第七节正定二次型
第七节 正定二次型和正定矩阵

这是因为 C 是可逆矩阵,只要Y 0 ,就有X 0 ,
于是 XT AX 0 ,即Y T (CT AC)Y 0 。
由变换的可逆性,若Y T (CT AC )Y 正定,也可推出 XT AX 正定。
充分性是显然的;下面用反证法证必要性:
假设某个dk 0 ,取 yk 1 ,其余 yj 0 ( j k) ,
代入二次型,得 f (0,,1,,0) dk 0 ,
与二次型 f (y1, y2,, yn) 正定矛盾。
2
(1) 二 次型 f ( y1, y2,, yn) d1 y12 d2 y22 dn yn2 正 定 的充分必要条件是di 0 。
A2 2
21 0 , 5
5 2 2 A3 2 5 1 88 0 ,
2 1 5
因此 A是正定的, 即二次型 f 正定。
9
例3 设有实二次型
f x12 x22 5x32 2t x1x2 2x1x3 4x2 x3
问 t 取何值时,该二次型为正定二次型?
1 t 解 f 的矩阵为 A t 1
解 (2)f 的矩阵为 顺序主子式
1 2 A2 2
0 2
0 2 , 3
1 2
1 0,
2 0 ,
2 2
所以 f 是不定的。
17
练习:
P222 习题五
18
END
19
选用例题
1、 设A, B分 别 为m阶, n阶 正 定 矩 阵, 试 判 定 分 块
矩
阵C
A 0
0 B
是
否
为
正
正定二次型

设可逆变换x Py使
g
y
n
bi
y2 i
.
i 1
充分性
设 bi 0 i 1,, n. 则 g( y) 正定 任给 x 0, 则 y P -1x 0,
故由可逆线性变换不改变正定性可得。
定理 n元实二次型 f xT Ax 为正定的充分必要 条件为:它的标准形的n个平方项系数全大于零。
f
x2 1
3x22
为不定二次型
定理1 可逆线性变换保持实二次型的正定性。
证明 设实二次型 f (x) xT Ax 经过实数域上 可逆线性变换 x Py 化为 g( y) yT By
1.假设 f (x)
y ,则有
x
xT Ax
Py
正0定。,于对是任意f (非x)零 0实向量
0 0 1
定理 实二次型 f (x) xT Ax 正定的充分必要
条件是 A的所有顺序主子式的值全大于零。
, a11 0, a11 a12 0,
a11 a1n
0;
a21 a22
an1 ann
例 判别实二次型
f (x1, x2 , x3 ) x12 3x22 3x32 2x1x2 是否正定。
证明 设二次型
f1 xT Ax f2 xT Bx
f xT (A B)x
xT Ax xT PT Px (Px)T (Px) 0
则由定义A正定。
A正定,则A合同于E, 由合同的定义,存在可逆矩阵P, 使得PT EP PT P A
正定的判别法
(1)用定义,∀x ≠ 0 ,总有xTAx > 0
北京工业大学线性代数第六章第七节 正定二次型第八节正交替换化标准形

证:方法一
( AT A)T AT A,
AT A是实对称阵,
任意X O, A可逆, AX O ,
f ( X ) X ( A A) X ( AX ) ( AX ) AX
T T T
2
0,
∴ f 是正定二次型,
AT A是正定矩阵.
19
方法二
( AT A)T AT A,
2 1
2
2( x1 x2 x3 ) 3 x 3 x 4 x2 x3
2 2 2 2 3
14
4 4 2 4 2 2 2( x1 x2 x3 ) 3( x x2 x3 x3 ) x3 3 x3 3 9 3 2 5 2 2 2 2( x1 x2 x3 ) 3( x2 x3 ) x3 3 3
2 1 2 2 2 3
是正定二次型.
2 2 f ( x , x , x ) x 2 x ② 1 2 3 1 2
不是正定二次型.
X (0,0, 3) 0, f (0,0, 3) 0 ≯0
2 2 2 f ( x , x , x ) x 2 x x ③ 1 2 3 1 2 3
∴ 二次型f 是正定二次型.
17
1 2 0 2 2 1 , 是否正定? 例2 判断矩阵 A 0 1 3
(P205---例6.7.3)
解:
2 1 2 2 0, 2 2
∴A 不是正定矩阵. 例3 试证:实数域上任一n 阶可逆矩阵A ,
都有ATA是正定矩阵.
第七节 正定二次型
一.正定二次型 二.正定二次型的判别法 三.正定矩阵在求多元函数极值中的应用
1
我们知道一元二次函数f(x)=x2 在x=0处
正定二次型

它的各阶顺序主子式
D1 a11 1 0,
D2
a11 a21
a12 1 a22 1
1 0
2
1 1 0 1 1 0
D3 1 2 1 0 1 1 3 1 2 0 0 1 3 0 1 3
根据定理 5.5 可知所给二次型 f 是正定二次型。
1 1 0 解法 2 二次型 f 的矩阵为 A 1 2 1 ,矩阵 A 的特征多项式为
解法 3 将所给二次型配方,得
f x12 2x22 3x32 2x1x2 2x2 x3 (x12 2x1x2 x22 ) (x22 2x2 x3 x32 ) 2x32
(x1 - x2 ) 2 (x2 - x3 ) 2 2x32 0
而上式等号成立的充分必要条件是 x1 x2 x3 0
0 1 3
0 1 3
0 1 3
1 0 0
1 0 0
c3 c2 0
1
0
r3r2
0
1
0
0 1 2
0 0 2
于是已知的二次型经过合用变换后,所得标准形的正惯性指数分别为 1,1,2,
根据惯性定理可知,所给二次型 f 是正定二次型。
1 t 1 例 5.12 设矩阵 A t 1 2 是正定矩阵,求其中 t 的取值范围。
实用线性代数
正定二次型
正定二次型的概念 正定二次型的判定
1.1 正定二次型的概念
定定义义55..6 设 有 二 次 型 f (x1, x2 ,, xn ) xT Ax , 若 对 任 何
0 x Rn , 都有 f xT Ax 0 ,则称 f 为正定二次型。
正定二次型所对应的矩阵称为正定矩阵。
f (x) f (Cy) k1 y12 k2 y22 kn yn2
正定二次型

正定二次型一、定义正定二次型是线性代数中一个重要的概念。
在矩阵理论中,正定二次型是正定矩阵基于向量内积的一种自然推广。
正定二次型在数学分析、优化问题以及统计学中有着广泛的应用。
设A是一个n阶方阵,A是一个n维列向量,则称二次型A(A)=AAAA为矩阵A的对应二次型。
如果对于任意的非零向量A,都有A(A)>0,则称二次型A(A)为正定二次型。
二、性质正定二次型具有以下性质:1. 正定二次型的矩阵A一定是对称矩阵。
这是因为对称矩阵的转置等于自身,所以对任意的A,都有AAAA=AA(AAA)=AAAA。
2. 正定二次型的特征值全为正数。
设A是正定二次型的矩阵,对于A 的任意一个特征向量A,我们有AA=AA。
由于正定二次型对于任意非零向量A的取值都大于零,所以对于特征向量A,有AAAA>0,这等价于AA(AA)>0,即A>0。
因此,正定二次型的特征值全为正数。
3. 正定二次型的标准型为A₁²+A₂²+⋯+AA²。
正定二次型可以通过配方法化简为标准型。
化简的过程就是通过正交变换将原二次型变为标准型。
正交变换保持向量的长度不变,所以正定二次型的标准型为A₁²+A₂²+⋯+AA²。
4. 正定二次型的零空间只包含零向量。
设二次型A(A)=AAAA是正定二次型,如果A(A)=0,那么由于A≠0,所以AAAA=0,根据正定二次型的定义,A=0。
三、应用正定二次型在数学的许多领域有着广泛的应用。
1. 凸优化凸优化是数学中的一个重要分支,而正定二次型在凸优化问题中扮演着重要的角色。
对于一个凸优化问题,如果目标函数是一个正定二次型,那么这个优化问题就是一个凸优化问题。
通过对正定二次型进行分析,我们可以得到其极小点,并进一步解决凸优化问题。
2. 统计学在统计学中,正定二次型常常出现在协方差矩阵、精确度矩阵等概念中。
协方差矩阵描述了多个变量之间的关系,而正定二次型可以通过协方差矩阵定义一个正态分布的概率密度函数。
线性代数 第五章 第7节

它的秩是 r ,有两个实的可逆变换x Cy与x Pz ,
使 及
2 2 k1 y1 k 2 y2 k r yr2 , ( k i 0)
T 定理11 ( 惯性定理 ) 设有实二次型 f x Ax ,
z z z , ( i 0)
§7
正定二次型
★正定二次型和正定矩阵的概念 ★判别二次型或矩阵正定的方法
正定二次型是二次型中讨论最多的类型,本节 结合二次型的标准型中系数给出正定二次型的概念, 并给出了判定二次型正定及实对称矩阵的几种方法。
下页
关闭
正定二次型和正定矩阵的概念
二次型的标准形不是唯一的。 标准形中所含项数是确定的( 即是二次型的秩 )。 限定变换为实变换时,标准形中正系数的个数是 不变的。
上页 下页
返回
定理13 对称阵 A 为正定的充分必要条件是:A 的各阶主子式都为正。即
a11 0, a11 a12 a11 a1n 0, , 0; an1 ann a21 a22
对称阵 A 为负定的充分必要条件是:奇数阶主子式为 负,而偶数阶主子式为正。即 a11 a1r
上页 下页 返回
二 ) 用正交方阵将方阵化为对角阵的方法
(1).求A 的特征值; (2).求A 的特征值对应的n 个线性无关的特征向量; (3). 将重特征值所对应的特征向量正交化,连同单 特征值所对应的特征向量一起就得到两两正交的特征 向量; (4). 将 (3) 中 n 个特征向量单位化,得到 n 个两两 正交的单位特征向量; (5). 以这些特征向量作为列向量的矩阵就是所求的 正交矩阵,且有 P 1 AP .
上页 下页 返回
例19 设C 是满秩矩阵,实对称矩阵A 是正定的, 则C TAC是正定的。
线性代数 正定二次型

标准形 f x 1 , L , x n d 1 y 1 2 d 2 y 2 2 L d n y n 2
因P可逆,X0,YP1X0
n
fx 1 ,L ,x n d iy i2 0 d i 0(i 1 ,L ,n )
1
O
1 1 O
1 0 O
, 即PT AP 0
二、正定二次型
定义:设n元实二次型 fx 1 ,L ,x n X T A X ,若对任意的
X0 XR n,均有 fx 1 ,L ,x n X T A X 0 ,则称
A1 1 0
A A3 2 t1tt 2t 2 2t t1 2 00
1 t 0
A共有n个顺序主子阵,且均为实对称矩阵.
定理(Sylvester定理):实二次型 fx 1 ,L ,x n X T A X
正定的充要条件是A的所有顺序主子式都大于零.
三、应用举例
1 t
例:t
取何值?
A
t2Biblioteka 1 0提示:由Sylvester定理,
1
0
是正定的
1 t
一、惯性定理
任一二次型均可通过非退化的线性变换化为标准形,但 线性变换选择的不同会导致标准形的不同,即:二次型
的标准形不唯一。但由惯性定理可知,标准形中的正平 方项的个数与负平方项的个数却是唯一确定的。 定理(惯性定理) 实二次型 f(x 1 ,x 2 ,L ,x n ) X T A X 经过非退化的线性 变换化为标准形时,其标准形中正、负项的项数是唯一 确定的,二者的和等于矩阵A的秩. 定义:实二次型标准形中的正平方项的项数p称为二次型 的正惯性指数,负平方项的项数q称为二次型的负惯性指 数,二者的差(p-q)=p-(r-p)=2p-r称为二次型的符号差.
正定二 次型

0 1 3 矩阵.
二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定性,不具备有定性的二次型及其矩 阵称为不定的.
1.2 正定矩阵的判别法
对于半正定(半负定)矩阵,可以证明下列结论等价: ① 对称矩阵 A 是半正定(半负定)的; ② A 的所有主子式大于(小于)或等于零; ③ A 的全部特征值大于(小于)或等于零.
1.2 正定矩阵的判别法
例 4 已知二次型 f (x1 ,x2 ,x3 ) x12 4x22 4x32 2tx1x2 2x1x3 4x2 x3 是正定的,试求 t 的取值范围.
1.2 正定矩阵的判别法
定理 4 设 n 元实二次型 f ( x) xT Ax 的规范形为 f z12 z22
z
2 p
z2 p 1
zr2 ,则
(1)f 负定的充分必要条件是 p 0 且 r n (即负定二次型的规范形为 f z12 z22 zn2 ).
(2)f 半正定的充分必要条件是 p r n (即半正定二次型的规范形为 f z12 z22 zr2 ,r n ).
则
T i
D
i
di
0 (i
1,2,
,n) .
充分性.对任一非零向量 x,至少有 x 的某个分量 xk 0 ,又 dk 0 故 dk xk2 0 ;而当 i k 时 di xi2
n
此, xT Dx di xi2 0 ,即 D 为正定矩阵. i 1
0 .因
1.2 正定矩阵的判别法
推论 1 对称矩阵 A 正定的充分必要条件是它的特征值全大于零. 定理 3 矩阵 A 为正定矩阵的充分必要条件是 A 的正惯性指数 p n ,即 A 与 E 合同. 推论 2 若矩阵 A 为正定矩阵,则 A 0 . 证明 由定理 3 知存在可逆矩阵 C 使 A CTC ,于是 A CTC C 2 0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 2 2
解:
f(x1,
x2,
x3)的矩阵为
A
2 2
6 0
0 4
,
5 0,
5 2
2 6
26 0,
| A | 80 0,
根据霍尔维茨定理知二次型 f 为负定的.
四、小结
1. 正定二次型的概念, 正定二次型与正定矩阵的 区别与联系.
2. 正定二次型(正定矩阵)的判别方法: (1)定义法; (2)主子式判别法; (3)特征值判别法.
解: 用特征值判别法. 二次型 f 的矩阵为:
A
2 0 2
0 4 0
502,
令| A–E | = 0, 得1=1, 2=4, 3=6.
即知A是正定矩阵, 故此二次型 f 为正定二次型.
例3: 判别二次型 f(x1, x2, x3)=–5x12–6x22–4x32+4x1x2+4x1x3
是否正定.
征值全为正.
定理3: (1)对称矩阵A为正定的充分必要条件是A
的各阶主子式为正, 即
a11 0,
a11 a21
a12 a22
0,
,
a11
an1
a1n 0;
ann
(2)对称矩阵A为负定的充分必要条件是A的奇数
阶主子式为负, 而偶数阶主子式为正, 即
a11 a1r
1r
0, r 1, 2, , n.
ar1 arr 这个定理称为霍尔维茨定理.
正定矩阵具有以下一些简单性质:
1. 若A为正定的, 则AT, A-1, A*均为正定矩阵.
2.若A, B均为n阶正定矩阵, 则A+B也是正定矩阵.
例1: 判别二次型
f(x1, x2, x3)=5x12+x22+5x32+4 x1x2–8 x1x3–4x2x3
§5.7 正定二次型
一个实二次型, 既可以通过正交变换化为标准形, 也可以通过拉格朗日配方法化为标准形, 显然, 其标准 形一般来说是不唯一的, 但标准形中所含有的项数是 确定的, 项数等于二次型的秩.
下面我们限定所用的变换为实变换, 来研究二次 型的标准形所具有的性质.
一、惯性定理
定理1(惯性定理): 设有实二次型 f = xTAx, 它的秩
3. 根据正定二次型的判别方法, 可以得到负定二 次型(负定矩阵)相应的判别方法, 请自己归纳.
思考题
设A, B分别为m阶, 阶n正定矩阵, 试判定分块矩阵
C OA
O B
是ቤተ መጻሕፍቲ ባይዱ为正定矩阵.
思考题解答
C是正定的.
显然C是实对称阵. 设zT=(xT, yT)为m+n维列向量, 其中x, y分别是m维, n维列向量, 若 z0, 则x, y不同时为零向量,
于是
zT Cz
(xT ,
yT
)
A O
OB
x y
xT Ax yT By 0,
故C为正定矩阵. 也可以按主子式方法证明.
则 y = C-1x 0, 故
n
f x ki yi2 0.
i 1
必要性: 假设有ks 0, 则当 y=es (单位坐标向量)时,
f Ces ks 0.
显然,Ces 0, 这与 f 为正定相矛盾. 故
ki > 0 ( i = 1, 2, ···, n).
推论: 对称矩阵A为正定的充分必要条件是A的特
f = –x12 –3x22 为负定二次型.
三、正(负)定二次型的判别
定理2: 实二次型f(x)=xTAx为正定的充分必要条 件是它的标准形的n个系数全为正.
证明: 设可逆变换 x=Cy 使 n f x f Cy ki yi2 . i 1
充分性: 设ki > 0 ( i = 1, 2, ···, n), 对任意的 x 0,
为r , 有两个实的可逆变换:
x=Cy, 及 x=Pz,
使
f = k1y12+k2y22+···+kryr2 (ki 0),
及
f = 1z12+2z22+···+rzr2 (i 0).
则k1, k2, ···, kr与1, 2, ···, r中正数的个数相等.
二、正(负)定二次型的概念
定义: 设有实二次型 f(x)=xTAx,显然 f (0)=0. 如果对任意的 x 0, 都有 f(x)>0, 则称 f 为正定二 次型, 并称对称矩阵A为正定矩阵; 如果对任意的 x 0, 都有 f(x)<0, 则称 f 为负定二 次型, 并称对称矩阵A为负定矩阵. 例如: f = x2 + 4y2 + 16z2 为正定二次型;
是否正定. 解: f(x1,
x2,
x3)的矩阵为
A
5 2 4
2 1 2
524,
它的各阶主子式:
5 0,
5 2
2 1
1 0,
故上述二次型是正定的.
5 2 4 2 1 2 1 0, 4 2 5
例2: 判别二次型
f(x1, x2, x3)=2x12+4x22+5x32–4 x1x3 是否正定.