数值计算方法—拉格朗日插值

合集下载

计算方法论文浅谈拉格朗日插值法

计算方法论文浅谈拉格朗日插值法

计算方法论文浅谈拉格朗日插值法拉格朗日插值法是一种常用的数值计算方法,用于构造一个多项式来逼近一些已知的离散数据点。

它被广泛应用于插值问题,如图像处理、物理实验数据处理、曲线拟合以及信号处理等领域。

本文将从原理、计算步骤以及优缺点三个方面,对拉格朗日插值法进行探讨。

拉格朗日插值法的基本原理是利用多项式的线性组合来逼近函数。

假设已知n+1个数据点:(x0, y0), (x1, y1), ... , (xn, yn),其中x0, x1, ... , xn是互不相同的。

我们的目标是通过已知的数据点构造一个多项式P(x),使得在这n+1个数据点上有P(xi) = yi。

根据插值定理,只要这些数据点满足一定的条件,存在唯一的插值多项式。

下面我们来具体讨论拉格朗日插值法的计算步骤。

首先,我们需要构造一个基于已知数据点的拉格朗日基函数。

对于每个数据点(xi, yi),我们定义一个拉格朗日基函数Li(x),它满足在xi处取值为1,而在其他数据点xj上取值为0。

拉格朗日基函数的定义如下:Li(x) = Π(j=0, j≠i, n)(x - xj) / Π(j=0, j≠i, n)(xi - xj)其中,Π表示一系列数的乘积符号。

接下来,我们需要将基函数与其对应的函数值进行线性组合,得到插值多项式P(x)。

插值多项式的表达式如下:P(x) = Σ(i=0, n)Li(x) * yi最后,我们可以利用插值多项式来计算任意点的函数值。

拉格朗日插值法的优点在于相对简单和容易理解,它能够精确地通过已知的n+1个数据点来构造一个次数不超过n的多项式,实现对函数的逼近。

然而,拉格朗日插值法也存在一些缺点。

首先,拉格朗日插值法对于数据点的选择非常敏感,如果数据点的密度不均匀或者存在较大误差,那么插值结果可能会出现较大的误差。

此外,拉格朗日插值法在计算多项式系数时需要进行大量的乘法和除法运算,这在数据规模较大时可能会导致计算效率降低。

数值计算方法插值法讲解

数值计算方法插值法讲解

又因为lk1(xk1) 1,故a(xk1 xk )(xk1 xk1) 1,得:
a

(xk 1

xk
1 )( xk 1

xk1) ,从而lk1(x)

(x (xk 1

xk xk
)(x xk1) , )(xk1 xk1)
lk
(x)

(x ( xk

问题的提出
插值问题的数学提法:已知函数y f (x)在n 1个 点x0 , x1, , xn上的函数值yi f (xi ), (i 0,1, , n), 求一 个多项式y P(x),使其满足P(xi ) yi , (i 0,1, , n). 即要求该多项式的函数曲线要经过y f (x)上已知的
平面上两点 xk , yk , xk1, yk1 ,求一条直线过该已
知两点。
线性插值
插值函数和插值基函数
由直线的点斜式公式可知:
P1(x)

yk

yk 1 xk 1

yk xk
(x
xk ),把此式按照
yk和yk1写成两项:P 1(x)
x xk1 xk xk 1
由于li (xk ) 0,k i,故li (x)有因子:
(x x0 ) (x xi1)(x xi1) (x xn ),因其已经是n 次多项式,故而仅相差一个常数因子。令:
li (x) a(x x0 ) (x xi1)(x xi1) (x xn )
插值法的概念
已知函数在n+1个点x0 ,x1 ,…,xn 上的函数值 yi=f(xi ), (i=0,1,…,n) ,求一个简单函数y=P(x),使其满 足: P(xi )=yi ,(i=0,1,…,n) 。即要求该简单函数的 曲线要经过y=f(x)上已知的这个n+1个 点: (x0 ,y0 ),(x1 ,y1 ),…,(xn ,yn ),同时在其它 x∈[a,b]上要估计误差: R(x) = f(x) - P(x)

计算方法拉格朗日插值

计算方法拉格朗日插值

计算方法拉格朗日插值拉格朗日插值是一种用于在给定数据点间进行插值的方法,它基于拉格朗日多项式的性质来进行计算。

拉格朗日插值可以用于任何数量的数据点,无论是线性插值还是高阶插值。

拉格朗日插值的基本思想是,使用多个插值点的拉格朗日多项式来逼近给定数据点。

具体而言,对于给定的插值点(x0, y0),(x1, y1),...,(xn, yn),我们需要找到一个多项式P(x)来满足以下条件:P(xi) = yi,其中 i = 0, 1, ..., n。

假设我们要计算的插值点为x,那么根据拉格朗日插值的公式,多项式P(x)可以写为:P(x) = Σyi * Li(x),其中 i = 0, 1, ..., n。

在上述公式中,Li(x)是拉格朗日基函数,可以用以下公式表示:Li(x) = Π(x - xj) / Π(xi - xj),其中j ≠ i,i, j = 0,1, ..., n。

现在我们可以根据上述公式进行计算,以下是拉格朗日插值的详细步骤:1. 输入数据点的坐标 (x0, y0),(x1, y1),...,(xn, yn) 和待插值点的坐标 x。

2. 对于每个插值点(xi, yi),计算拉格朗日基函数Li(x)。

3. 对于每个插值点(xi, yi),计算插值多项式中对应的项 yi *Li(x)。

4.将所有项相加,得到插值多项式P(x)。

5.根据插值多项式P(x),计算插值点x的函数值,即P(x)=y。

拉格朗日插值的优点是简单易懂,计算过程相对简单,但它也存在一些缺点。

拉格朗日插值的计算复杂度为O(n^2),这意味着当数据点的数量较多时,计算会变得非常耗时。

此外,拉格朗日插值在边界点附近的插值结果可能会出现较大的误差。

为了减小计算量和提高插值的准确性,还有其他更高效的插值方法,如牛顿插值和样条插值。

这些方法在实际应用中经常被使用,具有更好的性能和更准确的插值结果。

数值计算方法插值法资料

数值计算方法插值法资料

一次插值
当n 1时,求一次多项式P1(x),要求通过 x0, y0 , x1, y1
两点
y
y0 x0
y1 x1
P1(x) f(x)
二次插值
当n 2时,求二次多项式P2 (x),要求通过 x0, y0 , x1, y1 , x2, y2 三点
y
f(x)
y0 x0
y1 x1
y2 x2
P1(x)
知两点。
线性插值
插值函数和插值基函数
由直线的点斜式公式可知:
P1(x)
yk
yk 1 xk 1
yk xk
(x
xk ),把此式按照
yk和yk1写成两项:P1(x)
x xk1 xk xk 1
yk
x xk xk 1 xk
yk

1
记l k (x)
x xk1 xk xk 1
, lk1(x)
l
0 ( x)
x 20 10 20
1 10
(x
20),l1 ( x)
x 10 20 10
1 10
(x
10)
例子
于是,拉格朗日型一次插值多项式为:
P1 ( x)
y0l0 (x)
y1l1 ( x)
1 10
(x
20)
1.3010 10
(x
10)
故P1
(12)
1 10
(12
20)
1.3010 10
(12
决定
1
例子
例1:已知lg10 1 , lg 20 1.3010,利用插值一次 多项式求 lg12的近似值。 解:f (x) lg x,f (x) lg x,f (10) 1,f (20) 1.3010 设x0 10,x1 20,y0 1,y1 1.3010, 则插值基本多项式为:

数值计算方法倪勤习题答案

数值计算方法倪勤习题答案

数值计算方法倪勤习题答案数值计算方法倪勤习题答案数值计算方法是一门研究如何利用计算机进行数值计算的学科。

它在科学计算、工程计算、金融计算等领域中有着广泛的应用。

倪勤的《数值计算方法》是该领域的经典教材之一,其中的习题是帮助学生巩固所学知识的重要资源。

下面是一些数值计算方法倪勤习题的答案,供大家参考。

一、插值与拟合1. 设有下列数据点:(0, 0),(1, 1),(2, 4),(3, 9)。

试用拉格朗日插值多项式求x=2.5处的函数值。

解答:拉格朗日插值多项式的表达式为:P(x) = ∑[f(xi) * l(x)] / ∑[l(xi)]其中,l(x) = ∏[(x - xj) / (xi - xj)],i ≠ j根据给定的数据点,可以得到:l0(x) = (x - 1)(x - 2)(x - 3) / (0 - 1)(0 - 2)(0 - 3) = -x(x - 1)(x - 2) / 6l1(x) = (x - 0)(x - 2)(x - 3) / (1 - 0)(1 - 2)(1 - 3) = x(x - 2)(x - 3) / 2l2(x) = (x - 0)(x - 1)(x - 3) / (2 - 0)(2 - 1)(2 - 3) = -x(x - 1)(x - 3) / 2l3(x) = (x - 0)(x - 1)(x - 2) / (3 - 0)(3 - 1)(3 - 2) = x(x - 1)(x - 2) / 6代入公式,得到:P(x) = 0 * l0(x) + 1 * l1(x) + 4 * l2(x) + 9 * l3(x)= -x(x - 1)(x - 2) / 6 + 4x(x - 1)(x - 3) / 2 + 9x(x - 1)(x - 2) / 6= -x(x - 1)(x - 2) / 6 + 2x(x - 1)(x - 3) + 3x(x - 1)(x - 2) / 2= x^3 - 3x^2 + 3x将x=2.5代入上式,得到:P(2.5) = 2.5^3 - 3 * 2.5^2 + 3 * 2.5 = 2.375因此,当x=2.5时,函数值为2.375。

拉格朗日多项式插值法

拉格朗日多项式插值法

拉格朗日多项式插值法
拉格朗日多项式插值法是一种通过已知数据点来构造一个多项式函数的方法。

它可以用于估计在数据点之间的数值,以及在数据范围之外的点的数值。

拉格朗日插值法的基本思想是构造一个多项式函数,它在所有已知数据点上都完全符合给定数据,并利用这个函数来估计其他数据点的值。

这个多项式函数可以用拉格朗日插值公式来表示,它是一个关于数据点和未知数据点的函数。

拉格朗日插值法在数值分析和数学建模中都有很广泛的应用。

- 1 -。

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析数值计算是一门应用数学学科,广泛应用于科学与工程领域。

在实际问题中,我们常常需要通过已知的离散数据点来估计未知的数值。

插值方法就是为了解决这个问题而设计的。

插值方法是一种基于已知数据点,推断出未知数据点的数值计算方法。

常见的插值方法有拉格朗日插值、牛顿插值等。

下面我们将重点介绍这两种方法。

1. 拉格朗日插值法拉格朗日插值法是插值方法中最常见的一种。

它是基于拉格朗日多项式的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

拉格朗日插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)根据已知数据点构造Lagrange插值多项式:L(x) = Σ(yi * Li(x)), i = 0, 1, ..., n其中,Li(x) = Π((x-xj)/(xi-xj)), j ≠ i(2)计算未知点x对应的函数值y:y = L(x)拉格朗日插值法的优点是简单易懂,计算方便。

然而,它也存在着一些问题,比如插值多项式的次数较高时,多项式在插值区间外的振荡现象明显,容易引起插值误差。

2. 牛顿插值法牛顿插值法是另一种常见的插值方法。

它是基于差商的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

牛顿插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)计算差商:f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ..., xi+k-1]) / (xi+k - xi)(2)根据已知数据点构造Newton插值多项式:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * Π(x - xj)), i = 0, 1, ..., n-1(3)计算未知点x对应的函数值y:y = N(x)牛顿插值法的优点是适用范围广,可以方便地添加新的数据点进行插值。

拉格朗日(Lagrange)插值

拉格朗日(Lagrange)插值
x) 每个 li 有 n 个根 x0 … xi … xn, 是n次多项式。
li ( x) = Ci ( x x0 )...(x xi )...(x xn ) = Ci ( x x j ) ji j =0 1 li ( xi ) = 1 Ci = j i ( xi xj )
l ( x) y
i =0 i
1
i
l0(x)
l1(x)
称为拉格朗日插值基函数 , 满足条件 li(xj)=ij /* Kronecker Delta */
n1
希望找到li(x),i = 0, …, n 使得 li(xj)=ij ;然后令
Pn ( x ) =
l (x) y
i=0 i
n
i
,则显然有Pn(xi) = yi 。
§4.2 拉格朗日(Lagrange)插值
n 求 n 次多项式 Pn ( x) = a0 a1 x an x 使得
Pn ( x i ) = y i ,
i = 0 , ... , n
条件:无重合节点,即 i j
xi x j
一. 插值多项式的存在唯一性 定理4.2.1 : 在 n 1 个互异节点 xk 处满足插值条件 Pn ( xk ) = yk
n
f
( n 1)
( n 1 ) ( x0 ) = = ( xn ) = 0( n 1 ) ( x ) Ln ( x ) K ( x )( n 1) ! = Rn ( x ) K ( x ) ( n 1) ! ( n) 存在 (a, b) 使得 ( ) = 0 ( n 1 ) n ( n 1 ) f ( ) x f ( x) Rn ( x ) = ( x xi ) = K ( x) (n 1) ! i =0 ( n 1) !
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值计算方法作业
专业:测控1002
学号:10540226
姓名:崔海雪
拉格朗日插值的算法及应用
【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。

运用了拉格朗日插值的公式,以及它在MATLAB 中的算法程序,并用具体例子说明。

拉格朗日插值在很多方面都可以运用,具有很高的应用价值。

【关键词】 拉格朗日;插值;公式;Matlab 算法程序;
一、绪论
约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。

他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。

拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。

数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。

然而Lagrange 插值有很多种,1阶,2阶,…n 阶。

我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。

下面我具体介绍分析一下拉格朗日插值的算法设计及应用。

二、正文
1、基本概念
已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,⋅⋅⋅,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,⋅⋅⋅,n, (1)
则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点-x 求f(-x )数值解,我们称-
x 为一个插值节点,f(-x )≈p(-x )称为-x 点的插值,当-x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n 次多项式时称为n 阶Lagrange 插值。

2、Lagrange 插值公式
(1)线性插值)1(1L
设已知0x ,1x 及0y =f(0x ) ,1y =f(1x ),)(1x L 为不超过一次多项式且满足
)(01x L =0y ,)(11x L =1y ,几何上,)(1x L 为过(0x ,0y )
,(1x ,1y )的直线,从而得到 )(1x L =0y +0101x x y y --(x-0x ). (2)
为了推广到高阶问题,我们将式(2)变成对称式
)(1x L =0l (x )0y +1l (x)1y .
其中,
0l (x )=101x x x x --,1l (x)=0
10x x x x --。

均为1次多项式且满足 l (x )=1且1l (x)=0。

或0l (x )=0且1l (x)=1。

两关系式可统一写成)(i i x l =⎩⎨⎧≠=j
i j i 01 。

(3) (2)n 阶Lagrange 插值)(x L n
设已知0x ,1x ,2x ,...,n x 及i y =f(i x )(i=0,1,.....,n),)(x L n 为不超过n 次多项式且满足i i n y x L =)((i=0,1,...n ).
易知)(x L n =0l (x )0y +....+)(x l n n y .
其中,)(x l i 均为n 次多项式且满足式(3)(i,j=0,1,...,n ),再由j x (j ≠i )为n 次多项式)(x l i 的n 个根知)(x l i =c ∏≠=-n
i i j j x x 0.最后,由
⇒=-=∏≠=1)()(0n i j j j i j i x x c x l c=
∏≠=-n i j j j
i x x 0)(1,i=0,1,...,n.
总之,)(x L n =i n i i y x l ∑=0)(,)(x l i =.0∏≠=--n i
j j j i j x x x x 式为n 阶Lagrange 插值公式,其中,)(x l i (i=0,1,...n )称为n 阶Lagrange 插值的基函数。

3,Lagrange 插值余项
设0x ,1x ,2x ,...,n x ∈[a,b],f(x)在[a,b]上有连续的n+1阶导数,)(x L n 为f(x)关于节点0x ,1x ,2x ,...,n x 的n 阶Lagrange 插值多项式,则对任意x ∈[a,b],
).()!
1()()()()()1(x n f x L x f x R n n n ωξ+=-=+其中,ξ位于0x ,1x ,2x ,...,n x 及x 之间(依赖于x ),ω(x)=∏=-n
j j x x 0).(
4.Matlab程序及计算结果
clc
clear
x=[0.1 0.2 0.3 0.4 0.5];
y=[1.1052 1.2214 1.3499 1.4918 1.6487]; x0=0.285
m=length(x);
n=length(y);
if m~=n
error('x y矩阵不统一');
end
b=0;
for k=1:5
a=1;
for i=1:5
if i~=k;
a=a*(x0-x(i))/(x(k)-x(i));
end
end
b=y(k)*a+b;
end
L5=b
b=0;
for k=2:3
a=1;
for i=2:3
if i~=k;
a=a*(x0-x(i))/(x(k)-x(i));
end
end
b=y(k)*a+b;
end
L1=b
b=0;
for k=2:4
a=1;
for i=2:4
if i~=k;
a=a*(x0-x(i))/(x(k)-x(i));
end
end
b=y(k)*a+b;
end
L2=b
运行结果:L5 =1.3298
L1 =1.3306
L2 =1.3298
5.Lagrange插值应用
在物理化学,资产价值鉴定工作和计算某一时刻的卫星坐标和钟差等这些方面可以应用Lagrange插值。

采用拉格朗日插值法计算设备等功能重置成本,计算精度较高,方法快捷。

但是这方法只能针对可比性较强的标准设备,方法本身也只考虑了单一功能参数,它的应用范围因此受到了一定的限制。

作为一种探索,我们可以将此算法以及其它算法集成与计算机评估分析系统中,作为传统评估分析方法的辅助参考工具,以提高资产价值鉴定工作的科学性和准确性。

三,结论
拉格朗日插值模型简单,结构紧凑,是经典的插值法。

但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。

且当增大插值阶数时容易出现龙格现象。

参考文献
参考文献
[1] 关治. 陈敬良. 数值计算方法. 北京: 清华大学出版社,1995.
[2]李有法//李晓勤. 数值计算方法(高等学校教材). 高等教育出版社。

相关文档
最新文档