2017二年级学而思秋季数学超常班讲义第一讲
学而思小学奥数个精彩讲座总汇全

第1讲计算综合(一)繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观.4.对于定义新运算,我们只需按题中的定义进行运算即可.5.本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级[第1讲循环小数与分数].1.计算:71147 18262 13581333416⨯+⨯-÷【分析与解】原式=7123723174612241488128131233+⨯=⨯=-2.计算:【分析与解】注意,作为被除数的这个繁分数的分子、分母均含有5199.于是,我们想到改变运算顺序,如果分子与分母在5199后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995×.具体过程如下:原式=5919(3 5.22)19930.41.6910()52719950.5199519(6 5.22)950+-⨯÷+⨯-+=5191.3219930.440.40.59()519950.419950.5191.329-⨯⨯⨯÷+⨯⨯-=199320.41()19950.5+÷⨯=0.410.5÷=1143.计算:1111111987-+-【分析与解】原式=11198711986-+=198613973-=198739734.计算:已知=181111+12+1x+4=,则x等于多少【分析与解】方法一:1118x68114x112x7111+11148x62+214x1x+4+====+++++++交叉相乘有88x+66=96x+56,x=1.25.方法二:有11131118821x4+==+++,所以18222133x4+==++;所以13x42+=,那么x=.5.求944,43,443,...,44 (43)个这10个数的和.【分析与解】方法一:944+43+443...44 (43)++个=1044(441)(4441)...(44...41)+-+-++-个=104444444...44 (49)++++-个=1094(999999...999...9)99⨯++++-个=1004[(101)(1001)(10001)...(1000...01)]99⨯-+-+-++--个=914111.1009=49382715919⨯-个.方法二:先计算这10个数的个位数字和为39+4=31⨯;再计算这10个数的十位数字和为4×9=36,加上个位的进位的3,为36339+=;再计算这10个数的百位数字和为4×8=32,加上十位的进位的3,为32335+=;再计算这10个数的千位数字和为4×7=28,加上百位的进位的3,为28331+=;再计算这10个数的万位数字和为4×6=24,加上千位的进位的3,为24327+=;再计算这10个数的十万位数字和为4×5=20,加上万位的进位的2,为20222+=;再计算这10个数的百万位数字和为4×4=16,加上十万位的进位的2,为16218+=;再计算这10个数的千万位数字和为4×3=12,加上百万位的进位的1,为12113+=;再计算这10个数的亿位数字和为4×2=8,加上千万位的进位的1,为819+=;最后计算这10个数的十亿位数字和为4×1=4,加上亿位上没有进位,即为4.所以,这10个数的和为91.6.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少【分析与解】因为每个端点均有三条线段通过,所以这6条线段的长度之和为:1173(0.60.875)1+0.75+1.8+2.625=6.175=63440⨯+++=7.我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○=○=.符号“△”表示选择两数中较小数的运算,例如:△=△=.请计算:23155 (0.625)(0.4)33384 1235(0.3)( 2.25) 3104⨯+【分析与解】原式1550.6255155725384218384122562.253⨯=⨯÷=+8.规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,….如果111(16)(17)(17)-=⨯,那么方框内应填的数是多少【分析与解】111(17)()1(16)(17)(17)(16)=-÷=-=161718111516175⨯⨯-=⨯⨯.9.从和式11111124681012+++++中必须去掉哪两个分数,才能使得余下的分数之和等于1【分析与解】因为1116124+=,所以12,14,16,112的和为l,因此应去掉18与110.10.如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如.那么在所有这种数中。
学而思初二数学秋季班第1讲.构造轴对称图形.提高班.教师版

1初二秋季·第1讲·提高班·教师版对称的世界图形变换3级中考新题型之折纸与拼图图形变换2级 构造轴对称图形图形变换1级 轴对称初步 满分晋级漫画释义1构造轴对称图形2初二秋季·第1讲·提高班·教师版1 角平分线+垂线,等腰三角形必呈现当题设有角平分线及与角平分线垂直的线段,可延长这条线段与角的另一边相交,构成等腰三角形,可利用等腰三角形的三线合一性质证题;2 角分线,分两边;对称全等要记全当题设有角平分线及角平分线一侧的三角形时,可截长补短,利用角平分线,构造轴对称的全等三角形.例题精讲思路导航知识互联网题型一:角平分线的常见辅助线模型(二)3初二秋季·第1讲·提高班·教师版图2N M O B CP A 图1A P CO MN【引例】 如图,在ABC △中,BE 是角平分线,AD BE ⊥,垂足为D .求证:21C ∠=∠+∠.ABCED12F21DECBA【解析】如图,延长AD 交BC 于F 点.∵ABD FBD ∠=∠,BD BD =,90ADB FDB ∠=∠=︒, ∴Rt Rt ABD FBD △≌△. ∴2DFB ∠=∠. ∵1DFB C ∠=∠+∠, ∴21C ∠=∠+∠.【例1】 如图1所示: OP 平分MON ∠,A 为OM 上一点,AC OP ⊥于C 点.则延长AC 与ON交于B 点(如图2所示),易证AC BC OA OB ==,.进而可知点C 是线段AB 的中点.请根据上面的学习材料,解答下列各题:如图,在ABC △中,90BAC ∠=°,AB AC =,BE 平分ABC ∠,CE BE ⊥.求证:12CE BD =.ABCD E123321FED CBA【解析】 延长CE 、BA 相交于F ,典题精练4初二秋季·第1讲·提高班·教师版在BEC △和BEF △中12BE BE BEF BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BEC BEF △≌△(ASA )∴12CE EF CF ==∵BE CE ⊥,∴190F ∠=-∠° 同理390F ∠=-∠°,∴13∠=∠在ABD △和ACF △中,13AB AC BAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD ACF △≌△(ASA ) ∴BD CF =∴12CE BD =【例2】 阅读下面学习材料:如图1所示:ABC △中,取AB AC 、中点D E 、,连接DE ,则DE 叫ABC △的中位线(如图2所示).易证DE BC ∥且12DE BC =.图2图1BCAED C BA我们来一起证明一下:证明:过点C 作CF AB ∥交DE 的延长线于F . ∴ADE CFE △≌△∴DE EF =,FC AD DB ==. ∵,FC BD ∥FC BD =∴四边形DBCF 是平行四边形. ∴1122DE BC DF ==,DF BC ∥.若在ABC △中,MB 、NC 分别是三角形的外角ABP ∠、ACQ ∠的角平分线,AM BM ⊥, AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =++AB CMNPQFEQPNMCBA【解析】延长AM 、CB 相交于点E ,延长AN 、BC 相交于点F ,易证()()ASA ASA AMB EMB ANC FNC △≌△,△≌△, FED C BA5初二秋季·第1讲·提高班·教师版∴AM EM =,AN FN =,AB EB =,AC FC =∴MN BC ∥,且()()1122MN EB BC CF AB BC AC =++=++.【例3】 阅读下列学习材料:如图1 所示,OP 平分MON ∠,A 为OM 上一点,C 为OP 上一点.连接AC ,在射线ON 上截取OB OA =,连接BC (如图2),易证AOC BOC △≌△.图1N M OPA C图2CA PBOM N请根据上面的学习材料,解答下列各题: 如图,在四边形ABCD 中,AD BC A ∠∥,的角平分线AE 交DC 于E ,BE 是B ∠的角平分线.求证:⑴AD BC AB +=;⑵AE BE ⊥EDCB AFEDCBA【解析】⑴ 在AB 上截取AF ,使AF AD =,连接EF ,∵在ADE △和AFE △中,DA FA DAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴(SAS)ADE AFE △≌△ ∴ADE AFE ∠=∠ ∵AD BC ∥∴180ADE C ∠+∠=︒ ∵180EFB AFE ∠+∠=︒ ∴EFB C ∠=∠∵在EFB △和ECB △中,EBF EBC EFB C BE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)EFB ECB △≌△ ∴BF BC =∴AD BC AF BF AB +=+= ⑵ ∵AD BC ∥,∴22180EAB EBA ∠+∠=︒ ∴90EAB EBA ∠+∠=︒ ∴AE BE ⊥.【例4】 已知:如图,在四边形ABCD 中,BC AB >,AD CD =,BD 平 A B CD6初二秋季·第1讲·提高班·教师版分ABC ∠.求证:180A C ∠+∠=°.【分析】 证两个角的和等于180°,使我们联想到证这两角和等于一个平角.由于两个角比较分散,因此根据角的平分线的条件,添加辅助线,把两个角拼成一个平角.【解析】 证法一:(这个模型我们暑期班进行过详细讲解)如图,过点D 作BA 、BC 的垂线,垂足分别为E 、F .则DE DF =. 在Rt ADE △和Rt CDF △中,AD DC DE DF =⎧⎨=⎩,∴()Rt Rt HL ADE CDF △≌△,∴EAD C ∠=∠. ∵180BAD EAD ∠+∠=°,∴180A C ∠+∠=°.FEDCBAA BCDEEDCBA证法二:如图,在BC 上截取BE AB =,连结DE , 在ABD △和EBD △中AB EB ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD EBD △≌△,∴A BED ∠=∠,AD ED =. ∵AD CD =,∴ED CD =.∴C DEC ∠=∠. ∴180A C BED DEC ∠+∠=∠+∠=°.证法三:如图,延长BA 到E ,BE BC =,连结ED .在BDE △和BDC △中,BD BD EBD CBD BE BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDE BDC △≌△∴E C ∠=∠,ED CD =.∵AD CD =,∴AD ED =∴E DAE ∠=∠,C DAE ∠=∠.∴BAD C ∠+∠180BAD DAE =∠+∠=°.7初二秋季·第1讲·提高班·教师版探索1:如图,在l 上找一点P ,使PA PB +最小.lBAP′PlBA【解析】直线AB 与l 的交点即为所求点P ,PA PB +最小值为AB .探索2:如图,在l 上找一点P ,使PA PB +最小.ABlPlB'BA【解析】做点B 关于直线l 的对称点'B ,直线'AB 与l 的交点即为所求点P ,PA PB +最小值为'AB .【备选1】模型应用:⑴ 如图1,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小; ⑵ 如图2,正方形ABCD 的边长为2,E 为AB 的中点,在AC 上找一点P ,使PB +PE 的值最小; ⑶ 如图3,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求P A +PC 的最小值;⑷ 如图4,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .保留作图痕迹,不必写出作法.思路导航题型二:将军饮马问题探索8初二秋季·第1讲·提高班·教师版图4图3图2图1P DCAOPCBAP E D CB AP E D CBA【解析】 ⑴作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所求的点P ,故BP +PE 的最小值为223BC BE -=;⑵连接BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连接ED 交AC 于P ,则PB +PE 的最小值是225AD AE +=;⑶作A 关于OB 的对称点A ′,连接A ′C ,交OB 于P ,P A +PC 的最小值即为A ′C 的长,∵∠AOC =60°,∴∠A ′OC =120°,作OD ⊥A ′C 于D ,则∠A ′OD =60°,∵OA ′=OA =2,A ′D =3,∴A ′C =23⑶如图4,首先过点B 作BB ′⊥AC 于O ,且OB =OB ′,连接DB ′并延长交AC 于P ,由AC 是BB ′的垂直平分线,可得∠APB =∠APD .B'DA'图4图3图2图1P DCB AO P C B AP E DCB AP E D CBA【备注】此题涉及部分勾股定理内容,程度好的班级教师可适当进行拓展,程度一般的班级可跳过计算,会画图即可.探索3:如图,在l 上找一点P ,使PA PB -最大.ABlAPB P′l【解析】直线AB 与l 的交点即为所求点P ,PA PB -最大值为AB ..探索4:如图,在l 上找一点P ,使PA PB -最大.9初二秋季·第1讲·提高班·教师版ABllB'PBA【解析】做点B 关于直线l 的对称点'B ,直线'AB 与l 的交点即为所求点P ,PA PB -最大值为AB '.探索5:如图,在l 上找一点P ,使PA PB -最小.All【解析】直线AB 的中垂线与l 的交点即为所求点P ,PA PB -最小值为0.探索6:如图,点P 在锐角AOB ∠的内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使PCD△的周长最小.BOB【分析】做点P 关于直线OA 、OB 的对称点1P 、2P ,12P P 与直线OA 、OB 的交点为所求点C 、D .△PCD 的周长最小值为P 1P 2的长度.【备选2】 已知如图所示,40MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,则当PAB △的周长取最小值时,APB ∠的度数为 .(东城期末)【解析】 分别作点P 关于ON 、OM 的对称点P '、P '',连接OP '、OP ''、P P ''',显然PAB △的周长PA AB PB P B AB P A '''++=++, 由两点间线段最短,故PAB △的最小周长为P P ''',N PB M O AP''P'P B A N OM10 初二秋季·第1讲·提高班·教师版∵40MON =︒∠,OP OP OP '''==,∴P OP '''△是等腰三角形, 此时∠O P 'P ''=∠O P ''P '=50°∴角∠APB =∠O P 'P ''+∠O P ''P '=100°.探索7:如图,点P 在锐角AOB ∠的内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使PD CD +最小.ABPP′PDC OBA【解析】做点P 关于直线OB 的对称点'P 、过'P 向直线OA 作垂线、与OB 的交点为所求点D ,垂足即为点C .PD +CD 的最小值为P ’C 的长度.【备选3】如图,在锐角三角形ABC 中,BC =42,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,试求CM +MN 的最小值.【解析】 过点C 作CE ⊥AB 于点E ,交BD 于点M ′,过点M ′作M ′N ′⊥BC 于N ′,则CE 即为CM +MN的最小值,∵BC =42,∠ABC =45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形,∴CE =4,故CM +MN 的最小值为4.EN'M'ABCD NMMNDCBA探索8:如图,点C 、D 在锐角AOB ∠的内部,在OB 边上求作一点F ,在OA 边上求作一点E ,使四边形CEFD 周长最小.ODC BAC′D′FEODC BA111【解析】如图所示,作C 、D 两点分别关于直线OA 、OB 的对称点C D ''、,连接C D ''、分别交OA 、OB 于E F 、,点E 、F 即为所求.【备选4】在∠MON 的两边上分别找两点P 、Q ,使得AP +PQ +QB 最小.(保留画图痕迹,不要求写作法)A'N NO探索9:如图,直线l 外有两点A 、B ,有一定长线段a ,在直线上找到点M 、N ,使得MN 间的距离等于定长a ,使得四边形AMNB 的周长最小.B'A'aNMBAl【解析】 如图所示,将点A 向右平移a 个长度到点'A ,做点B 关于直线l 的对称点'B ,连接''A B 后交直线l 于点N ,过点A 作''AM A B ∥,交直线l 于点M ,四边形AMNB 即为所求.【备选5】⑴如图1,在△ABC 中,点D 、E 分别是AB 、AC 边的中点,BC =6,BC 边上的高为4,请你在BC 边上确定一点P ,使得△PDE 的周长最小. ①在图1中作出点P .(三角板、刻度尺作图,保留作图痕迹,不写作法) ②请直接写出△PDE 周长的最小值.⑵如图2在矩形ABCD 中,AB =4,BC =6,G 为边AD 的中点,若E 、F 为边AB 上的两个动点,点E 在点F 左侧,且EF =1,当四边形CGEF 的周长最小时,请你在图2中确定点E 、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并求出四边形CGEF 周长的最小值.aBAl图1图2图1BGCB12 初二秋季·第1讲·提高班·教师版【解析】⑴ ①如图1所示:②8;⑵ 如图2,作G 关于AB 的对称点M ,在CD 上截取CH =1,然后连接HM 交AB 于E , 接着在EB 上截取EF =1,那么E 、F 两点即可满足使四边形CGEF 的周长最小. C CGEF GE EF FC GC MH CG EF =+++=++四边形 ∵AB =4,BC =6,G 为边AD 的中点, ∴DG =AG =AM =3,∴MH=2239310+=,CG=22345+= ∴C 6310CGEF =+四边形.探索10:如图,在一组平行线l 1、l 2两侧各有两点A 、B ,在l 1、l 2间找一条线段MN ,使MN ⊥l 1并且使得AM +MN +NB 之和最短.N'M'A'l 2BN MAl 1N MBA l 2l 1【备选6】如图,荆州古城河在CC ′处直角转弯,河宽均为5米,从A 处到达B 处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A 、B 在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD ′E ′EB 的路程最短,这个最短路程是多少米?CABD D'C'E E'FGE'E C'D'D BA C【解析】 作AF ⊥CD ,且AF =河宽,作BG ⊥CE ,且BG =河宽,连接GF ,与河岸相交于E ′、D ′.作DD ′、EE ′即为桥.13初二秋季·第1讲·提高班·教师版证明:由作图法可知,AF ∥DD ′,AF =DD ′, 则四边形AFD ′D 为平行四边形, 于是AD =FD ′, 同理,BE =GE ′,由两点之间线段最短可知,GF 最小; 即当桥建于如图所示位置时,ADD ′E ′EB 最短. 距离为()()2265-5+85-552110+⨯=米.【例5】 如图,30AOB =︒∠,点P 位于AOB ∠内,3OP =,点M 、N 分别是射线OA 、OB 上的动点,求PMN △的最小周长.NMPBAOP''P'OAB PMN【解析】 分别作点P 关于OA 、OB 的对称点P '、P '',连接OP '、OP ''、P P ''',显然PMN △的周长PM MN PN P M MN P N '''++=++,由两点间线段最短,P M MN P N P P ''''''++≥,故PMN △的最小周长等于P P '''的长, ∵30AOB =︒∠,∴'"60P OP ∠=︒,又∵3OP OP OP '''===, ∴P OP '''△是等边三角形,∴3P P '''=,即PMN △的最小周长为3.【例6】 如图1,OP 是MON ∠的角平分线,请利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考构造全等三角形的方法,解答下列问题:⑴ 如图2,在ABC △中,ACB ∠是直角,60B ∠=︒,AD CE 、分别是BAC BCA ∠∠、的角平分线,AD CE 、相交于点F .请你判断写出FE 与FD 之间的数量关系;⑵ 如图3,在ABC △中,如果ACB ∠不是直角,而⑴中的其他条件不变,请问,你在⑴中所得结论是否依然成立?若成立请证明;若不成立,请说明理由.(北京中考)典题精练图3图2图1P NMOABCDEFFEDC BA14 初二秋季·第1讲·提高班·教师版4321图4G FE D CBA图5HGABCD E F【解析】 图略.⑴ FE 与FD 之间的数量关系为FE FD = ⑵ ⑴中的结论FE FD =仍然成立.证法一:如图4,在AC 上截取AG AE =,连接FG . ∵12∠=∠,AF 为公共边,∴AEF AGF △≌△, ∴AFE AFG FE FG ∠=∠=,.∵60B ∠=︒,AD 、CE 分别是BAC BCA ∠∠、的平分线,∴2360∠+∠=︒,∴60AFE CFD AFG ∠=∠=∠=︒,∴60CFG ∠=︒. ∵34∠=∠,且FC 为公共边,可得CFG CFD △≌△, ∴FG FD =,∴FE FD =.证法二:若C A ∠>∠,如图5,过点F 分别作FG AB ⊥于点G ,FH BC ⊥于点H ∵60B ∠=︒,且AD CE 、分别是BAC BCA ∠∠、的平分线, ∴2360∠+∠=︒,FG FH =, ∴601GEF ∠=︒+∠.∵1HDF B ∠=∠+∠,∴GEF HDF ∠=∠,123 4∴EGF DHF.△≌△,∴FE FD初二秋季·第1讲·提高班·教师版1516 初二秋季·第1讲·提高班·教师版训练1. 如图,已知在ABC △中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA 543MABCE12【解析】延长BE 交AC 于M .∵AE BE ⊥,12∠=∠∴34∠=∠,AB AM =,BE EM = ∴AC AB AC AM MC -=-=,2BM BE = 又∵345C ∠=∠=∠+∠,353ABC C ∠=∠+∠=∠∴553C C ∠+∠+∠=∠ ∴5C ∠=∠ ∴MB MC = ∴2AC AB BE -=.训练2. 在ABC △中,MB 、NC 分别是三角形的内角ABC ∠、ACB ∠的角平分线,AM BM ⊥,AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =+-NMC B AFENMCB A【解析】延长AM 、BC 相交于点E ,延长AN 、CB 相交于点F ,易证Rt Rt AMB EMB △≌△,Rt Rt ANC FNC △≌△,∴AM EM =,AN FN =,AB EB =,AC FC =∴MN BC ∥,且()()1122MN FB BC CE AB AC BC =++=+-.训练3. 如图所示,AD 是内角平分线,求证:PC PB AC AB -<-图2CP D BA思维拓展训练(选讲)17初二秋季·第1讲·提高班·教师版【解析】 如图,在AC 上取一点E ,使AE AB =,连接PE ,∵AD 平分ABC ∠,∴CAP BAP ∠=∠.∵AE AB AP AP ==,,∴APE APB △≌△,∴PE PB = 在EPC △中,PC PE EC -<,即PC PB AC AE -<-, ∴PC PB AC AB -<-.训练4. 如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN -的取值范围.NMD CB A【解析】当DN MN =时,DN MN -有最小值为0,此时点N 位于DM 的垂直平分线与AC 的交点处.2DN MN DM -=≤,当点N 与点C 重合时,等号成立,此时有最大值2. ∴02DN MN -≤≤图6EP D CBA18 初二秋季·第1讲·提高班·教师版题型一 角平分线的常见辅助线模型(二) 巩固练习【练习1】 如图所示,在Rt ABC △中,90C ∠=°,BD 是ABC ∠的平分线,交AC 于D 点,若CD n =,AB m =,则ABD △的面积是 .(北京四中期中)【解析】 2mn(提示:过D 作AB 垂线)【练习2】 在ABC △中,AD 平分BAC ∠,CD AD ⊥,D 为垂足,G 为BC 的中点,求证:DGC B ∠=∠.A CDGBACD EGB【解析】延长CD 交AB 于E ,则得ADC ADE △≌△,所以D 为EC 中点,所以DG AB ∥,所以DGC B ∠=∠【练习3】 ⑴ 如图1所示,在ABC △中,AC AB >,M 为BC 的中点,AD 是BAC ∠的角平分线,若CF AD ⊥且交AD 的延长线于F ,求证:1()2MF AC AB =-.⑵ 如图2所示,将⑴中AD 改成BAC ∠的外角平分线,其它条件不变,则⑴中结论是否依然成立?成立请证明;若不成立,请说明理由.图1BM F D CA图2CBM FDA【解析】 ⑴ 如图3所示,延长AB 、CF 相交于点E ,在AFE △和AFC △中,EAF CAF ∠=∠,复习巩固CDBA19初二秋季·第1讲·提高班·教师版AF AF =,AFE AFC ∠=∠,故AFE AFC △≌△,从而AE AC =,EF FC =.而CM MB =,故MF 是CBE △的中位线, 从而()()111222MF BE AE AB AC AB ==-=-.⑵ 不成立.理由如下:如图4所示,延长CF 交BA 延长于E 点易证AEF ACF △≌△,∴EF CF =,即F 点为CE 中点 ∵M 是BC 中点,∴()()111222MF BE BA AE BA AC ==+=+.【练习4】 如图所示,在ABC △中,100A ∠=︒,40ABC ∠=︒,BD 是ABC ∠的平分线,延长BD至E ,使DE AD =.求证:BC AB CE =+EDCAF EDCA【解析】 在BC 上取一点F ,使得BF BA =易证得ABD FBD △≌△,∴DF AD =, 又∵DA DE =,∴DF DE =∵100A ∠=︒,40ABC ∠=︒,∴AB AC = ∵BD 平分ABC ∠,∴20ABD ∠=︒ ∴60ADB FDB ∠=∠=︒ ∵60CDE ADB ∠=∠=︒ ∴60FDC EDC ∠=∠=︒, ∴DCF DCE △≌△图3ACD EF M B 图4ADEFM BC20 初二秋季·第1讲·提高班·教师版∴FC EC =,∴BC BF FC AB CE =+=+题型二 将军饮马问题 巩固练习【练习5】 已知ABC △的顶点坐标分别为A (0,2),B (2-,0),C (1,0),O 是坐标原点.试在AB 和AC 边上分别找一点D 、E ,使DOE △的周长最短.画出点D 、E 两点的位置图形,简述作图方法.(清华附中期中考试试题)y C O x B AO 2O 1EDyC O xB A【解析】 作点O 关于线段AB 、AC 的对称点1O 、2O ,连接两点与AB 、AC 的交点为所求点D 、E .21初二秋季·第1讲·提高班·教师版ABOP QR P′P″A B O P Q R P′P″P O B A测试1. 如图AOB ∠内有点P ,试在角的两边上找两点Q 、R (均不同于O 点),使PQR △的周长最小,画出Q 、R 两点的位置图形,保留作图痕迹.【解析】测试2. 如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE AB E ⊥于,并且1()2AE AB AD =+,则ABC ADC ∠+∠等于多少?E DCBAF EDCBA【解析】作CF AD ⊥交AD 的延长线于点F ,可推出DF BE =,易证CEB CFD △≌△,∴ABC ADC ∠+∠180=︒测试3. 如图,已知在ABC △中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA 543MA B CE12【解析】延长BE 交AC 于M .∵AE BE ⊥,12∠=∠∴34∠=∠,AB AM =,BE EM = ∴AC AB AC AM MC -=-=,2BM BE = 又∵345C ∠=∠=∠+∠,353ABC C ∠=∠+∠=∠∴553C C ∠+∠+∠=∠ ∴5C ∠=∠ ∴MB MC = ∴2AC AB BE -=.课后测22 初二秋季·第1讲·提高班·教师版想像力比知识更重要,因为知识是有限的,而想像力概括着世界的一切,推动着进步,并且是知识进化的源泉。
学而思各年级数学大纲

学而思各年级数学大纲一年级课次主题1巧算加减法2图形的计数3我会排一排4单数与双数5智趣推理6生活中的数学7付钱的方法8有趣的数字谜9有趣的数阵图10摸彩球11钟表数学(2)12间隔之谜13趣题巧解14感受对称之美15期末测评二年级1巧算加减法2几何计数问题进阶3有趣的周期问题4和差问题5移多补少应用题6推理综合7重叠问题8巧求周长9数阵图10猜猜他几岁11逆向思考12等式加减法13数学广角14经典数学游戏15期末测评三年级课次主题1巧填算符2小数的认识3平行四边形与梯形4年龄问题5带余除法初步6简单统计7点线排布8等差数列初步9页码问题10标数法11图形计数12简易方程13简易方程的应用14路程速度与时间15期末测试主要内容1.利用凑整的方法进行连续几个加数相加的计算;2.对于加减混合的计算,利用带符号搬家进行凑整计算;学习掌握加减法巧算的两个核心基本点:凑整和“抱”符号搬家。
根据所学巧算的方法来进行图形的计数,灵活掌握有规律图形计数方法。
这节课重在向学生渗透简单的排列、组合的数学思想方法,初步培养学生有顺序、全面地思考问题的意识。
认识单数与双数及加减特性,会用单双数思想解决一些实际的生活问题。
通过创设情景,让学生经历对生活中某些现象推理、判断的过程,学会用排序、画表等多种方法进行推理判断。
分析常见的应用题,进一步学习“比多比少”的应用题及简单的重叠问题,灵活运用画图法分析、解应用题。
1.让学生会计算所付人民币的总钱数;2.会根据自己手中人民币的数量来付钱,学习列表法和枚举法。
通过对不同的符号、汉字或字母组成的竖式数字谜的接触,让学生根据竖式的结构特点,寻求突破口、找出“关键位置”来计算未知的数字。
1.通过一些简单的填数字游戏,让学生初步感知数阵,让学生用自己喜欢的方法来巧填数字,培养思维能力;2.引导学生去发现数阵的简单规律以及填数阵的基本方法,通过找数阵中的关键数来找到解决问题的钥匙,在今后的学习中,能把这种方法灵活应用到生活中去。
学而思讲义

计算常考题型与方法总结本讲学习任务:一、分数运算技巧二、叠分数运算三、放缩法求近似值板块一、分数运算⑴152531112 211113 3799111223⨯⨯⨯⨯⨯⨯⑵341344134441344444444134444444441 2389 275277527775277777777527777777775 +⨯+⨯++⨯+⨯(1)7121432381 379111223⨯⨯⨯⨯⨯=14(2) 例1计算:711471826213581333416⨯+⨯-÷例3(2008年“希望杯”五年级第2试) 计算:333111(128)(128)2008100425120081004251++÷++=201120112011200920092009()()2008100425120081004251++÷++=1112011()200810042511112009()20081004251⨯++⨯++=20112009例2计算:72772727327391()273273727727227-⨯=7271001273100191()27310017271001227⨯⨯-⨯⨯⨯ =72727391()273727227-⨯=2272727391()727273727273227-⨯⨯⨯=22(727273)91()727273227-⨯⨯=100045491727273227⨯⨯⨯=20002181例5计算:133.875380.090.1550.45418529112[(4.32 1.681)]116251173524⨯+⨯-÷+--⨯-÷+例4【阶段总结1】1.分数、小数四则混合运算: ①乘除法运算时:“带化假、除化乘,先约分、后运算”。
②注意运算顺序:括号>乘除>加减;把握好整体性。
2.平方差公式①计算22727273-时,由于两数和比较 “整”,平方差公式有奇效。
二年级学而思秋季数学超常班讲义

一笔画游戏第七讲下列图形能一笔画成吗?如果可以,在图形下面的方框里画上√,如果不可以,在图形下面的方框里画上╳.【例题分析】在这些图形中可以一笔画出的是:①、②、④;不可以一笔画出的是:③.一个图形是否能一笔画成跟这些点有什么关系?⑴从一点出发的线的条数是偶数(双数),这点称为偶点(双数点).⑵从一点出发的线的条数是奇数(单数),这点称为奇点(单数点).观察此题的每个图:①有2个奇点,能一笔画成;②有0个奇点,能一笔画成;③有4个奇点,不能一笔画成;④有2个奇点,能一笔画成.最后总结出:有0个或2个奇点的连通图能够一笔画成,否则不能一笔画成.下列图形能一笔画成吗?为什么?如果可以,在图形下面的方框里画上√,如果不可以,在图形下面的方框里画上╳.【例题分析】①、②、③可以,④不可以.①有2个奇点,②有0个奇点,③有2个奇点,所以①、②、③可以一笔画.④有4个奇点,所以④不能一笔画.下列图形能一笔画成吗?如果可以,在图形下面的方框里画上√,如果不可以,在图形下面的方框里画上╳.【例题分析】①③⑤可以;②④不可以.①有0个奇点;③有2个奇点;⑤有0个奇点;所以①③⑤可以一笔画.②有4个奇点;④有6个奇点;所以②④不能一笔画.【例题分析】⑴ 图①中有4个点是奇点,所以不能一笔画成,要想使这个图形能一笔画成,可以添加一条线段,使这个图形的奇点变成2个.如下图(答案不唯一):⑵图②因为有4个点是奇点,所以不能一笔画成,要想使这个图形能一笔画成,可以添加一条线段,使这个图形的奇点变成2个.如下图(答案不唯一):⑶图③中有4个点是奇点,所以不能一笔画成,要想使这个图形一笔画成,可以添加一条线段,使这个图形的奇点变成2个.如下图:下面的图形都不能一笔画成,请你分别在各图中添上一条线段,使它能一笔画成.【例题分析】上图一共有6个奇点,只添一条线段无法变成2个奇点,至少需要添上2条线段.如下图(答案不唯一):下面的图形都不能一笔画成,请你在各个图中分别去掉一条线,使它能一笔画成,在去掉的线上打╳.下面的图形不能一笔画成,至少添上几条线段才能使它一笔画成?试着添一添.【例题分析】⑴图①中有4个点是奇点,所以不能一笔画成,要想使这个图形能一笔画成,就要使这个图形的奇点变成2个.如下图(答案不唯一):⑵图②和图①相似,因为有4个点是奇点,所以不能一笔画成,要想使这个图形能一笔画成,就要使这个图形的奇点变成2个.如下图(答案不唯一):⑶图③中有4个点是奇点,所以不能一笔画成,要想使这个图形一笔画成,就要使这个图形的奇点变成2个.如下图(答案不唯一):下面的图形不能一笔画成,请你去掉一条线,使它能一笔画成,在去掉的线上打╳.【例题分析】图中有4个点是奇点,所以不能一笔画成,要想使这个图形能一笔画成,就要使这个图形的奇点变成2个.如下图(答案不唯一):( )→( )→( )→( )→( )→( )→( )→( )→( )→( )→( )→( )→( )→( )【例题分析】出入口应设在A 、C 两个奇点处.A →B →C →I →A →H →G →I →E →G →F →E →D →C (路线不唯一). 本题实际上是这个图以哪两点为起点和终点一笔画出的问题,观察上图可以发现仅有两个奇点: A 点与C 点.因此,出入口应设在A 、C 两个奇点处.下图是一个小区街道的平面图.要不重复地走遍每条街道,出入口应设在哪里?请你再设计一条不重复走遍每条街道的行走路线,用字母和箭头表示出来.下图是乡间的小河,上面建有九座桥,你能从其中一个村子出发一次不重复地走遍所有的桥吗? (每座桥最多只准走一次,陆地上可以重复地走)【例题分析】可以,丁→丙→丁→甲→丁→乙→丙→乙→甲→乙.(路线不唯一)首先将实物图转化成点线图,所有的村庄都转化成点,所有的桥都转化成线(如下图),图中有2个奇点,所以可以一笔画,也就存在一条路线,能够不重复地走遍所有的桥.我国著名数学家陈景润所著《数学趣谈》一书中,有这样一道题:在法国的首都巴黎有一条河,河中有两个小岛,那里的人们建了15座桥把两个小岛和河岸连接起来,如下图所示.那么,从任一岸出发,不重复地走遍所有的桥到达另一岸,能做到吗?【例题分析】能.将实物图转化成点线图,如下图,图中有2个奇点,可以一笔画,也就是说可以从任一岸出发,不重复地走遍所有的桥到达另一岸.如图是一个超市的平面图,超市共有A、B、C、D、E、F六个门,简乐想一次走遍所有通道而又不走重复路线,请你帮他设计一种进出方法.【例题分析】把每一条通道看作是边,通道的交点看作是点(每个门处即为一个点),可得下图,这样问题就转化为能否从某点出发将图一笔画的问题.观察可知,如上右图中只有两个奇点(点C和点D),根据一笔画原理可得:将点C和点D分别作为起点和终点,可将右图一笔画出.即简乐从C门(或D门)进超市,一次走遍所有通道后从D门(或C门)出超市,其行进路线为:C→D→E→O→C→B→E→F→A→B→O→D(路线不唯一).下图是某展览厅的平面图,它由五个展室组成,任意两个展室之间都有门相通,整个展览厅还有一个入口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【例题分析】把每个展室看作一个点,整个展厅的外部也看作一个点,两室之间有门相通,可以看作两点之间有线相连.这样,展厅的平面图就转化成图②,一个实际问题也就转化为这个图能否一笔画成的问题了,即能否从A出发,一笔画完此图,最后再回到A.图②中,所有的点都是偶点,因此,一定可以以A作为起点和终点而一笔画完此图.即游人可以从入口进,一次不重复地穿过所有的门,最后从出口出来.下面仅给出一种参观路线:A→E→B→C→E→F→C→D→F→A.。
数学二年级学而思勤思版

数学二年级学而思勤思版1.引言1.1 介绍数学二年级学而思勤思版的重要性和普遍性数学二年级学而思勤思版不仅仅是为了帮助学生在考试中取得好成绩,更是为了培养他们解决实际问题的能力。
在现实生活中,数学无处不在,我们处处可以看到数学的影子,而数学二年级学而思勤思版的学习,就是为了让学生能更好地应用数学知识解决实际问题。
数学二年级学而思勤思版的重要性和普遍性不言而喻。
通过数学学习,学生可以培养自己的逻辑思维能力和分析问题的能力,这对于他们的未来发展具有非常重要的意义。
数学学习不仅是一种学习,更是一种能力的培养。
在这样一个信息爆炸的社会中,数学思维的重要性就显得尤为突出。
数学二年级学而思勤思版的重要性和普遍性不容忽视。
1.2 强调数学学习的重要性和必要性数学学习的重要性和必要性在孩子的成长中是至关重要的。
数学是一门基础学科,它不仅仅是学校课程的一部分,更是培养孩子逻辑思维和分析问题能力的重要途径。
通过数学学习,孩子们可以提高自己的计算能力和解决问题的能力。
数学学习还可以培养孩子们的耐心和毅力,因为数学学习需要不断的练习和思考。
数学学习也能够在孩子们的生活中起到重要的作用。
在购物时计算价格和找零,制定时间表和计划,解决日常生活中遇到的问题等等都需要数学知识。
我们强调孩子们要重视数学学习,因为它不仅仅是学校课程中的一门学科,更是孩子们日常生活中必不可少的技能。
在当代社会,数学已经成为了必备的工具。
强调数学学习的重要性和必要性,目的在于引导孩子们重视数学学习,注重培养数学思维和分析问题的能力,为他们未来的发展奠定坚实的基础。
为了更好地培养孩子们的数学能力,我们需要重视并加强数学教育的重要性。
1.3 提出文章的目的和结构本文旨在介绍数学二年级学而思勤思版的重要性和普遍性,强调数学学习的重要性和必要性,并提出文章的目的和结构。
通过对数学基础知识的学习、数学运算的练习与提高、数学解决问题的方法与技巧、数学思维的培养与锻炼进行阐述,帮助读者全面了解数学学习的重要性和方法。
学而思初二数学寒假班第1讲.一元二次方程认识初步.尖子班.教师版

围图形漫画释义满分晋级阶梯1一元二次方程的基本解法方程10级 判别式与求根公式方程9级一元二次方程的基本解法 方程8级分式方程题型切片(四个) 对应题目题型目标一元二次方程的概念例1;例2;演练1;例8 直接开平方法解一元二次方程 例3;例4;演练2; 配方解一元二次方程 例5;例6;演练3;演练4; 因式分解法解一元二次方程例7;演练5.本讲内容的思路非常简单,主要学习一元二次方程的概念及三种解法,公式法则放到了下一讲,因为学完公式法就可以和判别式联系在一起学习。
这一讲共分为四个模块,模块一主要讲解一元二次方程的基本概念,首先要先会判断一个方程是不是一元二次方程以及一元二次方程的项数组成,所以例1给出了这样的练习,这里面有一些易错点,希望老师给同学们强调到位。
接下来例2是针对一元二次方程的概念经常遇到的几种出题的形式,继续加强概念的理解。
编写思路知识互联网题型切片下面三个模块就是针对一元二次方程的不同解法进行练习,这些例题中都有不同的题型, 希望通过这部分的练习让同学们见到不同形式的方程,才能达到练一抵百的效果。
定 义示例剖析一元二次方程定义:只含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程.判断一个方程是否是一元二次方程,必须符合以下四个标准: ⑴整式方程.⑵方程中只含有一个未知数.⑶化简后方程中未知数的最高次数是2.⑷二次项的系数不为0 22210x x -+=此方程满足: 整式方程;只含有一个未知数x ;x 的最高次数是2,系数是2所以这个方程是一个一元二次方程.一元二次方程的一般式:20ax bx c ++=()0a ≠. 其中2ax 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项. 一元二次方程22210x x -+=, 其中221a b c ==-=,,. 一元二次方程的根:如果0x 满足2000(0)ax bx c a ++=≠,则0x 就是方程20(0)ax bx c a ++=≠的一个根.1满足2110-=,则1是方程20x x -=的一个根.0满足2000-=,则0是方程20x x -=的另一个根.∴0,1是方程20x x -=的两个根,表示为12=0, =1x x一元二次方程都可化成如下形式: 20ax bx c ++=(0a ≠). 1.“可化成”是指对整式方程进行去分母,去括号,移项、合并同类项等变形.2.一般形式中,b 、c 可以是任意实数,而二次项系数0a ≠,若0a =,方程就不是一元知识导航模块一 一元二次方程的概念二次方程了,也未必是一次方程,要对b 进行讨论.3.要确认一元二次方程的各项系数必须先将此方程化为一般形式,然后确定a 、b 、c 的值,不要漏掉符号..... 4.项及项的系数要区分开.建议 强调掌握一元二次方程一般形式对学习一元二次方程很重要,这种从形式上认识数学概念的方法,在今后学习基本初等函数时也要使用.【例1】 1. 判断下列方程是不是一元二次方程.⑴ 2210x kx --=(k 为常数) ⑵413x =+ ⑶ 210x -=; ⑷ 250x = ⑸ 20x y += ⑹ ()()2233x x +=-;⑺ 2320mx x -+=(m 为常数) ⑻ ()()2212150a x a x a ++-+-=(a 为常数).【解析】 ⑴⑶⑷⑻.易错点:二次项前面的系数不为0,和一次项前面系数及常数项无关;⑵是分式方程;⑸是二元方程;⑹整理后是一元一次方程;⑺当0m =时,是一元一次方程;⑻因为210a +≠永远成立,所以无论 a 为何值,方程⑻都是一元二次方程.⑴,⑶,⑷,⑻是一元二次方程.判断一个方程是什么方程,必须化简成最简形式再判断.2. 将下列一元二次方程化成一般形式,并写出其中的二次项系数、一次项系数和常数项.⑴ 2216x x -=; ⑵ ()()3213x x x -+=-; ⑶ ()()()3253115x x x x ++--=; ⑷ 23323x x x ++=-.【解析】 ⑴ 22610x x --=;261--,,;⑵ 2310x +=;301,,;⑶ 2120x x -=;1120-,,⑷ ()2231330x x +++-=;123133+-,,【例2】 ⑴关于x 的方程()()2293510m x m x m -+++-=,当m ________时,方程为一元二次方程;当m =_________时,方程为一元一次方程;⑵已知m 是方程210x x --=的一个根,求代数式2552008m m -+的值;⑶已知a 是2200910x x -+=的根,求22120082009a a a +--的值.能力提升夯实基础【解析】 ⑴3m ≠±;3;易错点:容易忽略当其是一次方程时一次项系数不为零 ⑵∵m 是方程210x x --=的一个根,∴210m m --=()225520085120132013m m m m -+=--+=.⑶1-.结合一元二次方程根的定义,采用整体思想求解a 是2-2009+1=0x x 的根,∴2-2009+1=0a a ,∴22+1-2008-2009a a a 22009-2009+2009aa a a =-1=-定 义示例剖析直接开平方法:对于形如2x m =或()2ax b m+=()00a m ≠≥,的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解.()211x +=11x +=或11x +=-1202x x ==-,【例3】 用直接开平方法解关于x 的方程:⑴ ()()323212x x +-=; ⑵()22463x -=;⑶ ()2x m n -=; ⑷ ()2214x b c -=+【解析】 ⑴ 124433x x ==-,;⑵ 1217x x ==,;夯实基础知识导航模块二 直接开平方法解一元二次方程⑶ 当0n ≥时,12x m n x m n =+=-,;当0n <时,无实数根. ⑷ 当40b c +≥时,214x b c -=±+,∴1142b c x ++=,2142b cx -+=;当40b c +<时,无实数根.注意:1.方程的两边应同时开方2.开方后,方程的一边应有正负号,即有相等和互为相反数两种情况。
二年级秋季第1讲+第2讲

第一讲我会数图形
一、规则图形{一串一串(长方形)、从一点发散出去(三角形)}:
1、先数基本图形的个数,n个;
2、再用公式:n+(n-1)+......+2+1(从大往小加,一直加到1)。
二、不规则图形:
1、分层;
2、分类:
(1)按个数来分;
(2)按方向来分(左→右,上→下);
(3)按大小来分(由1个小图形组成的,由2个小图形组成的.....)。
第二讲一笔画问题
一、一笔画基本概念:
1、一笔画要求:
(1)笔不离纸
(2)线不重复
2、奇点:该点出发的线是奇数(单数)条。
3、偶点:该点出发的线是偶数(双数)条。
二、判断一笔画:
1、连通图;
2、奇点个数:
(1)0个,同进同出;
(2)2个,一进一出;
(3)>2个,不能一笔画。
三、多笔画转化为一笔画:
添、去线一定要在两个奇点之间
例如:4个奇点,要变成能一笔画的图,要变成2或0个奇点
一条线改变2个点,所以4——>2(添、去(4-2)/2=1条线)
4——>0(添、去4/2=2条线)
四、解题步骤:
第一步:复杂图变点线图(点----不同的地点(一定要有线才能到的地才是不同的地点),线----连接两个不同地点的路(多是桥或门))
第二步:判断是否连通(若连通,才进行以下步骤);
第三步:标号、数奇点、判断能否一笔画;
第四步:不能一笔画的题目变成能一笔画,要添、去几条线(记住一条线能改变两个点)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二年级超常班第一讲
要想数得快,规律用起来【例1】数一数,下图中共有多少条线段?
【分析】数一数一共有6个端点,那么基本线段就有(条),这个图中一共就有
条线段.
【例2】数一数,图①中共有多少个锐角?图②中共有多少个
三角形?
【分析】
【例3】数一数,下图中共有多少个长方形?
【分析】
上面第一层以AB为宽的有6个长方形,下面第二层以BC为宽的也就有6个长方形.另外把第一层和第二层合在一起以AC为宽的长方形还有6个,一层有6个,共3层,这样一共就有
个长方形.
【例4】数一数,下图中共有多少个三角形?
【分析】
方法一:可以分类来数.具体分析如下:
(1)左边:左边三角形ABD中有
个三角形;
(2)右边:右边三角形ADC中有
个三角形;
(3)左边+右边:左右合起来三角形ABC中有3个三角形;
一共有:个三角形. 方法二:可根据三角形包含基本图形的个数来分类数.具体分析如下:
只含1个基本图形的三角形有6个;
只含2个基本图形的三角形有5个;
只含3个基本图形的三角形有2个;
只含4个基本图形的三角形有1个;
只含5个基本图形的三角形有0个;
个;
一共有:个三角形.
【例5】数一数,下图中共有多少个三角形?
【分析】根据三角形包含基本图形的个数分类数.先按顺时针的方向给基本图形标上序号,如图:
个,分别是:①、②、③、④、⑤、⑥;
只含2个基本图形的三角形有3个,分别是:②③、④⑤、⑥①;只含3个基本图形的三角形有6个,分别是:①②③、②③④、③④⑤、④⑤⑥、⑤⑥①、⑥①②;只含4个或5个基本图形的三角形有0个;只含6个基本图形的三角形有1个,是:①②③④⑤⑥.图中共有三角形:
(个).
【超常挑战】1.数一数,下图中
共有多少个正方形?
2.数一数,下图中共有多少个正方形?
3.数一数,下图中共有多少个长方形?
4.数一数,下图中共有多少个三角形?
【分析】
1.把这个图形分成正和斜两部
分来数,先看包含了
个正方形,再看共包含了
个正方形,这样这个图形一共包含了个正方形.2.可以先通过大小分类数出
正方形中的正方形数量,有
(个),图形
两边各有 1 个的正方形,一
共有 60 个正方形;再数出添上
中间的正方形后,增加的正方形数量,有个;所以图形中一共有正方形个.
3.此题可先数出的长方形个数,有(层),每一层有(个),共有
(个).
再数出添上竖线后增加的长方形个数,有5个.
所以一共有(个). 4.先数出三角形ABD、ABE、ABC
中的三角形个数,共有
(个); 剩下的三角形都在三角形BCD中,有(个);
所以一共有三角形(个).。