是___________。

@在△ABC 中,︒=∠60A ,AC = 1,△ABC 的面积为3,则BC 的长为__________。

12.数列{}n a 满足递推式)2(1331≥-+=-n a a n
n n ,又51=a ,则使得⎭
⎬⎫
⎩⎨
⎧+n
n a 3λ为等差数列的实数λ=___________
14.一个三棱锥的三个侧面有两个是等腰直角三角形,另一个是边长为1的正三角形,则这个三棱锥的体积为_______________。

(写出一个可能的值即可)
@已知P 、A 、B 、C 是球面上四点,且PA 、PB 、PC 两两垂直,5,3,1==
=PC PB PA ,
则该球的表面积是______________。

@在△ABC 中,︒=∠60A ,AC = 1,△ABC 的面积为3,则BC 的长为____________。

@过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB = BC = CA = 3,则球的半径是_____________。

@已知数列{a n }是首项a 1 = 4,公比1≠q 的等比数列,S n 是其前n 项和,且4a 1 , a 5 , -2a 3成等差数列。

(1) 求公比q 的值;
(2) 设n n S S S S A ++++= 321,求A n 。

@如图,ABCD 是边长为2a 的正方形,ABEF 是矩形,且二面角C —AB —F 是直二面角,AF = a ,
C
D
G 是EF 的中点。

(1) 求证:平面AGC ⊥平面BGC ;
(2) 求GB 与平面AGC 所成角的正弦值; (3) 求二面角B —AC —G 的大小。

@已知数列{a n }满足)(1
2
41N n a a a n n n ∈+-=
+,其首项为0a 。

(1) 若对于任意自然数n ,数列{a n }还满足a n = p(p 为常数),试求a 0的值; (2) 若a 0 = 4,求满足不等式65
16
2
≤n a 的自然数n 的集合; (3) 若存在a 0使数列{a n }满足:对任意正整数n ,均有1+<n n a a ,求a 0的取值范围。

@如图,ABCD —A 1B 1C 1D 1是正四棱柱,侧棱长为3,底面边长为2,E 是棱BC 的中点。

@对于数列{a n }定义数列{a n+1 – a n }为{a n }的“差数列”。

(1) 若{a n }的“差数列”是一个公差不为零的等差数列,试写出{a n }的一个通项公式; (2) 若a 1 = 2,{a n }的“差数列”的通项为2n ,求数列{a n }的前n 项和S n ;
(3) 对于(2)中的数列{a n },若数列{b n }满足)(2211*
+∈⨯-=N n b b a n n n n ,且74-=b ,
求:①数列{b n }的通项公式;
②当数列{b n }的前n 项的乘积最大时n 的值。

@如图,在菱形ABCD 中,⊥︒=∠PA DAB ,60底面ABCD ,且PA=AB=2,E ,F 分别是AB 与PD 的中点。

(1) 求证:PC ⊥BD ;(2)求证:AF//平面PEC ;(3)求二面角P —EC —D 的大小。

@如图,直三棱柱A 1B 1C 1—ABC 中,C 1C = CB = CA = 2,AC ⊥CB 。

D 、E 分别为棱C 1C 、B 1C 1的中点。

(1) 求点B 到平面A 1C 1CA 的距离; (2) 求二面角B —A 1D —A 的大小;
(3) 在线段AC 上是否存在一点F ,使得EF ⊥平面A 1BD ?若存在,确定其位置并证明结论;若不
13.数列{a n }的前n 项和为S n ,S n = n(n + 1)。

(1)求通项{a n };
(2)若数列{b n }满足n
a n n
n b )2()
1(31
λ--+=,
确定λ的取值范围,使*
∈N n 时,都有n n b b >+1。

(3)n
a a a a a a n
n 3111
12211<-⋅⋅-⋅- 。

14.已知函数)0(2
1
)2sin()sin(3)(sin )(2
>-+
+
=ωπ
ωωωx x x x f 的最小正周期是π。

B C1
(1)求y = f(x)的单调增区间; (2)若⎥⎦⎤
⎢⎣
⎡-
∈2,3ππx 时,m x f ≤)(恒成立,求实数m 的取值范围。

@已知四棱锥P —ABCD 的底面是直角梯形,AB//CD ,︒=∠90DAB ,PA ⊥底面ABCD ,AB = 2,AD =
2,DC = 1,PA = 4,点M 、N 分别为PB 、PD 的中点,平面CMN 交AP 于点Q 。

(1) 求平面CMN 与平面ABCD 所成锐二面角的大小;
(2) 确定点Q 的位置。

15.已知数列{}n a 满足)(2*
21N n a a a n n n ∈+=++,它的前n 项和为n S ,且.36,563==S a
(1)求数列{}n a 的通项公式;
(2)设λλ(2)1(61n n n n b ⋅-+=-为正整数, *N n ∈),试确定λ的值,使得对任意*
N n ∈,都有
n n b b >+1成立.
P A B C
D
M
N。

相关文档
最新文档