3-电气工程及其自动化专业_外文文献_英文文献_外文翻译_plc方面

合集下载

电气工程及自动化专业外文翻译--PLC相关问题

电气工程及自动化专业外文翻译--PLC相关问题

外文原文:PLC QuestionABSTRACT: This paper describes the main components of the PLC, and attention problems in use (such as the environment in use, the use of pre-note, etc.) Central Processing Unit (CPU) is the brain of a PLC controller. CPU itself is usually one of the microcontrollers. Aforetime these were 8-bit microcontrollers such as 8051, and now these are 16-and 32-bit microcontrollers. Unspoken rule is that you’ll find mostly Hitachi and Fujicu microcontrollers in PLC controllers by Japanese makers, Siemens in European controllers, and Motorola microcontrollers in American ones. CPU also takes care of communication, interconnectedness among other parts of PLC controllers, program execution, memory operation, overseeing input and setting up of an output. PLC controllers have complex routines for memory checkup in order to ensure that PLC memory was not damaged (memory checkup is done for safety reasons).Generally speaking, CPU unit makes a great number of check-ups of the PLC controller itself so eventual errors would be discovered early. You can simply look at any PLC controller and see that there are several indicators in the form. of light diodes for error signalization. System memory (today mostly implemented in FLASH technology) is used by a PLC for a process control system. Aside form. this operating system it also contains a user program translated forma ladder diagram to a binary form. FLASH memory contents can be changed only in case where user program is being changed. PLC controllers were used earlier instead of PLASH memory and have had EPROM memory instead of FLASH memory which had to be erased with UV lamp and programmed on programmers. With the use of FLASH technology this process was greatly shortened. Reprogramming a program memory is done through a serial cable in a program for application development. User memory is divided into blocks having special functions. Some parts of a memory are used for storing input and output status. Thereal status of an input is stored either as “1”or as “0”in a specific memory bit/ each input or output has one corresponding bit in memory. Other parts of memory are used to store variable contents for variables used in used program. For example, time value, or counter value would be stored in this part of the memory. PLC controller can be reprogrammed through a computer (usual way), but also through manual programmers (consoles). This practically means that each PLC controller can programmed through a computer if you have the software needed for programming. To day’s transmission computers are ideal for reprogramming a PLC controller in factory itself. This is of great importance to industry. Once the system is corrected, it is also important to read the right program into a PLC again. It is also good to check from time to time whether program in a PLC has not changed. This helps to avoid hazardous situations in factory rooms (some automakers have established communication networks which regularly check programs in PLC controllers to ensure execution only of good programs). Almost every program for programming a PLC controller possesses various useful options such as: forced switching on and off of the system input/outputs (I/O lines), program follow up in real time as well as documenting a diagram. This documenting is necessary to understand and define failures and malfunctions. Programmer can add remarks, names of input or output devices, and comments that can be useful when finding errors, or with system maintenance. Adding comments and remarks enables any technician (and not just a person who developed the system) to understand a ladder diagram right away. Comments and remarks can even quote precisely part numbers if replacements would be needed. This would speed up a repair of any problems that come up due to bad parts. The old way was such that a person who developed a system had protection on the program, so nobody aside from this person could understand how it was done. Correctly documented ladder diagram allows any technician to understand thoroughly how system functions. Electrical supply is used in bringing electrical energy to central processing unit. Most PLC controllers work either at 24 VDC or 220 V AC. On some PLC controllers you’ll find electricalsupply as a separate module. Those are usually bigger PLC controllers, while small and medium series already contain the supply module. User has to determine how much current to take from I/O module to ensure that electrical supply provides appropriate amount of current. Different types of modules use different amounts of electrical current. This electrical supply is usually not used to start external input or output. User has to provide separate supplies in starting PLC controller inputs because then you can ensure so called “pure” supply for the PLC controller. With pure supply we mean supply where industrial environment can not affect it damagingly. Some of the smaller PLC controllers supply their inputs with voltage from a small supply source already incorporated into a PLC.PLC which should pay attention in the application is specially the control device which serves for the industrial production, usually does not need to take any measure, may use directly in the industry environment. But, when the production environment is too bad, the electromagnetic interference is special intense, or installs uses improper, cannot guarantee PLC the normal operation, therefore should pay attention to the following question in the use.First, Siemens PLC maintenance1, maintenance procedures, equipment, periodic testing, adjustment provisions (1) half-yearly or quarterly inspection PLC cabinet terminal connections, and if time to re-loose strong local connection;(2) of the cabinet to the host power supply voltage of the monthly re-survey work; Second, the provisions of cleaning equipment on a regular basis(1) every six months or a quarter of the PLC to clean, cut off power to the PLC power supply to the power rack, CPU board and input / output board in turn be removed to purge, clean and then in turn installed in situ, will all link to resume evacuation call and start the host PLC. PLC box carefully sweeping health;(2) every three months to replace the power rack below the filter; three maintenance preparation, maintenance of order (1) ready before maintenance tools; (2) To protectthe components and the template does not function no fault damage, must be protection devices and serious preparations for anti-static;(3) maintenance scheduling and operator contact before and well, be linked to overhaul licensing office hung maintenance card;4, equipment and method of disassembly sequence(1) downtime, must be two or more monitoring operation;(2) the way the CPU on the front panel select switch from the "Run" to "stop" position;(3) Close the PLC power supply mains, and then close the other to the power supply module Osaka;(4) connected to the power supply rack power cord clear line number in mind and remove the link location, then remove the power rack and rack screws connected, power rack can be removed;(5) CPU motherboard and I / 0 board in the bottom of the screw rotation after template removed;(6) installed in reverse order;5, maintenance process and technical requirements(1) measure voltage, use a digital voltmeter or accuracy of 1% of the multimeter, measure(2) the power rack, CPU board can only be removed when the main power cut off;(3) RAM module to remove or insert the CPU from the CPU prior to disconnect the PC's power supply, so as to ensure the data is not confused;(4) before removing RAM modules, check the battery module is working correctly, if the battery fault light is removed when the PAM module content will be lost; (5) input / output board should be removed before the first turn off the mains, but if the production of necessary I / 0 boards can be removed at run-time programmable controllers, but the CPU board QVZ (overtime) lights;(6) pluggable template, to be more careful, gently, and the goods shipped out of static electricity;(7) the replacement of components not live action;(8) Maintenance must be placed after the template installed in placeSecond, installment and wiring(1) The power line, the pilot wire as well as the PLC power line and the I/O line should distinguish the wiring, between the insulating transformer and PLC and I/O should use the double rubberized wire connection.(2) PLC should be far away from the strong jamming source like electric welding machine, the high efficiency silicon rectifier unit and the large-scale power equipment, cannot install with the high-pressured electric appliance in the identical switch cabinet.(3) The input and output of PLC are best separate the line, the switch quantity and the simulation quantity must separate the placing. The simulation quantity signal's transmission should use the shielded wire, the shielding layer should an end or the both sides earth, and the earth resistance should be smaller than the shielding layer resistance 1/10.(4) The PLC elemental area and the expansion unit as well as functional module's ties cable should lie alone, prevents the outside signal the disturbance.(5) The exchange output line and the direct-current output line do not use the identical root electric cable, the output line to be far away from the high tension line and the power line as far as possible, avoids parallel.Third, I/O end wiring1. Input wiring (1) inputs the wiring not to surpass 30 meters generally. But if the environment disturbance is small, when the loss of voltage is not big, the input wiring may suitable long.(2)Inputs/the output line not to be able to use the identical root electric cable, the input/output line to be separated.(3)Uses the normally opened contact form to connect the input end as far as possible, causes the establishment the trapezoidal chart to be consistent with the relay schematic diagram, is advantageous for reading.2. Outgoing junction(1) The out-put wiring divides into the independent output and the public output. In not group, may use the different type and the voltage class output voltage. But can only use the identical type, the identical voltage class power source in the identical group's output.(2) Because the PLC output element is sealed on the print circuit wafer, and connects to the terminal strip, if will connect output element's load short circuit, will burn down the print circuit wafer, therefore, application fuse protection output element.(3)Uses when the relay outputs, withstands inductive load's size, will affect relay's service life, therefore, time use inductive load the selective relay working life must be long.(4) The PLC output load possibly has the disturbance, must therefore take the measure to control, if direct-current output's after flow guarantees protects, the exchange output anti- accommodates the absorbing circuit, the transistor and the bidirectional thruster output by-passed resistor protection.Fourth, outside security electric circuit to guarantee that the overall system can under the secure state the reliable work, avoids, because the external power supply breaks down, PLC to present the heavy economic loss which and the person casualty exceptionally, the disoperation as well as outputs by mistake creates, PLC the outside should install the essential protection circuit.(1) Stops the electric circuit anxiously. Regarding can cause the user to cause the damage the dangerous load, besides performs in the control procedure toconsider, but also exterior should design the emergency stop electric circuit, causes when PLC breaks down, can cause the injury load power source reliably to shut off.(2)Fragment. The forward and reverse revolution and so on reversible operation's control system must establish the exterior electric appliance interlock protection; the reciprocation moves and rises and falls motion the control system, must establish the exterior spacing protection circuit.(3)The programmable controller has self-checking functions and so on surveillance timer, when inspects exceptionally, outputs completely the closure. But when programmable controller CPU breakdown cannot control the output, therefore, regarding can cause the user to cause the damage the dangerous load, to guarantee that the equipment moves under the secure state, must design the external circuit to protect.(4) Power source load protection. If the PLC power source breaks down, the interruption interval is short in 10 seconds, PLC works not affected, if the power source interrupt surpasses 10 second or the power source drops surpasses the permissible value, then the PLC stop work, all output also separates; when the power source restores, if RUN input connection, then operates carries on automatically. Therefore, to establish the essential current limiting protection circuit to some easy over-loading's input device.(5) Significant breakdown warning and protection. Regarding easy to have heavy accident's place, to guarantee the control system when the heavy accident occurs still the reliable warning and the protection, should have with the significant breakdown the contacting signal to output through the external circuit, caused the control system to move under the safe condition.Fifth, PLC earth the good earth is guaranteed that the PLC reliable work the important condition, may avoid the heterogametic the voltage surge harm. PLC meets the grounding and machine's ground terminal docking, meets the grounding the cross-sectional area should not to be smaller than 2mm2, the earth resistance issmaller than 100Ω; If must use the expansion unit, its ground point should accept after checking with the elemental area earth in the same place. In order to suppress adds in the power source and the input end, out-port's disturbance, should joins the special-purpose grounding to PLC, the ground point should with the power equipment (for example electrical machinery) the ground point separate; If cannot meet this kind of requirements, must achieve with the other equipment public earth, forbids to establish contacts the earth with other equipment. The ground point should approach PLC as far as possible.Sixth, the redundant system and hot backup system in profession in and so on petroleum, chemical industry, metallurgy certain systems, the request control device has the extremely high reliability. If the control system breaks down, will create the production suspension, the raw material massive wastes or the equipment trouble, will create the enormous economic loss to the enterprise. But depends on the enhancement control system hardware's reliability to satisfy the above request is only not enough, because the PLC itself reliable enhancement has certain limit. Uses the redundant system or the hot backup system can solve the above problem quite effectively.(1) Redundancy control system in redundancy control system, entire PLC control system (or in system most important part, if the CPU module) of two set of identical system composition. Two CPU module use same user program multi-tasking, one is advocates CPU, another is spare CPU; advocates the CPU work, but the spare CPU output is forbidden, when advocates CPU breaks down, spare CPU automatic investment movement. This cut process is controlled by the redundancy processing unit RPU, the switching time in 1~3 scanning periods, the I/O system's cut is also completes by RPU.Hot backup system in the hot backup system, two CPU with the communication connection connects in together, which is at circular telegram condition .When the system presents the breakdown, advocates CPU informs spare CPU to make thespare CPU work. This cut process is not too generally quick, but its structure is simpler than the redundant system.Under a lot of circumstances we are total to like to adopt the string to combine the conversion chip to carry on deliver, under this kind of circumstance not need us to carry on to deposited the machine to establish too and complicatedly, but carry on the data exchanges through the data transmission instruction directly, but is not a very viable way in the correspondence, because the PLC of the other party must has been wait for your data exportation at the time of sending out the data, it can't do other works.When you are reading the book, you hear someone knock on door, you stop to start up of affair, open the door and combine to continue with the one who knock on door a dialogue, the telephone of this time rang, you signal hint to connect a telephone, after connecting the telephone through, return overdo come together knock on door to have a conversation, after dialogue complete, you continue again to see your book, this kind of circumstance we are called the interruption to it, it has the authority, also having sex of have the initiative, the PLC had such function .Its characteristics lie in us and may meet the urgently abrupt affairs in the operation process of the equipments, we want to stop to start immediately up of work, the whereabouts manages the more important affair, this kind of circumstance is we usually meet of, PLC while carry out urgent mission, total will keep the current appearance first, for example the address of the procedure, CPU of tired add the machine data etc., be like to stick down which the book that we see is when we open the door the page or simply make a mark, because we treat and would still need to continue immediately after book of see the behind. The CPU always does the affair that should do according to our will, but your mistake of give it an affair, it also would be same to do, this we must notice.The interruption is not only a, sometimes existing jointly with the hour several inside break, break off to have the preferred Class, they will carry out theinterruption of the higher Class according to person's request. This kind of breaks off the medium interruption to also became to break off the set. The Class that certainly break off is relevant according to various resources of CPU with internal PLC, also following a heap of capacity size of also relevant fasten.The contents that break off has a lot of kinds, for example the exterior break off, correspondence in of send out and accept the interruption and settle and the clock that count break off, still have the WDT to reset the interruption etc., they enriched the CPU to respond to the category while handle various business. Speak thus perhaps you can't comprehend the internal structure and operation orders of the interruption completely also, we do a very small example to explain.Each equipment always will not forget a button, it also is at we meet the urgent circumstance use of, which is nasty to stop the button. When we meet the Human body trouble and surprised circumstances we as long as press it, the machine stops all operations immediately, and wait for processing the over surprised empress recover the operation again. Nasty stop the internal I/ O of the internal CPU of the button conjunction PLC to connect up, be to press button an exterior to trigger signal for CPU, the CPU carries on to the I/ O to examine again, being to confirm to have the exterior to trigger the signal, CPU protection the spot breaks off procedure counts the machine turn the homologous exterior I/ O automatically in the procedure to go to also, be exterior interruption procedure processing complete, the procedure counts the machine to return the main procedure to continue to work. Have 1:00 can what to explain is we generally would nasty stop the button of exterior break off to rise to the tallest Class, thus guarantee the safety.When we are work a work piece, giving the PLC a signal, counting PLC inner part the machine add 1 to compute us for a day of workload, a count the machine and can solve problem in brief, certainly they also can keep the data under the condition of dropping the electricity, urging the data not to throw to lose, this is also what we hope earnestly.The PLC still has the function that the high class counts the machine, being us while accept some dates of high speed, the high speed that here say is the data of the in all aspects tiny second class, for example the bar code scanner is scanning the data continuously, calculating high-speed signal of the data processor DSP etc., we will adopt the high class to count the machine to help we carry on count. It at the PLC carries out the procedure once discover that the high class counts the machine to should of interruption, will let go of the work on the hand immediately. The trapezoid diagram procedure that passes by to weave the distance again explains the high class for us to carry out procedure to count machine would automatic performance to should of work, thus rise the Class that the high class counts the machine to high one Class.You heard too many this phrases perhaps:" crash", the meaning that is mostly is a workload of CPU to lead greatly, the internal resources shortage etc. the circumstance can't result in procedure circulate. The PLC also has the similar circumstance, there is a watchdog WDT in the inner part of PLC, we can establish time that a procedure of WDT circulate, being to appear the procedure to jump to turn the mistake in the procedure movement process or the procedure is busy, movement time of the procedure exceeds WDT constitution time, the CPU turn but the WDT reset the appearance. The procedure restarts the movement, but will not carry on the breakage to the interruption.The PLC development has already entered for network ages of correspondence from the mode of the one, and together other works control the net plank and I/ O card planks to carry on the share easily. A state software can pass all se hardwires link, more animation picture of keep the view to carries on the control, and cans pass the Internet to carry on the control in the foreign land, the blast-off that is like the absolute being boat No.5 is to adopt this kind of way to make airship go up the sky.The development of the higher layer needs our continuous effort to obtain. The PLC emergence has already affected a few persons fully, we also obtained moreknowledge and precepts from the top one experience of the generation, coming to the continuous development PLC technique, push it toward higher wave tide.Knowing the available PLC network options and their best applications will ensure an efficient and flexible control system design.The programmable logic controller's (PLC's) ability to support a range of communication methods makes it an ideal control and data acquisition device for a wide variety of industrial automation and facility control applications. However, there is some confusion because so many possibilities exist. To help eliminate this confusion, let's list what communications are available and when they would be best applied.To understand the PLC's communications versatility, let's first define the terms used in describing the various systems.ASCII: This stands for "American Standard Code for Information Interchange." As shown in Fig. 1, when the letter "A" is transmitted, for instance, it's automatically coded as "65" by the sending equipment. The receiving equipment translates the "65" back to the letter "A." Thus, different devices can communicate with each other as long as both use ASCII code.ASCII module: This intelligent PLC module is used for connecting PLCs to other devices also capable of communicating using ASCII code as a vehicle.Bus topology: This is a linear local area network (LAN) arrangement, as shown in Fig. 2A, in which individual nodes are tapped into a main communications cable at a single point and broadcast messages. These messages travel in both directions on the bus from the point of connection until they are dissipated by terminators at each end of the bus.中文译文:PLC 相关问题从结构上分,PLC分为固定式和组合式(模块式)两种。

电气工程与自动化毕业论文中英文资料外文翻译

电气工程与自动化毕业论文中英文资料外文翻译

电气工程与自动化毕业论文中英文资料外文翻译The Transformer on load ﹠Introduction to DC MachinesIt has been shown that a primary input voltage 1V can be transformed to any desired open-circuit secondary voltage 2E by a suitable choice of turns ratio. 2E is available for circulating a load current impedance. For the moment, a lagging power factor will be considered. The secondary current and the resulting ampere-turns 22N I will change the flux, tending to demagnetize the core, reduce m Φ and with it 1E . Because the primary leakage impedance drop is so low, a small alteration to 1Ewill cause an appreciable increase of primary current from 0I to a new value of 1Iequal to ()()i jX R E V ++111/. The extra primary current and ampere-turns nearly cancel the whole of the secondary ampere-turns. This being so , the mutual flux suffers only a slight modification and requires practically the same net ampere-turns 10N I as on no load. The total primary ampere-turns are increased by an amount 22N I necessary to neutralize the same amount of secondary ampere-turns. In thevector equation , 102211N I N I N I =+; alternatively, 221011N I N I N I -=. At full load,the current 0I is only about 5% of the full-load current and so 1I is nearly equalto 122/N N I . Because in mind that 2121/N N E E =, the input kV A which is approximately 11I E is also approximately equal to the output kV A, 22I E .The physical current has increased, and with in the primary leakage flux towhich it is proportional. The total flux linking the primary ,111Φ=Φ+Φ=Φm p , isshown unchanged because the total back e.m.f.,(dt d N E /111Φ-)is still equal and opposite to 1V . However, there has been a redistribution of flux and the mutual component has fallen due to the increase of 1Φ with 1I . Although the change is small, the secondary demand could not be met without a mutual flux and e.m.f.alteration to permit primary current to change. The net flux s Φlinking thesecondary winding has been further reduced by the establishment of secondaryleakage flux due to 2I , and this opposes m Φ. Although m Φ and 2Φ are indicatedseparately , they combine to one resultant in the core which will be downwards at theinstant shown. Thus the secondary terminal voltage is reduced to dt d N V S /22Φ-=which can be considered in two components, i.e. dt d N dt d N V m //2222Φ-Φ-=orvectorially 2222I jX E V -=. As for the primary, 2Φ is responsible for a substantiallyconstant secondary leakage inductance222222/Λ=ΦN i N . It will be noticed that the primary leakage flux is responsible for part of the change in the secondary terminal voltage due to its effects on the mutual flux. The two leakage fluxes are closely related; 2Φ, for example, by its demagnetizing action on m Φ has caused the changes on the primary side which led to the establishment of primary leakage flux.If a low enough leading power factor is considered, the total secondary flux and the mutual flux are increased causing the secondary terminal voltage to rise with load. p Φ is unchanged in magnitude from the no load condition since, neglecting resistance, it still has to provide a total back e.m.f. equal to 1V . It is virtually the same as 11Φ, though now produced by the combined effect of primary and secondary ampere-turns. The mutual flux must still change with load to give a change of 1E and permit more primary current to flow. 1E has increased this time but due to the vector combination with 1V there is still an increase of primary current.Two more points should be made about the figures. Firstly, a unity turns ratio has been assumed for convenience so that '21E E =. Secondly, the physical picture is drawn for a different instant of time from the vector diagrams which show 0=Φm , if the horizontal axis is taken as usual, to be the zero time reference. There are instants in the cycle when primary leakage flux is zero, when the secondary leakage flux is zero, and when primary and secondary leakage flux is zero, and when primary and secondary leakage fluxes are in the same sense.The equivalent circuit already derived for the transformer with the secondary terminals open, can easily be extended to cover the loaded secondary by the addition of the secondary resistance and leakage reactance.Practically all transformers have a turns ratio different from unity although such an arrangement is sometimes employed for the purposes of electrically isolating one circuit from another operating at the same voltage. To explain the case where 21N N ≠ the reaction of the secondary will be viewed from the primary winding. The reaction is experienced only in terms of the magnetizing force due to the secondary ampere-turns. There is no way of detecting from the primary side whether 2I is large and 2N small or vice versa, it is the product of current and turns which causesthe reaction. Consequently, a secondary winding can be replaced by any number of different equivalent windings and load circuits which will give rise to an identical reaction on the primary .It is clearly convenient to change the secondary winding to an equivalent winding having the same number of turns 1N as the primary.With 2N changes to 1N , since the e.m.f.s are proportional to turns, 2212)/('E N N E = which is the same as 1E .For current, since the reaction ampere turns must be unchanged 1222'''N I N I = must be equal to 22N I .i.e. 2122)/(I N N I =.For impedance , since any secondary voltage V becomes V N N )/(21, and secondary current I becomes I N N )/(12, then any secondary impedance, including load impedance, must becomeI V N N I V /)/('/'221=. Consequently,22212)/('R N N R = and 22212)/('X N N X = . If the primary turns are taken as reference turns, the process is called referring to the primary side.There are a few checks which can be made to see if the procedure outlined is valid.For example, the copper loss in the referred secondary winding must be the same as in the original secondary otherwise the primary would have to supply a differentloss power. ''222R I must be equal to 222R I . )222122122/()/(N N R N N I •• does infact reduce to 222R I .Similarly the stored magnetic energy in the leakage field)2/1(2LI which is proportional to 22'X I will be found to check as ''22X I . The referred secondary 2212221222)/()/(''I E N N I N N E I E kVA =•==.The argument is sound, though at first it may have seemed suspect. In fact, if the actual secondary winding was removed physically from the core and replaced by the equivalent winding and load circuit designed to give the parameters 1N ,'2R ,'2X and '2I , measurements from the primary terminals would be unable to detect any difference in secondary ampere-turns, kVA demand or copper loss, under normal power frequency operation.There is no point in choosing any basis other than equal turns on primary andreferred secondary, but it is sometimes convenient to refer the primary to the secondary winding. In this case, if all the subscript 1’s are interchanged for the subscript 2’s, the necessary referring constants are easily found; e.g. 2'1R R ≈,21'X X ≈; similarly 1'2R R ≈ and 12'X X ≈.The equivalent circuit for the general case where 21N N ≠ except that m r hasbeen added to allow for iron loss and an ideal lossless transformation has been included before the secondary terminals to return '2V to 2V .All calculations of internal voltage and power losses are made before this ideal transformation is applied. The behaviour of a transformer as detected at both sets of terminals is the same as the behaviour detected at the corresponding terminals of this circuit when the appropriate parameters are inserted. The slightly different representation showing the coils 1N and 2N side by side with a core in between is only used for convenience. On the transformer itself, the coils are , of course , wound round the same core.Very little error is introduced if the magnetising branch is transferred to the primary terminals, but a few anomalies will arise. For example ,the current shown flowing through the primary impedance is no longer the whole of the primary current.The error is quite small since 0I is usually such a small fraction of 1I . Slightlydifferent answers may be obtained to a particular problem depending on whether or not allowance is made for this error. With this simplified circuit, the primary and referred secondary impedances can be added to give:221211)/(Re N N R R += and 221211)/(N N X X Xe +=It should be pointed out that the equivalent circuit as derived here is only valid for normal operation at power frequencies; capacitance effects must be taken into account whenever the rate of change of voltage would give rise to appreciablecapacitance currents, dt CdV I c /=. They are important at high voltages and atfrequencies much beyond 100 cycles/sec. A further point is not the only possible equivalent circuit even for power frequencies .An alternative , treating the transformer as a three-or four-terminal network, gives rise to a representation which is just as accurate and has some advantages for the circuit engineer who treats all devices as circuit elements with certain transfer properties. The circuit on this basiswould have a turns ratio having a phase shift as well as a magnitude change, and the impedances would not be the same as those of the windings. The circuit would not explain the phenomena within the device like the effects of saturation, so for an understanding of internal behaviour .There are two ways of looking at the equivalent circuit:(a) viewed from the primary as a sink but the referred load impedance connected across '2V ,or(b) viewed from the secondary as a source of constant voltage 1V with internal drops due to 1Re and 1Xe . The magnetizing branch is sometimes omitted in this representation and so the circuit reduces to a generator producing a constant voltage 1E (actually equal to 1V ) and having an internal impedance jX R + (actually equal to 11Re jXe +).In either case, the parameters could be referred to the secondary winding and this may save calculation time .The resistances and reactances can be obtained from two simple light load tests. Introduction to DC MachinesDC machines are characterized by their versatility. By means of various combination of shunt, series, and separately excited field windings they can be designed to display a wide variety of volt-ampere or speed-torque characteristics for both dynamic and steadystate operation. Because of the ease with which they can be controlled , systems of DC machines are often used in applications requiring a wide range of motor speeds or precise control of motor output.The essential features of a DC machine are shown schematically. The stator has salient poles and is excited by one or more field coils. The air-gap flux distribution created by the field winding is symmetrical about the centerline of the field poles. This axis is called the field axis or direct axis.As we know , the AC voltage generated in each rotating armature coil is converted to DC in the external armature terminals by means of a rotating commutator and stationary brushes to which the armature leads are connected. The commutator-brush combination forms a mechanical rectifier, resulting in a DCarmature voltage as well as an armature m.m.f. wave which is fixed in space. The brushes are located so that commutation occurs when the coil sides are in the neutral zone , midway between the field poles. The axis of the armature m.m.f. wave then in 90 electrical degrees from the axis of the field poles, i.e., in the quadrature axis. In the schematic representation the brushes are shown in quarature axis because this is the position of the coils to which they are connected. The armature m.m.f. wave then is along the brush axis as shown.. (The geometrical position of the brushes in an actual machine is approximately 90 electrical degrees from their position in the schematic diagram because of the shape of the end connections to the commutator.)The magnetic torque and the speed voltage appearing at the brushes are independent of the spatial waveform of the flux distribution; for convenience we shall continue to assume a sinusoidal flux-density wave in the air gap. The torque can then be found from the magnetic field viewpoint.The torque can be expressed in terms of the interaction of the direct-axis air-gapflux per pole d Φ and the space-fundamental component 1a F of the armature m.m.f.wave . With the brushes in the quadrature axis, the angle between these fields is 90 electrical degrees, and its sine equals unity. For a P pole machine 12)2(2a d F P T ϕπ=In which the minus sign has been dropped because the positive direction of thetorque can be determined from physical reasoning. The space fundamental 1a F ofthe sawtooth armature m.m.f. wave is 8/2π times its peak. Substitution in above equation then givesa d a a d a i K i m PC T ϕϕπ==2 Where a i =current in external armature circuit;a C =total number of conductors in armature winding;m =number of parallel paths through winding;Andm PC K aa π2=Is a constant fixed by the design of the winding.The rectified voltage generated in the armature has already been discussedbefore for an elementary single-coil armature. The effect of distributing the winding in several slots is shown in figure ,in which each of the rectified sine waves is the voltage generated in one of the coils, commutation taking place at the moment when the coil sides are in the neutral zone. The generated voltage as observed from the brushes is the sum of the rectified voltages of all the coils in series between brushesand is shown by the rippling line labeled a e in figure. With a dozen or socommutator segments per pole, the ripple becomes very small and the average generated voltage observed from the brushes equals the sum of the average values ofthe rectified coil voltages. The rectified voltage a e between brushes, known also asthe speed voltage, ism d a m d a a W K W m PC e ϕϕπ==2 Where a K is the design constant. The rectified voltage of a distributed winding has the same average value as that of a concentrated coil. The difference is that the ripple is greatly reduced.From the above equations, with all variable expressed in SI units:m a a Tw i e =This equation simply says that the instantaneous electric power associated with the speed voltage equals the instantaneous mechanical power associated with the magnetic torque , the direction of power flow being determined by whether the machine is acting as a motor or generator.The direct-axis air-gap flux is produced by the combined m.m.f. f f i N ∑ of the field windings, the flux-m.m.f. characteristic being the magnetization curve for the particular iron geometry of the machine. In the magnetization curve, it is assumed that the armature m.m.f. wave is perpendicular to the field axis. It will be necessary to reexamine this assumption later in this chapter, where the effects of saturation are investigated more thoroughly. Because the armature e.m.f. is proportional to flux times speed, it is usually more convenient to express the magnetization curve in termsof the armature e.m.f. 0a e at a constant speed 0m w . The voltage a e for a given fluxat any other speed m w is proportional to the speed,i.e. 00a m m a e w w e =Figure shows the magnetization curve with only one field winding excited. This curve can easily be obtained by test methods, no knowledge of any design details being required.Over a fairly wide range of excitation the reluctance of the iron is negligible compared with that of the air gap. In this region the flux is linearly proportional to the total m.m.f. of the field windings, the constant of proportionality being the direct-axis air-gap permeance.The outstanding advantages of DC machines arise from the wide variety of operating characteristics which can be obtained by selection of the method of excitation of the field windings. The field windings may be separately excited from an external DC source, or they may be self-excited; i.e., the machine may supply its own excitation. The method of excitation profoundly influences not only the steady-state characteristics, but also the dynamic behavior of the machine in control systems.The connection diagram of a separately excited generator is given. The required field current is a very small fraction of the rated armature current. A small amount of power in the field circuit may control a relatively large amount of power in the armature circuit; i.e., the generator is a power amplifier. Separately excited generators are often used in feedback control systems when control of the armature voltage over a wide range is required. The field windings of self-excited generators may be supplied in three different ways. The field may be connected in series with the armature, resulting in a shunt generator, or the field may be in two sections, one of which is connected in series and the other in shunt with the armature, resulting in a compound generator. With self-excited generators residual magnetism must be present in the machine iron to get the self-excitation process started.In the typical steady-state volt-ampere characteristics, constant-speed primemovers being assumed. The relation between the steady-state generated e.m.f. a Eand the terminal voltage t V isa a a t R I E V -=Where a I is the armature current output and a R is the armature circuitresistance. In a generator, a E is large than t V ; and the electromagnetic torque T is acountertorque opposing rotation.The terminal voltage of a separately excited generator decreases slightly with increase in the load current, principally because of the voltage drop in the armature resistance. The field current of a series generator is the same as the load current, so that the air-gap flux and hence the voltage vary widely with load. As a consequence, series generators are not often used. The voltage of shunt generators drops off somewhat with load. Compound generators are normally connected so that the m.m.f. of the series winding aids that of the shunt winding. The advantage is that through the action of the series winding the flux per pole can increase with load, resulting in a voltage output which is nearly constant. Usually, shunt winding contains many turns of comparatively heavy conductor because it must carry the full armature current of the machine. The voltage of both shunt and compound generators can be controlled over reasonable limits by means of rheostats in the shunt field. Any of the methods of excitation used for generators can also be used for motors. In the typical steady-state speed-torque characteristics, it is assumed that the motor terminals are supplied froma constant-voltage source. In a motor the relation between the e.m.f. a E generated inthe armature and the terminal voltage t V isa a a t R I E V +=Where a I is now the armature current input. The generated e.m.f. a E is nowsmaller than the terminal voltage t V , the armature current is in the oppositedirection to that in a motor, and the electromagnetic torque is in the direction to sustain rotation of the armature.In shunt and separately excited motors the field flux is nearly constant. Consequently, increased torque must be accompanied by a very nearly proportional increase in armature current and hence by a small decrease in counter e.m.f. to allow this increased current through the small armature resistance. Since counter e.m.f. is determined by flux and speed, the speed must drop slightly. Like the squirrel-cage induction motor ,the shunt motor is substantially a constant-speed motor having about 5 percent drop in speed from no load to full load. Starting torque and maximum torque are limited by the armature current that can be commutatedsuccessfully.An outstanding advantage of the shunt motor is ease of speed control. With a rheostat in the shunt-field circuit, the field current and flux per pole can be varied at will, and variation of flux causes the inverse variation of speed to maintain counter e.m.f. approximately equal to the impressed terminal voltage. A maximum speed range of about 4 or 5 to 1 can be obtained by this method, the limitation again being commutating conditions. By variation of the impressed armature voltage, very wide speed ranges can be obtained.In the series motor, increase in load is accompanied by increase in the armature current and m.m.f. and the stator field flux (provided the iron is not completely saturated). Because flux increases with load, speed must drop in order to maintain the balance between impressed voltage and counter e.m.f.; moreover, the increase in armature current caused by increased torque is smaller than in the shunt motor because of the increased flux. The series motor is therefore a varying-speed motor with a markedly drooping speed-load characteristic. For applications requiring heavy torque overloads, this characteristic is particularly advantageous because the corresponding power overloads are held to more reasonable values by the associated speed drops. Very favorable starting characteristics also result from the increase in flux with increased armature current.In the compound motor the series field may be connected either cumulatively, so that its.m.m.f.adds to that of the shunt field, or differentially, so that it opposes. The differential connection is very rarely used. A cumulatively compounded motor has speed-load characteristic intermediate between those of a shunt and a series motor, the drop of speed with load depending on the relative number of ampere-turns in the shunt and series fields. It does not have the disadvantage of very high light-load speed associated with a series motor, but it retains to a considerable degree the advantages of series excitation.The application advantages of DC machines lie in the variety of performance characteristics offered by the possibilities of shunt, series, and compound excitation. Some of these characteristics have been touched upon briefly in this article. Stillgreater possibilities exist if additional sets of brushes are added so that other voltages can be obtained from the commutator. Thus the versatility of DC machine systems and their adaptability to control, both manual and automatic, are their outstanding features.中文翻译负载运行的变压器及直流电机导论通过选择合适的匝数比,一次侧输入电压1V 可任意转换成所希望的二次侧开路电压2E 。

电气工程及其自动化专业 外文文献 英文文献 外文翻译 plc方面

电气工程及其自动化专业 外文文献 英文文献 外文翻译 plc方面

1、外文原文(复印件)A: Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tu ry[1].Th es e to w typ e s of a rc hi te ctu r e ar e fo un d i n s in gl e-ch ip m i cr oc om pu te r. So m e em pl oy t he sp l it p ro gr am/d ata me mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n i n -5A, ot he rs fo ll ow th e ph i lo so ph y, w i de ly a da pt ed fo r g en er al-p ur pos e c om pu te rs an d m i cr op ro ce ss or s, o f m a ki ng no lo gi c al di st in ct io n b e tw ee n p ro gr am a n d da t a m em ory a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n in-5A.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e dev i ce, as s ho wn in Fi g3-5A-3.-5A-1 A Harvard type-5A. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s u su al ly f or th e p er ma ne nt, n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d mi cr oc on tr ol le r s a re in t en de d fo r h ig h-v ol ume a p pl ic at io ns a nd h en ce t he e co nom i ca l ma nu fa ct ure of t he d ev ic es r e qu ir es t ha t the co nt en ts o f the pr og ra m me mo ry b e co mm it te dp e rm an en tl y d ur in g th e m an uf ac tu re o f c hi ps . Cl ear l y, th is im pl ie sa ri g or ou s a pp roa c h t o R OM co de d e ve lo pm en t s in ce c ha ng es ca nn otb e m ad e af te r man u fa ct ur e .T hi s d e ve lo pm en t pr oce s s ma y in vo lv e e m ul at io n us in g a s op hi st ic at ed deve lo pm en t sy st em w i th a ha rd wa re e m ul at io n ca pa bil i ty a s we ll a s th e u se of po we rf ul so ft wa re t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th ei r ra ng e de vi ce s wi th (or i nt en de d fo r us e wi th) u s er pr og ra mm ab le m em or y. Th e s im p le st of th es e i s us ua ll y d ev ice w h ic h ca n op er ate in a m ic ro pr oce s so r mo de b y usi n g so me o f th e i n pu t/ou tp ut li ne s as a n ad dr es s an d da ta b us f or acc e ss in g e xt er na l m e mo ry. T hi s t ype o f d ev ic e c an b e ha ve fu nc ti on al l y a s t he si ng le c h ip mi cr oc om pu te r fr om wh ic h i t i s de ri ve d a lb eit w it h r es tr ic ted I/O an d a mo di fie d e xt er na l ci rcu i t. T he u se o f t h es e RO Ml es sd e vi ce s is c om mo n e ve n in p ro du ct io n c ir cu it s wh er e t he v ol um e do es n o t ju st if y th e d e ve lo pm en t co sts of c us to m on-ch i p RO M[2];t he re c a n st il l b e a si g ni fi ca nt s a vi ng in I/O a nd ot he r c hi ps co mp ar ed t o a c on ve nt io nal mi cr op ro ce ss or b as ed c ir cu it. M o re e xa ctr e pl ac em en t fo r RO M d ev ic es c an b e o bt ai ne d in t he f o rm o f va ri an ts w i th 'pi gg y-ba ck'EP RO M(Er as ab le p ro gr am ma bl e ROM)s oc ke ts o rd e vi ce s w it h EP ROM i ns te ad o f R OM 。

电气 自动化 外文文献 外文翻译 英文文献

电气 自动化 外文文献 外文翻译 英文文献

外文出处:Farhadi, A. (2008). Modeling, simulation, and reduction of conducted electromagnetic interference due to a pwm buck type switching power supply. Harmonics and Quality of Power, 2008. ICHQP 2008. 13th International Conference on, 1 - 6.Modeling, Simulation, and Reduction of Conducted Electromagnetic Interference Due to a PWM Buck Type Switching Power Supply IA. FarhadiAbstract:Undesired generation of radiated or conducted energy in electrical systems is called Electromagnetic Interference (EMI). High speed switching frequency in power electronics converters especially in switching power supplies improves efficiency but leads to EMI. Different kind of conducted interference, EMI regulations and conducted EMI measurement are introduced in this paper. Compliancy with national or international regulation is called Electromagnetic Compatibility (EMC). Power electronic systems producers must regard EMC. Modeling and simulation is the first step of EMC evaluation. EMI simulation results due to a PWM Buck type switching power supply are presented in this paper. To improve EMC, some techniques are introduced and their effectiveness proved by simulation.Index Terms:Conducted, EMC, EMI, LISN, Switching SupplyI. INTRODUCTIONFAST semiconductors make it possible to have high speed and high frequency switching in power electronics []1. High speed switching causes weight and volume reduction of equipment, but some unwanted effects such as radio frequency interference appeared []2. Compliance with electromagnetic compatibility (EMC) regulations is necessary for producers to present their products to the markets. It is important to take EMC aspects already in design phase []3. Modeling and simulation is the most effective tool to analyze EMC consideration before developing the products. A lot of the previous studies concerned the low frequency analysis of power electronics components []4[]5. Different types of power electronics converters are capable to be considered as source of EMI. They could propagate the EMI in both radiated and conducted forms. Line Impedance Stabilization Network (LISN) is required for measurement and calculation of conducted interference level []6. Interference spectrum at the output of LISN is introduced as the EMC evaluation criterion []7[]8. National or international regulations are the references forthe evaluation of equipment in point of view of EMC []7[]8.II. SOURCE, PATH AND VICTIM OF EMIUndesired voltage or current is called interference and their cause is called interference source. In this paper a high-speed switching power supply is the source of interference.Interference propagated by radiation in area around of an interference source or by conduction through common cabling or wiring connections. In this study conducted emission is considered only. Equipment such as computers, receivers, amplifiers, industrial controllers, etc that are exposed to interference corruption are called victims. The common connections of elements, source lines and cabling provide paths for conducted noise or interference. Electromagnetic conducted interference has two components as differential mode and common mode []9.A. Differential mode conducted interferenceThis mode is related to the noise that is imposed between different lines of a test circuit by a noise source. Related current path is shown in Fig. 1 []9. The interference source, path impedances, differential mode current and load impedance are also shown in Fig. 1.B. Common mode conducted interferenceCommon mode noise or interference could appear and impose between the lines, cables or connections and common ground. Any leakage current between load and common ground couldbe modeled by interference voltage source.Fig. 2 demonstrates the common mode interference source, common mode currents Iandcm1 and the related current paths[]9.The power electronics converters perform as noise source Icm2between lines of the supply network. In this study differential mode of conducted interference is particularly important and discussion will be continued considering this mode only.III. ELECTROMAGNETIC COMPATIBILITY REGULATIONS Application of electrical equipment especially static power electronic converters in different equipment is increasing more and more. As mentioned before, power electronics converters are considered as an important source of electromagnetic interference and have corrupting effects on the electric networks []2. High level of pollution resulting from various disturbances reduces the quality of power in electric networks. On the other side some residential, commercial and especially medical consumers are so sensitive to power system disturbances including voltage and frequency variations. The best solution to reduce corruption and improve power quality is complying national or international EMC regulations. CISPR, IEC, FCC and VDE are among the most famous organizations from Europe, USA and Germany who are responsible for determining and publishing the most important EMC regulations. IEC and VDE requirement and limitations on conducted emission are shown in Fig. 3 and Fig. 4 []7[]9.For different groups of consumers different classes of regulations could be complied. Class Afor common consumers and class B with more hard limitations for special consumers are separated in Fig. 3 and Fig. 4. Frequency range of limitation is different for IEC and VDE that are 150 kHz up to 30 MHz and 10 kHz up to 30 MHz respectively. Compliance of regulations is evaluated by comparison of measured or calculated conducted interference level in the mentioned frequency range with the stated requirements in regulations. In united European community compliance of regulation is mandatory and products must have certified label to show covering of requirements []8.IV. ELECTROMAGNETIC CONDUCTED INTERFERENCE MEASUREMENTA. Line Impedance Stabilization Network (LISN)1-Providing a low impedance path to transfer power from source to power electronics converter and load.2-Providing a low impedance path from interference source, here power electronics converter, to measurement port.Variation of LISN impedance versus frequency with the mentioned topology is presented inFig. 7. LISN has stabilized impedance in the range of conducted EMI measurement []7.Variation of level of signal at the output of LISN versus frequency is the spectrum of interference. The electromagnetic compatibility of a system can be evaluated by comparison of its interference spectrum with the standard limitations. The level of signal at the output of LISN in frequency range 10 kHz up to 30 MHz or 150 kHz up to 30 MHz is criterion of compatibility and should be under the standard limitations. In practical situations, the LISN output is connected to a spectrum analyzer and interference measurement is carried out. But for modeling and simulation purposes, the LISN output spectrum is calculated using appropriate software.基于压降型PWM开关电源的建模、仿真和减少传导性电磁干扰摘要:电子设备之中杂乱的辐射或者能量叫做电磁干扰(EMI)。

电气工程的外文文献(及翻译)

电气工程的外文文献(及翻译)

电气工程的外文文献(及翻译)文献一:Electric power consumption prediction model based on grey theory optimized by genetic algorithms本文介绍了一种基于混合灰色理论与遗传算法优化的电力消耗预测模型。

该模型使用时间序列数据来建立模型,并使用灰色理论来解决数据的不确定性问题。

通过遗传算法的优化,模型能够更好地预测电力消耗,并取得了优异的预测结果。

此模型可以在大规模电力网络中使用,并具有较高的可行性和可靠性。

文献二:Intelligent control for energy-efficient operation of electric motors本文研究了一种智能控制方法,用于电动机的节能运行。

该方法提供了一种更高效的控制策略,使电动机能够在不同负载条件下以较低的功率运行。

该智能控制使用模糊逻辑方法来确定最佳的控制参数,并使用遗传算法来优化参数。

实验结果表明,该智能控制方法可以显著降低电动机的能耗,节省电能。

文献三:Fault diagnosis system for power transformers based on dissolved gas analysis本文介绍了一种基于溶解气体分析的电力变压器故障诊断系统。

通过对变压器油中的气体样品进行分析,可以检测和诊断变压器内部存在的故障类型。

该系统使用人工神经网络模型来对气体分析数据进行处理和分类。

实验结果表明,该系统可以准确地检测和诊断变压器的故障,并有助于实现有效的维护和管理。

文献四:Power quality improvement using series active filter based on iterative learning control technique本文研究了一种基于迭代研究控制技术的串联有源滤波器用于电能质量改善的方法。

毕业设计毕业论文电气工程及其自动化外文翻译中英文对照

毕业设计毕业论文电气工程及其自动化外文翻译中英文对照

毕业设计毕业论文电气工程及其自动化外文翻译中英文对照电气工程及其自动化外文翻译中英文对照一、引言电气工程及其自动化是一门涉及电力系统、电子技术、自动控制和信息技术等领域的综合学科。

本文将翻译一篇关于电气工程及其自动化的外文文献,并提供中英文对照。

二、文献翻译原文标题:Electric Engineering and Its Automation作者:John Smith出版日期:2020年摘要:本文介绍了电气工程及其自动化的基本概念和发展趋势。

首先,介绍了电气工程的定义和范围。

其次,探讨了电气工程在能源领域的应用,包括电力系统的设计和运行。

然后,介绍了电气工程在电子技术领域的重要性,包括电子设备的设计和制造。

最后,讨论了电气工程与自动控制和信息技术的结合,以及其在工业自动化和智能化领域的应用。

1. 介绍电气工程是一门研究电力系统和电子技术的学科,涉及发电、输电、配电和用电等方面。

电气工程的发展与电力工业的发展密切相关。

随着电力需求的增长和电子技术的进步,电气工程的重要性日益凸显。

2. 电气工程在能源领域的应用电气工程在能源领域的应用主要包括电力系统的设计和运行。

电力系统是由发电厂、输电线路、变电站和配电网络等组成的。

电气工程师负责设计和维护这些设施,以确保电力的可靠供应。

3. 电气工程在电子技术领域的重要性电气工程在电子技术领域的重要性体现在电子设备的设计和制造上。

电子设备包括电脑、手机、电视等消费电子产品,以及工业自动化设备等。

电气工程师需要掌握电子电路设计和数字信号处理等技术,以开发出高性能的电子设备。

4. 电气工程与自动控制和信息技术的结合电气工程与自动控制和信息技术的结合是电气工程及其自动化的核心内容。

自动控制技术可以应用于电力系统的运行和电子设备的控制,以提高系统的稳定性和效率。

信息技术则可以用于数据采集、处理和传输,实现对电力系统和电子设备的远程监控和管理。

5. 电气工程在工业自动化和智能化领域的应用电气工程在工业自动化和智能化领域的应用越来越广泛。

电气自动化 单片机 外文文献 英文文献 外文翻译 中英对照

Single-chip1.The definition of a single-chipSingle-chip is an integrated on a single chip a complete computer system .Even though most of his features in a small chip,but it has a need to complete the majority of computer components:CPU,memory,internal and external bus system,most will have the Core.At the same time,such as integrated communication interfaces,timers,real-time clock and other peripheral equipment.And now the most powerful single-chip microcomputer system can even voice ,image,networking,input and output complex system integration on a single chip.Also known as single-chip MCU(Microcontroller),because it was first used in the field of industrial control.Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large numberof peripherals and CPU in a single chip,the computer system so that smaller,more easily integrated into the complex and demanding on the volume control devices.INTEL the Z80 is one of the first design in accordance with the idea of the processor,From then on,the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all the four.One of the most successful is INTELs 8031,because the performance of a simple and reliable access to a lot of good praise.Since then in 8031to develop a single-chip microcomputer system MCS51 series.based on single-chip microcomputer system of the system is still widely used until now.As the field of industrial control requirements increase in the beginning of a 16-bit single-chip,but not ideal because the price has not been very widely used.After the90s with the big consumer electronics product development,single-chip technology is a huge improvement.INTEL i960 series with subsequent ARM in particular ,a broad range of application,quickly replaced by 32-bit single-chip 16-bit single-chip performance has been the rapid increase in processing power compared to the 80s to raise a few hundred times.At present,the high-end 32-bit single-chip frequency over 300MHz,the performance of the mid-90s close on the heels of a special processor,while the ordinary price of the model dropped to one U.S dollars,the most high-end models,only 10 U.S dollars.Contemporary single-chip microcomputer system is no longer only the bare-metal environment in the development and use of a large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer.In PDAs and cellphones as the coreprocessing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems,so it was up to the application.In fact the number of single-chip is the worlds largest computer.Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration.Phone,telephone,calculator,home applicances,electronic toys,handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip.And personal computers also have a large number of single-chip microcomputer in the workplace.Vehicles equipped with more than 40 Department of the general single-chip ,complex industrial control systems and even single-chip may have hundreds of work at the same time!SCM is not only far exceeds the number of PC and other integrated computing,even more than the number of human beings.2.single-chip introducedSingle-chip,also known as single-chip microcontroller,it is not the completion of a logic function of the chip,but a computer system integrated into a chip.Speaking in general terms: a single chip has become a computer .Its small size,light weight,cheap,for the learning,application and development of facilities provided .At the same time,learning to use the principle of single-chip computer to understand and structure the best choice.Single-chip and computer use is also similar to the module,such as CPU,memory,parallel bus, as well as the role and the same hard memory,is it different from the performance of these components are relatively weak in our home computer a lot,but the price is low ,there is generally no more than 10yuan,,can use it to make some control for a class of electrical work is not very complex is sufficient.We are using automatic drum washing machines, smoke hood,VCD and so on inside the home appliances can see its shadow! It is mainly as part of the core components of the control.It is an online real-time control computer,control-line is at the scene,we need to have a stronger anti-interference ability,low cost,and this is off-line computer(such as home PC)The main difference.By single-chip process,and can be amended.Through different procedures to achieve different functions,in particular the special unique features,this is the need to charge other devices can do a great effort,some of it is also difficult to make great efforts to do so .A function is not very complicated fi the United States the development of the 50s series of 74 or 60 during the CD4000series to get these pure hardware,the circuit must be a big PCB board !However,if the United States if the successful 70s seriesof single-chip market ,the result will be different!Simply because the adoption of single-chip preparation process you can achieve high intelligence,high efficiency and high reliability!Because of cost of single-chip is sensitive,so the dominant software or the lowest level assembly language,which is in addition to the lowest level for more than binary machine code of the language ,since such a low-level so why should we use ?Many of the seniors language has reached a level of visual programming why is it not in use ?The reason is simple ,that is,single-chip computer as there is no home of CPU,also not as hard as the mass storage device.A visualization of small high-level language program,even if there is only one button which will reach the size of dozens of K! For the home PCs hard drive is nothing,but in terms of the single-chip microcomputer is unacceptable.Single-chip in the utilization of hardware resources have to do very high ,so the compilation of the original while still in heavy use .The same token ,if the computer giants operating system and appplications run up to get the home PC,homePCcan not afford to sustain the same.It can be said that the twentieth century across the three “power”of the times,that is ,the electrical era,the electronic age and has now entered the computer age. However ,such a computer,usually refers to a personal computer,or PC.It consisits of the host ,keyboards,displays .And other components.There is also a type of computer,not how most people are familiar with . This computer is smart to give a variety of mechanical single-chip(also known as micro-controller).As the name suggests,these computer systems use only the minimum of an integrated circuit to make a simple calculation and control. Because of its small size,are usually charged with possession of machine in the “belly”in. It in the device,like the human mind plays a role, it is wrong,the entire device was paralyzed .Now,this single chip has a very wide field of use,such as smart meters,real-time industrial control,communications equipment,navigation systems,and household appliances. Once a variety of products with the use of the single-chip ,will be able to play so that the effectiveness of product upgrading,product names often adjective before the word “intelligent”,such as was hing machines and so intelligent.At present,some technical personnel of factories or other amateur electrtonics developers from engaging in certain products ,not the circuit is too complex ,that is functional and easy to be too simple imitation.The reason may be the product not on the cards or the use of single-chip programmable logic device on the other.3.single-chip historysingle-chip 70 was born in the late 20th century,experienced a SCM,MCU,SOC three stages.Single-chip micro-computer 1.SCM that(Single Chip Microcomputer)stage,is mainly a single from to find the best of the best embedded systems architecture.”Innovation model”to be successful,lay the SCM with the general-purpose computers,a completely different path of development . In embedded systems to create an independent development path,Intel Corporation credit.That is 2.MCU microcontroller(Micro Controller Unit)stage,the main direction of technology development: expanding to meet the embedded applications,the target system requirements for the various peripheral circuits and interface circuits,to highlingt the target of intelligent control.It covers all areas related with the objectSystem,therefore,the development of MCU inevitably fall on the heavy electrical,electronics manufacturers. From this point of view ,Intels development gradually MCU has its objective factors.MCU in the development ,the most famous manufacturers when the number of Philips Corporation.Philips in embedded applications for its enormous advantages,the MCS-51 from the rapid deveploment of single-chip micro-computer to the microcontroller.Therefore,when we look back at the path of development of embedded systems,Intel and Philips do not forget the historical merits.3.Single-chip is an independent embedded systems development,to the MCU an important factor in the development stage,is seeking applications to maximize the natural trend .With the mico-electronics technology,IC design,EDA tools development,based on the single-chip SOC design application systems will have greater development. Therefore,the understanding of single-chip micro-computer from a single ,monolithic single-chip microcontroller extends to applications.4.Single-chip applicationsAt present,single-chip microcomputer to infiltrate all areas of our lives,which is very difficult to find the area of almost no traces of single-chip microcomputer.Missile navigation equipment,aircraft control on a variety of instruments,compuer network communications and data transmission,industrial automation,real-time process control and data processing ,are widely used in a variety of smart IC card,limousine civilian security systems,video recorders,cameras,the control of automatic washing machines,as well as program-controllde toys,electronic pet,etc,which are inseparable from the single-chip microcomputer.Not to mention the field of robot automation ,intelligent instrumentation,medical equipment has been. Therefore,the single- chip learning ,development and application to a large number of computer applications and intelligent control of scientists,engineers.Single-chip widely used in instruments and meters,household appliances,medical equipment ,acrospace,specialized equipment and the intellingent management in areas such as process control,generally can be divided into the following areas:1.In the smart application of instrumentationSingle-chip with small size,low power consumption,control,and expansion flexibility , miniaturization and ease of sensors,can be realized,suchvoltage,power,frequency,humidity,temperature,flow,speed,thickness,angle,length,hardness,elemen t,measurement of physical pressure. SCM makes use of digital instrumentation,intelligence,miniaturization and functional than the use of electronic or digital circuitry even stronger.For example,precision measurement equipment(power meter,oscilloscope,and analyzer).2.In the industrial controlMCU can constitute a variety of control systems,data acquisition system.Such as factory assembly line of intelligent management ,intelligent control of the lift ,all kinds of alarm systems ,and computer networks constitute a secondary control system.3.In the applicationof household appliancesIt can be said that almost all home appliances are using the single-chip control,electric rice from favorable,washing machines,refrigerators,air conditioners,color TV and other audio video equipment,and then to the electronic weighing equipment,all kinds ,everywhere.4.On computer networks and communication applications in the field ofGenerally with the modern single-chip communication interface,can be easily carried out with computer carried out with computer data communications,computer networks and in inter-application communications equipment to provide an excellent material conditions,the communications equipment to provide an excellent material condition,from the mobile phone ,telephone , mini-program-controlled switchboards,buiding automated communications system call,the train wireless communications,and then you can see day-to-day work of mobile phones,Mobile communications,such as radios.5.Single-chip in the field of medical equipment applicationsSingle-chip microcomputer in medical devices have a wide range of purpose,such as medical ventilator,various analyzers,monitors,ultrasonic diagnostic equipment and hospital call systems.6.In a variety of large-scale electrical applications of modularSome special single-chip design to achieve a specific function to carry out a variety of modular circuitapplications,without requiring users to understand its internal structure.Integrated single-chip microcomputer such as music ,which seems to be simpleFunctions,a miniature electronic chip in a pure(as distinct from the principle of tape machine),would require a complex similar to the principle of the computer. Such as :music signal to digital form stored in memory(similar to ROM),read out by the microcontroller into analog music signal(similar to the sound card).In large circuits,modular applications that greatly reduces the size ,simplifying the circuit and reduce the damage,error rate ,but also to facilitate the replacement.In addition,single-chip microcomputer in the industrial,commercial,financial,scientific research ,education,defense aerospace and other fields have a wide range of uses.单片机1.单片机定义单片机是一种集成在电路芯片上的完整计算机系统。

3-电气工程及其自动化专业-外文文献-英文文献-外文翻译-plc方面

1、外文原文A: Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tu ry[1].Th es e to w typ e s of a rc hi te ctu r e ar e fo un d i n s in gl e-ch ip m i cr oc om pu te r. So m e em pl oy t he sp l it p ro gr am/d ata me mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n in Fi g.3-5A-1, o th ers fo ll ow t hep h il os op hy, wi del y a da pt ed f or ge n er al-p ur po se co m pu te rs a ndm i cr op ro ce ss o r s, of ma ki ng no lo gi c al di st in ct io n be tw ee n p ro gr am a n d da ta m em or y a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n inF i g.3-5A-2.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e d ev i ce, as s ho wn in Fi g3-5A-3.Fig.3-5A-1 A Harvard typeFig.3-5A-2. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s u su al ly f or th e p er ma ne nt,n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d m ar e i nt en de d f or hi gh-v ol um e a p pl ic at io ns a nd h e nc e t he ec on omi c al ma nu fa ct ur e of th e d ev ic es re q ui re s t ha t t he c o nt en ts of th e pr o gr am me mo ry be c o mm it te d p er ma ne n tl y d ur in g t he m a nu fa ct ur e o f ch i ps . C le ar ly, t h is im pl ie s a ri g or ou s a pp ro ach t o R OM c od e de vel o pm en t si nc e cha n ge s ca nn ot b e m a de a ft erm a nu fa ct ur e .Th is d ev el op me nt pro c es s m ay in vo lve e mu la ti on us ing a so ph is ti ca te d d e ve lo pm en t sy ste m w it h a ha rd war e e mu la ti onc a pa bi li ty a s wel l a s th e us e of p ow er fu l so ft war e t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th ei r ra ng e de vi ce s wi th (or i nt en de d fo r us e wi th) u s er pr og ra mm ab le m em or y. Th e s im p le st of th es e i s us ua ll y d ev ice w h ic h ca n op er ate in a m ic ro pr oce s so r mo de b y usi n g so me o f th e i n pu t/ou tp ut li ne s as a n ad dr es s an d da ta b us f or acc e ss in g e xt er na l m e mo ry. T hi s t ype o f d ev ic e c an b e ha ve fu nc ti on al l y a s t he si ng le c h ip mi cr oc om pu te r fr om wh ic h i t i s de ri ve d a lb eit w it h r es tr ic ted I/O an d a mo di fie d e xt er na l ci rcu i t. T he u se o f th e se de vi ce s isc o mm on ev en i n prod uc ti on ci rc ui ts w he re t he v ol ume d oe s no t ju st ify t h e d ev el op me nt c o st s of c us to m o n-c hi p R OM[2];th e re ca n s ti ll be a si gn if ic an t sav i ng i n I/O an d o t he r ch ip s co mpa r ed t o ac o nv en ti on al m icr o pr oc es so r ba sed ci rc ui t. Mo re ex a ct r ep la ce me ntf o r RO M de vi ce s c a n be o bt ai ne d i n t he f or m of va r ia nt s wi th'p ig gy-b ac k' EP RO M(E ra sa bl e p ro gr a mm ab le RO M )s oc k et s o r d e vi ces w i th E PR OM i ns tea d o f RO M 。

电气工程及其自动化 外文翻译 外文文献 英文文献 电力系统的简介

Brief Introduction to The Electric Power SystemPart 1 Minimum electric power systemA minimum electric power system is shown in Fig.1-1, the system consists of an energy source, a prime mover, a generator, and a load.The energy source may be coal, gas, or oil burned in a furnace to heat water and generate steam in a boiler; it may be fissionable material which, in a nuclear reactor, will heat water to produce steam; it may be water in a pond at an elevation above the generating station; or it may be oil or gas burned in an internal combustion engine.The prime mover may be a steam-driven turbine, a hydraulic turbine or water wheel, or an internal combustion engine. Each one of these prime movers has the ability to convert energy in the form of heat, falling water, or fuel into rotation of a shaft, which in turn will drive the generator.The electrical load on the generator may be lights, motors, heaters, or other devices, alone or in combination. Probably the load will vary from minute to minute as different demands occur.The control system functions (are)to keep the speed of the machines substantially constant and the voltage within prescribed limits, even though the load may change. To meet these load conditions, it is necessary for fuel input to change, for the prime mover input to vary, and for torque on the shaft from the prime mover to change in order that the generator may be kept at constant speed. In addition, the field current to the generator must be adjusted to maintain constant output voltage. Thecontrol system may include a man stationed in the power plant who watches a set of meters on the generator output terminals and makes the necessary adjustments manually. In a modern station, the control system is a servomechanism that senses generator-output conditions and automatically makes the necessary changes in energy input and field current to hold the electrical output within certain specifications..Part 2 More Complicated SystemsIn most situations the load is not directly connected to the generator terminals. More commonly the load is some distance from the generator, requiring a power line connecting them. It is desirable to keep the electric power supply at the load within specifications. However, the controls are near the generator, which may be in another building, perhaps several miles away.If the distance from the generator to the load is considerable, it may be desirable to install transformers at the generator and at the load end, and to transmit the power over a high-voltage line (Fig.1-2). For the same power, the higher-voltage line carries less current, has lower losses for the same wire size, and provides more stable voltage.In some cases an overhead line may be unacceptable. Instead it may be advantageous to use an underground cable. With the power systems talked above, the power supply to the load must be interrupted if, for any reason, any component of the system must be moved from service for maintenance or repair. Additional system load may require more power than the generator can supply. Another generator with its associated transformers and high-voltage line might be added.It can be shown that there are some advantages in making ties between the generators (1) and at the end of the high-voltage lines (2 and 3), as shown in Fig.1-3. This system will operate satisfactorily as long as no trouble develops or no equipmentneeds to be taken out of service.The above system may be vastly improved by the introduction of circuit breakers, which may be opened and closed as needed. Circuit breakers added to the system, Fig.1-4, permit selected piece of equipment to switch out of service without disturbing the remainder of system. With this arrangement any element of the system may be deenergized for maintenance or repair by operation of circuit breakers.Of course, if any piece of equipment is taken out of service, then the total load must be carried by the remaining equipment. Attention must be given to avoid overloads during such circumstances. If possible, outages of equipment are scheduled at times when load requirements are below normal.Fig.1-5 shows a system in which three generators and three loads are tied together by three transmission lines. No circuit breakers are shown in this diagram, although many would be required in such a system.Part 3 Typical System LayoutThe generators, lines, and other equipment which form an electric system are arranged depending on the manner in which load grows in the area and may be rearranged from time to time.However, there are certain plans into which a particular system design may be classified. Three types are illustrated: the radial system, the loop system, and the network system. All of these are shown without the necessary circuit breakers. In each of these systems, a single generator serves four loads.The radial system is shown in Fig.1-6. Here the lines form a “tree” spreading out from the generator. Opening any line results in interruption of power to one or more of the loads.The loop system is illustrated in Fig.1-7. With this arrangement all loads may be served even though one line section is removed from service. In some instances during normal operation, the loop may be open at some point, such as A. In case a line section is to be taken out, the loop is first closed at A and then the line section removed. In this manner no service interruptions occur.Fig.1-8 shows the same loads being served by a network. With this arrangement each load has two or more circuits over which it is fed.Distribution circuits are commonly designed so that they may be classified as radial or loop circuits. The high-voltage transmission lines of most power systems are arranged as network. The interconnection of major power system results in networks made up by many line sections.Part 4 Auxiliary EquipmentCircuit breakers are necessary to deenergize equipment either for normal operation or on the occurrence of short circuits. Circuit breakers must be designed to carry normal-load currents continuously, to withstand the extremely high currents that occur during faults, and to separate contacts and clear a circuit in the presence of fault. Circuit breakers are rated in terms of these duties.When a circuit breaker opens to deenergize a piece of equipment, one side of the circuit breaker usually remains energized, as it is connected to operating equipment. Since it is sometimes necessary to work on the circuit breaker itself, it is also necessary to have means by which the circuit breaker may be completely disconnected from other energized equipment. For this purpose disconnect switches are placed in series with the circuit breakers. By opening these disconnectors, thecircuit breaker may be completely deenergized, permitting work to be carried on in safety.Various instruments are necessary to monitor the operation of the electric power system. Usually each generator, each transformer bank, and each line has its own set of instruments, frequently consisting of voltmeters, ammeters, wattmeters, and varmeters.When a fault occurs on a system, conditions on the system undergo a sudden change. V oltages usually drop and currents increase. These changes are most noticeable in the immediate vicinity of fault. On-line analog computers, commonly called relays, monitor these changes of conditions, make a determination of which breaker should be opened to clear the fault, and energize the trip circuits of those appropriate breakers. With modern equipment, the relay action and breaker opening causes removal of fault within three or four cycles after its initiation.The instruments that show circuit conditions and the relays that protect the circuits are not mounted directly on the power lines but are placed on switchboards in a control house. Instrument transformers are installed on the high-voltage equipment, by means of which it is possible to pass on to the meters and relays representative samples of the conditions on the operating equipment. The primary of a potential transformer is connected directly to the high-voltage equipment. The secondary provides for the instruments and relays a voltage which is a constant fraction of voltage on the operating equipment and is in phase with it;similarly, a current transformer is connected with its primary in the high-current circuit. The secondary winding provides a current that is a known fraction of the power-equipment current and is in phase with it.Bushing potential devices and capacitor potential devices serve the same purpose as potential transformers but usually with less accuracy in regard to ratio and phase angle.中文翻译:电力系统的简介第一部分:最小电力系统一个最小电力系统如图1-1所示,系统包含动力源,原动机,发电机和负载。

电气工程 自动化 外文翻译 外文文献 英文文献 PLC未来发展趋势

4th International DAAAM Conference"INDUSTRIAL ENGINEERING – INNOVATION AS COMPETITIVE EDGE FOR SME"29 - 30th April 2004, Tallinn, EstoniaPROGRAMMABLE LOGIC CONTROLLERS INPROCESS AUTOMATIONAhti Mikkor, Lembit RoosimölderDepartment of Product Development, Institute of Machinery,Tallinn Technical University, Ehitajate tee 5, 19086 Tallinn, Estoniaahti.mikkor@Abstract: Nowadays, control problems are solved using operating components from a wide variety of technologies: electronics, hydraulics, pneumatics and mechanics. Functio-nality, reliability and price of the controlled system are deter-mined by the quality of the solution made. The paper concentrates on practical use of programmable logic controllers (PLC) that is based on the five years project development experience in this area. Successful solutions and problems are under focus.Specific hardware, controller programming problems, data/signals exchange and human machine interfaces are considered. As a result the method for selecting programmable controllers according to specific needs is developed. Practical suggestions, possible hazards and warnings are proposed that could help to avoid mistakes.Key words: programmable controllers, PLC, automation, automation systems, process automation.1. INTRODUCTIONModern machinery consists of both mechanical and electronic parts. Overall functionality is determined by “balance” between these components. Initial planning and solution selection plays critical role in final result.In control methods the selection has to be made between relay-based circuits, special devices, programmable logic controllers (PLC) and new development electronics. This article is concentrated on PLC-s and experience that has collected over 5-year practical work with PLC-s. Strong and weak sides, positive and negative practices are discussed. Suggestions weather to use programmable controllers or not have been formed to help decision making.The most important decision in planning PLC-based system is selecting processor type. Mistakes mean extra costs for modifications or even need for completely new devices. The most common error is overestimating programming possibilities of small-sized processors. There are several methods for selecting PLC. Unfortunately most of them focus on electrical side of PLC-s and maximum count of signals allowed. They don’t involve analysis to determine possible special needs for user program or communications.Based on several existing methods, practical experience and future trends a new method for selecting PLC was developed. Ahti Mikkor has gained his experience by taking part in more than 15 big-scale automation projects. These projects include development of power consumption monitoring system in AS Kunda Nordic Cement factory, renewing testing rig for flowmeters, building Ahtme powerplant turbine safety systems, water treatment plants in towns Rakvere and Põlva, waste water treatment plant in town Jõgeva and development of monitoring system forcentral heating network in Tartu.2. PROS AND CONS IN USING PROGRAMMABLE LOGIC CONTROLLERS2.1 Positive argumentsThe main advantage that programmable controllers provide is flexibility (Jack, 2003). Behaviour of the system can be easily changed via program without any other alterations. Special devices for example make any changes in control algorithm very hard to implement. Flexibility makes PLC-s well suitable for frequently changed applications, for example in robotics.In PLC-s the relations between inputs and outputs are determined by user program. By using advanced programming technologies it is much easier to implement complex control algorithms than in any hard-wired solutions. It makes PLC-s very competitive for complex tasks, for example in controlling chemical processes.Special modules allow vast amount of different signals to be connected to the PLC system. Use of PLC-s should be considered in applications that require some “special” input or output signals. Typical example would be positioning using reference data from high-speed input.Typically PC visualization software packages are made for PLC-s. Some special devices have also PC software packages. Wide range of communication options between PLC-s makes it possible to gather all information from field devices into one central control point.Communication lines between PLC-s allow using information collected from other parts of the system in local process control. Modern communication technologies enable remote diagnostics and configuration (Jack, 2003). These two significantly reduce overall maintenance costs of the system.2.2 Negative argumentsProgrammable controllers are not equipped with enough memory to store big amounts of data. Although future trends show growth in PLC memory sizes, special devices (recorders) are still better suited for standalone datalogging applications. For networked solutions there is possibility to use visualization software packages together with PLC-s to archive collected data in any database format necessary. If logged data amounts are small or there are also control functions included, it’s reasonable to still use PLC-s. About visualization software packages it’s good to know that in standard versions most of them do not support offline recording so that after communication breakdown it is not possible to acquire data backwards from PLC.Modern communication options for PLC-s include standard protocols for example Ethernet. It is tempting to use existing office networks also as data carrier for automation system communications. Time has shown that it is better practice to keep these two separated if there is a need for constant online communication. Hardly traceable temporal network overloads can cause problems also in automation system communications All PLC-s need be programmed. All programming works include risk for accidental errors in control algorithm. Special devices are well tested and generally free of this kind of problems. If available, it’s economically thoughtful to use special devices.Safety applications that require highest degree of reliability should contain simplest devices and circuits possible. There is a rule that every new link in chain decreases overall reliability.In small applications it’s often cost saving to use relay-based circuits instead of PLC-s.3. FUTURE TRENDSProgress in process automation systems is aiming at so called complete automation when allthe human has to do is to enter the parameters of the product wanted and everything else is carried out by machines (Rosin, 2000). Although the destination lies far ahead, trends indicate movement in that direction.Firstly, systems become more and more standardized. Big manufacturers organize their products into families. The aim is to reduce amount of knowledge needed for configuration and maintenan ce works of different devices from same company. It’s also important that this way built applications are easily expandable.Secondly, importance of communication is rising (Hughes, 2000). There are many reasons, some of more essentials are:• Better col laboration of different parts of the system.• Cutting costs on cabling. Less cabling results fall in fault probability, but also increases severity of ones that occur.• Sensors and actuators can be at longer distances from the processor module than if using conventional methods.• Increased scalability of the systems. New devices can be added at minimal costs.• At some cases it is better to make architecture of many small independent modules and network them. This solution enables system to keep working although some parts have failed.•Communication networks ease fault diagnostics and provide remote management possibilities. Central operating stations can be formed relatively easy.• Possibility to connect devices form different manufacturers (OPC Foundation, 2003).Third important tendency is spreading use of so called software controllers or Soft PLC-s (Siemens AG, 2003). These are PC software-based solutions that relate with field devices via communication networks. There is no need for processor module, resources of PC are used. Some Soft PLC-s are still formed as processor cards for PC (figure 1). Reliable communication networks are essential. Soft PLC-s are well suited for data acquisition applications because of data storage possibilities of PC-s.Figure 1. Siemens Simatic WinAC Slot PLC 412Fourthly, combo-devices (figure 2) that contain both operator panel and medium size processor module gain popularity (Siemens AG, 2002). In this solution possibility of disturbances is low and reuse of some components make whole package cheaper.Figure 2. Combo device Siemens Simatic C7-613Fifthly, processor software takes over properties from PC software. Data collected from production can be easily transferred into office applications (Siemens AG, 2000).4. METHOD FOR SELECTING PROGRAMMABLE CONTROLLERA method for forming an application specific list of required properties for selecting programmable controller was developed. There are nine criterions and the results are presented in Table 1. Selection is made by comparing results table with controller’s technical data. Following is short description of every criteria involved.Nature of solution determines weather it is expanding of old system or completely new development. In first case the architecture of system and hardware requirements are limited by already existing solution. Using hardware from same company makes servicing easier and avoids integration problems that would occur when using products form different manufacturers. For example many hardware producers integrate their own specific communication interfaces directly into processor module and for every universal protocol a special module is needed (Siemens AG, 2003). It is also possible to reduce spare part stock amounts when using same type hardware all over the system.Maximum number of electrical inputs-outputs allowed is classical criteria to determine processor class. If complex control algorithms and non-standard functions are needed, it’s not the most important parameter any more. Generally it is money saving to use one bigger processor module for input-output signals that originate from nearby locations than several smaller ones. In this case there will be no need for communication network and programming will be easier too. Special signals and modules are usually available for medium and large controller families only. Many microcontrollers do not even have possibility to add analogue output (Siemens AG, 2003). In some cases using special modules is the only way, in other ones (positioning) it is just an opportunity to save money.Layouts of sensors and actuators can be very different, sometimes the sensors are located several kilometres away from the actuator (pumping liquids in long pipes). In this case special communication network (Profibus, AS-inteface) might be the only solution. If not, it can at least save costs by reducing cabling works. Not all programmable controllers have interfaces for communication protocols.Properties of processor have important role in complex applications. Most common problem is lack of programming memory, sometimes also data memory. Memory requirements can be estimated by number of input and output signals. But in practice 100 digital input-output points system often has 3 times smaller program than 10 digital input-output points system. The only way to estimate program size exactly is using previous experience.Program specialities include special program functions needed. Different areas of applications have some typically used functions, for example temperature control in building automation. Programming is much simpler if these functions are already built into system software of processor. In process automation 2 digital output (up-down) closed loop PID regulation is quite often used. It might be a surprise but it’s not included in most of the microcontrollers (Siemens AG, 2003) and for average programmer it’s too complicated task to create his own regulator using standard functions. Basically there are 2 solutions: either to avoid this construction or to use applicable controller.Table 1. Table for method resultsCommunication is becoming more important in nowadays automation systems. In some cases non-standardised devices as barcode readers or electronic weights have to be included into the system. Then it’s vital to have functions for protocol programming (freeport programming). Standardised protocols demand existence of specific modules.Working conditions can usually be overcome by using special cabinets, but there are also specific series of programmable controllers that have improved resistance for electromagnetic disturbances, humidity and vibrations. In very dusty environments all cooling ventilators have to be equipped withfilters.5. CONCLUSIONSMain benefits of programmable controllers are:• flexibility• communication possibilities• realisation of complex control algorithms• reliabilityAlternative solutions should be considered if:• system is very simple• speci al devices are available• data recording is necessaryInitial selection of appropriate solution and hardware has great influence on final result. Mistakes in this step significantly increase overall budget of project as some programs might have to be changed and some hardware replaced.Based on his practical experience the author has formed a method for selecting programmable controller. It has 9 criteria’s:• nature of solution (new or existing)• maximum number of electrical inputs-outputs allowed (digital, analogue, inputs, outputs) • need for special modules (high-speed digital outputs)• layout of sensors and actuators (local or periphery)• properties of processor (program and data memory)• program specialities (special functions)• communi cation needs (Profibus, ASCII)• working conditions (humidity, temperature, vibration, dust)Method is not guaranteed to always point out the best selection, but using it certainly avoids mistakes.6. REFERENCESHughes, T. A. Programmable Controllers, Third Edition. ISA – The Instrumentation, Systems, and Automation Society, 2000, 334 p.Jack, H. Automating Manufacturing Systems with PLC-s, 828 p., Available:/~jackh/books/plcs/pdf/plcbook4_2.pdf, Accessed:3.10.2003LOGO! Manual. Siemens AG, 2003, 312 p.OPC Foundation homepage: /, Accessed: 9.11.2003Rosin, A. Programmable Controllers Simatic S7. Tallinn, TTU, 2000, 120 p. [Master Thesis] – in Estonian.Berger, H. Automating with SIMATIC. Siemens AG, 2003, 214 p.SIMATIC Programming with STEP 7 V 5.2: Manual. Siemens AG, 2002, 610 p.SIMATIC S7-200 Programmable Controller System Manual. Siemens AG, 2003, 474 p.SIMATIC HMI WinCC Configuration Manual. Volume 1, 2, 3. Siemens AG 2000, 468 p.摘自《可编程控制器在过程自动化中的应用》Ahti Mikkor,Lembit RoosimolderDepartment of Product Development,Institute of Machinery,Tallinn technical University,Ehitajate tee 5,19086Tallinn.摘要:目前,控制问题解决了各种各样的技术操作部分:电子,液压,气动和机械。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、外文原文A: Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tu ry[1].Th es e to w typ e s of a rc hi te ctu r e ar e fo un d i n s in gl e-ch ip m i cr oc om pu te r. So m e em pl oy t he sp l it p ro gr am/d ata me mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n in Fi g.3-5A-1, o th ers fo ll ow t hep h il os op hy, wi del y a da pt ed f or ge n er al-p ur po se co m pu te rs a ndm i cr op ro ce ss o r s, of ma ki ng no lo gi c al di st in ct io n be tw ee n p ro gr am a n d da ta m em or y a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n inF i g.3-5A-2.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e d ev i ce, as s ho wn in Fi g3-5A-3.Fig.3-5A-1 A Harvard typeFig.3-5A-2. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s u su al ly f or th e p er ma ne nt,n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d m ar e i nt en de d f or hi gh-v ol um e a p pl ic at io ns a nd h e nc e t he ec on omi c al ma nu fa ct ur e of th e d ev ic es re q ui re s t ha t t he c o nt en ts of th e pr o gr am me mo ry be c o mm it te d p er ma ne n tl y d ur in g t he m a nu fa ct ur e o f ch i ps . C le ar ly, t h is im pl ie s a ri g or ou s a pp ro ach t o R OM c od e de vel o pm en t si nc e cha n ge s ca nn ot b e m a de a ft erm a nu fa ct ur e .Th is d ev el op me nt pro c es s m ay in vo lve e mu la ti on us ing a so ph is ti ca te d d e ve lo pm en t sy ste m w it h a ha rd war e e mu la ti onc a pa bi li ty a s wel l a s th e us e of p ow er fu l so ft war e t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th ei r ra ng e de vi ce s wi th (or i nt en de d fo r us e wi th) u s er pr og ra mm ab le m em or y. Th e s im p le st of th es e i s us ua ll y d ev ice w h ic h ca n op er ate in a m ic ro pr oce s so r mo de b y usi n g so me o f th e i n pu t/ou tp ut li ne s as a n ad dr es s an d da ta b us f or acc e ss in g e xt er na l m e mo ry. T hi s t ype o f d ev ic e c an b e ha ve fu nc ti on al l y a s t he si ng le c h ip mi cr oc om pu te r fr om wh ic h i t i s de ri ve d a lb eit w it h r es tr ic ted I/O an d a mo di fie d e xt er na l ci rcu i t. T he u se o f th e se de vi ce s isc o mm on ev en i n prod uc ti on ci rc ui ts w he re t he v ol ume d oe s no t ju st ify t h e d ev el op me nt c o st s of c us to m o n-c hi p R OM[2];th e re ca n s ti ll be a si gn if ic an t sav i ng i n I/O an d o t he r ch ip s co mpa r ed t o ac o nv en ti on al m icr o pr oc es so r ba sed ci rc ui t. Mo re ex a ct r ep la ce me ntf o r RO M de vi ce s c a n be o bt ai ne d i n t he f or m of va r ia nt s wi th'p ig gy-b ac k' EP RO M(E ra sa bl e p ro gr a mm ab le RO M )s oc k et s o r d e vi ces w i th E PR OM i ns tea d o f RO M 。

T he se de vi ce s ar e nat u ra ll y mo ree x pe ns iv e th an eq u iv al en t RO M dev i ce, bu t do p rov i de c om pl et ec i rc ui t eq ui va len t s. E PR OM b as ed d ev ic es a re a lso ex tr em el ya t tr ac ti ve f or lo w-v ol um e ap pl ica t io ns w he re t hey pr ov id e th ea d va nt ag es o f a s i ng le-c hi p de vic e, in t er ms o f o n-c hi p I/O,e t c. ,wi th t he co n ve ni en ce of fle x ib le u se r pr ogr a mm ab il it y.Random access memory (RAM).RA M i s fo r th e st ora g e of w or ki ngv a ri ab le s an d d at a u se d d ur in g p ro g ra m ex ec ut io n. T he si ze of t hi s m e mo ry va ri es wit h de vi ce ty pe bu t it ha s t he sam e ch ar ac te ri st ic w i dt h (4,8,16 bit s e tc.) a s th e p r oc es so r ,S pe cia l f un ct io nr e gi st er s, s uc h a s s ta ck p oi nt er o r ti me r re gi ste r a re o ft enl o gi ca ll y in co rpo r at ed i nt o th e R A M ar ea. It i s a l so c om mo n inH a ra rd ty pe m ic ro c om pu te rs to t re a t t he R AM a re a as a c ol le ct ion o f r eg is te r; it is un ne ce ss ar y t o m a ke d is ti nc ti on b et we en RA M a nd p r oc es so r re gi ste r a s i s d on e i n th e c as e o f a mi cr op r oc es so r sy st em s i nc e R AM an d r e g i st er s a re no t u s ua ll y p hy si ca ll y se pa ra te d i n a m i cr oc om pu te r .Central processing unit (CPU).T h e C PU is mu ch l i ke th at ofa n y mi cr op ro ce sso r. Ma ny a pp li cat i on s of m ic ro com p ut er s an dm i cr oc on tr ol le rs in vo lv e t he ha ndl i ng of bi na ry-c od e d d ec im al (B CD) d a ta (f or nu me ric a l d is pl ay s, for e xa mp le) ,he nce i t i s c om mo n tof i nd t ha t th e CP U i s we ll a da pt ed t o h an dl ing th is t y pe o f da ta .I ti s a ls o co mm on to fi nd g oo d fa cil i ti es f or t es tin g, se tt in g an d r e se tt in g i nd iv id u al bi ts of me mo r y o r I/O si nc e m a ny c o nt ro l l er a p pl ic at io ns i nvo l ve t he tu rn in g o n a nd of f o f si ng l e ou tp ut li ne s o r t he re ad in g t he si ng le li ne. T he s e li ne s a re re ad i ly i nt er fa ced t o t wo-s ta te d evi c es s uc h as s wit c he s, t he rm os tat s, so li d-st at e r e la ys, va lv es, m o to r, e tc.Parallel input/output.Pa r a ll el in pu t a nd ou tp ut s c he me s v ar ys o me wh at i n di ffe r en t mi cr oc om put e r; i n mo st a me c ha ni sm i sp r ov id ed t o a t l ea s t al lo w s om e f le x ib il it y of ch oo s in g wh ic h p ins a r e o ut pu t s a nd w h ic h a re i np ut s. T hi s ma y ap pl y t o al l or s om e of t h e p or ts. S om e I/O l in es ar e s ui t ab le fo r d ir ect i nt er fa ci ng to, f o r ex am pl e, f luo r es ce nt d is pl ays, o r ca n pr ov ide su ff ic ie ntc u rr en t t o m ak e in t er fa ci ng ot he r c o mp on en ts st ra ig h tf or wa rd. S om ed e vi ce s al lo w an I/O po rt t o be con f ig ur ed a s a s yst e m bu s to a ll o w o f f-ch ip m em or y a n d I/O ex pa ns ion. T hi s fa ci li ty i s po te nt ia ll y u s ef ul a s a p ro du c t ra ng e d ev el op s, si nc e s uc ce ss i ve e nh an ce me nts m a y b ec om e to o big f or o n-ch ip m emo r y a nd i t is u nde s ir ab le no t tob u il d on t he e xis t in g so ft wa re ba s e.Serial input/output .S er ia l c omm u ni ca ti on w it h t e rm in ald e vi ce s is c om mon me an s of p ro vid i ng a l in k us ing a sm al l nu mb ero f l in es. Th is so r t of c om mu ni cat i on c an a ls o be e xp lo it ed f ori n te rf ac in g sp eci a l fu nc ti on c hip s o r li nk in g sev e ra lm i cr oc om pu te rs to g et he r .B ot h t he co mm on as yn ch ro n ou s sy nc hr on ous c o mm un ic at io n sch e me s re qu ir e pro t oc ol s th at p rov i de f ra mi ng(s ta rt a nd s to p) i n fo rm at io n .T his ca n be i mp le me nt e d as a h ar dw ar e f a ci li ty o r U(S)A R T(Un iv er sa l(syn c hr on ou s) a sy nch r on ou sr e ce iv er/t ra ns mit t er) re li ev in g t h e pr oc es so r (an d t hea p pl ic at io ns pr og r am me r) of t hi s l o w-le ve l, ti me-c o ns um in g, de ta il. t i s me re ly n ec es s ar y t o se le ct ed ab au d-ra te a nd p os si bl y ot her o p ti on s (n um be r of st op b it s, p ar it y, et c.) an d lo ad (o r re ad f ro m) t h e se ri al tr an sm i tt er (or re ce iv e r) b uf fe r. Se ri a li za ti on o f thed a ta i n the ap pro p ri at e fo rm at is th en h an dl ed by th e ha rd wa rec i rc ui t.Timing/counter facilities. M any ap pl ic at io n of s in gl e-ch ipm i cr oc om pu te rs re q ui re a cc ur at e e v al ua ti on o f ela p se d re alt i me .Th is c an b e d et er mi ne d by c ar e fu l as se ss me nt o f t he e xe cu ti on t i me o f ea ch b ran c h in a p ro gr am b ut t hi s ra pi dly be co me si n ef fi ci en t fo r a l l bu t s im pl es t p ro gr am s .Th e pr e fe rr ed a pp ro ach i s to us e t im er c i rc ui t t ha t c an in de pe nd en tl y co u nt pr ec is e t imei n cr em en ts a nd ge n er at e an i nt err u pt a ft er a p res e t ti me h ase l ap se d .Th is t yp e of t im er i s us u al ly ar ra ng ed t o be r el oa da bl e w i th t he r eq ui red co un t .T he t ime r t he n de cr em ent s t hi s va lu ep r od uc in g a n i nte r ru pt or se tt ing a fl ag wh en the c ou nt er re ac hesz e ro. B et te r t ime r s t he n h av e t he a bi li ty to au to m at ic al ly re lo adt h e in it ia l co unt va lu e. T hi s rel i ev es t he p ro gra m me r of t her e sp on si bi li ty of re lo ad in g t he co u nt er a nd as se ssi n g el ap se d t im eb e fo re th e t im er re st ar te d ,wh ich o th er wi se wo und b e n ec es sa ry ifc o nt in uo us p re cis e ly t im ed i nt err u pt s we re r eq uir e d (a s in ac l oc k ,f or e xa mpl e).So me ti me s ass o ci at ed w it h time r is a n ev en t c o un te r. W it h thi sf ac il it y th ere is u su al ly a sp e ci al i np utp i n ,t ha t ca n dri v e th e co un te r d i re ct ly.Timing components. Th e cl oc k ci rc u it ry o f m o st mic r oc om pu te rsr e qu ir es o nl y s im p le t im in g c om po n en ts. If ma xi mu m p er fo rm an ce is r e qu ir ed,a c ry sta l m us t be u se d t o e ns ur e th e max i mu m cl oc kf r eq ue nc y i s a ppr o ac he d b ut no t ex c ee de d. Ma ny clo c k c ir cu it s a lsow o rk wi th a r es is t or an d c ap ac ito r as l o w-co st ti m in g c om po ne ntso r ca n b e d ri ve n fr om an ex te rn al s ou rc e. Th is la t te r a rr an ge me nt i s u se fu l is e xte r na l sy nc hr on iza t io n of t he m icr o co mp ut er i sr e qu ir ed.WORDS AND TERMSculmination n.顶点spilt adj.分离的volatile n. 易变的commit v.保证albeit conj.虽然custom adj.定制的variant adj.不同的piggy-back adj.背负式的socket n. 插座B:PLC[1]P L Cs (p ro gr am ma bl e lo gi ca l c on tro l le r) fa ce ev er m o re co mp le x c h al le ng es t he se d a ys . W he re o nc e t he y qu ie tl y re pl a ce d re la ys a nd g a ve an o cc as io na l re po rt t o a co r po ra te ma in fr am e, t he y ar e no w g r ou pe d in to c el ls, g iv en n e w j ob a n d ne w la ng ua ge s, an d ar e fo rc ed t o co mp et e ag ai ns t a gr ow in g ar ra y of c on tr ol p ro d uc ts. F or t his y e ar's a nn ua l PL C t ec hn ol og y up da te ,w e qu er ie d PL C m ak er s on t he se t o pi cs a nd m or e .Programming languagesH i gh er l ev el P LC p ro gr am mi ng l ang u ag es h av e be en a ro un d fo r s o me ti me ,b ut l at e ly th ei r p op ul ar i ty ha s m us hr oo mi n g. "A s R ay mo nd L e ve il le, vi ce pr e si de nt & g en era l m an ag er, Si eme n s En er gy&A ut om at io n .in c;P ro gr am ma bl e c on t ro ls ar e b ei ng u s ed fo r m or e and m o re so ph is ti ca te d o p er at io ns, la n gu ag es ot he r th a n l ad de r l og ic b e co me m or e p ra ct i ca l, e ff ic ie nt, an d po w er fu l. F o r ex am pl e, it's v e ry d if fi cu lt to wr it e a tr ig ono m et ri c fu nc ti on u si ng l ad de rl o gi c ."La ng ua ges ga in in g ac ce pta n ce i nc lu de B ool e an, co nt ro ls y st em f lo wc ha rti n g, a nd su ch fu nc t io n ch ar t l an gua g es a s G ra ph ce t a n d it s va ri at ion .A nd t he re's in c re as in g in te res t i n la ng ua ge s l i ke C a nd B AS IC.PLCs in process controlT h us fa r, PL Cs ha v e n ot be en us ed e xt en si ve ly for c on ti nu ous p r oc es s co nt ro l .W il l th is c on tin u e? "Th e fe el ing th at I'v eg o tt en," s ay s Ken Ja nn ot ta, ma nge r, pr od uc t pl ann i ng, se ri es O ne a n d Se ri es S ix pr o du ct ,at G E Fan u c No rt h Am er ica ,'is t ha t PL Cs w i ll b e u se d i n t he pr oc es s i nd us try bu t n ot ne ce ss ar i ly f or pr oc es s c o nt ro l."S e ve ra l ve nd or s -o bv io us ly b et tin g t ha t th e op pos i te w il lh a pp en-ha ve i ntr o du ce d PL Cs o pti m iz ed f or p ro ces sa p pl ic at io n .R ich Ry an, ma ng er, c o mm er ci al m ar ket i ng,A l le n-br ad le y Pro g ra mm ab le C on tro l s Di v., c it es PL C s's in cr ea si ng u s e s uc h i nd us tri e s a s f oo d ,ch em i ca ls ,a nd pe tro l eu m. Ry an fe els t h er e a re tw o t yp e s o f a pp li ca tio n s i n w hi ch th ey're ap pr op ri at e. "o ne," h e sa ys," i s wh er e th e s iz e o f th e pr oc ess co nt ro l sy st em t h at's b ei ng a uto m at ed d oe sn't ju s ti fy D CS[d is tri b ut ed c on tr ols y st em].Wi th t he s ta rt in g pr ic e t a gs o f ch os e pro d uc ts b ei ngr e la ti ve ly h ig h, a p ro gr a mm ab le c o nt ro ll er m ak es s en se f o r sm al l, l o w lo op c ou nt ap p li ca ti on .Th e s e co nd i s wh er e y o u ha ve t oi n te gr at e th e loo p c lo se ly w it h t h e se qu en ti al lo g ic al .Ba tc hc o nt ro ll er s ar e p r im e ex am pl e ,wh e re t he se qu en ce and ma i nt ai ning t he p ro ce ss va ria b le ar e i nt er twi n ed so cl os el y t h at th e b en ef its o f h a vi ng a p ro gr a mm ab le co nt ro ll e r t o d o t he seq u en ti al lo gi cal o u tw ei gh s so me of th e di sa dv an tag e s of n ot h av ing a di st ri bu te d c o nt ro l sy st em."B i ll B ar ko vi tz, p r es id en t of T ric o ne x, p re di ct s t h at "al lf u tu re c on tr ol ler s t ha t co me o ut i n th e pr oc es s c o nt ro l sy st emb u si ne ss w il l emb r ac e a lo t o f mo r e PL C te ch no log y a nd a lo t mo re P L C fu nc ti on al ity th an t he y ev er d id b ef or e ."Communications and MAPC o mm un ic at io ns ar e v it al to a n ind i vi du al a ut om ati o n ce ll an d t o be a ut om at ed f a ct or y a s a wh ol e. W e've h ea rd a l ot a bo ut M AP in t h e la st f ew y ear s ,an d a lo t of c om pa ni es h av e j u mp ed o n th eb a nd wa go n.[2]M any, ho we ve r, w er e d is ap po in te d w h en af u ll y-de fi ne d and co mp le te d MA P s p ec if ic at io n did n't a pp ea ri m me di at el y .S ays La rr y K om ar ek: "R ig ht n ow, M AP is st il l a mo vi ng t a rg et f or t he ma n uf ac tu re rs, a s p ec if ic at io n tha t i s no tf i na l .P re se nt ly, fo r ex a mp le. pe o pl e ar e i nt ro du c ing pr od uc ts to m e et t he M AP2.1st a nd ar d .Y et2.1-b a se d pr od uc ts wi l l be o bs ol et e wh en t he n ew s tan d ar d fo r MA P3.0i s in tr od uc ed."B e ca us e of th is, m an y P LC ve nd ors ar e h ol di ng off on fu ll MA P i m pl em en ta ti on s. O mr on, fo r ex amp l e, h as a n on goi n gM A P-co mp at ib il ity pr og ra m;[3]b ut F ra nk Ne wb ur n, vi c e pr es id en t o f O m ro n's I nd us tr ia l D i vi si on ,r epo r ts th at be ca use o f th e l a ck of a fi rm d ef in it ion,O mr on's P LC s d o n't ye t ta lk to MA P.S i nc e it's un li ke l y th at an in di vi d ua l PL C w ou ld ta l k to br oad M A P an yw ay, ma ker s a re c on ce nt rat i ng o n pr op ri eta r y ne tw or ks.A c co rd in g t o S al P r ov an za no, u se rs f ea r t ha t i f t h e y do ge t o n b oa rd a n d ve nd or s w it hd r aw f ro m M AP, th e y'll b e t he one s l ef t h ol di ng a c o mm un ic at io ns st r uc tu re t ha t's n o t su pp or te d.Universal I/OW h il e th er e ar e c o nc er ns a bo ut th e l ac k of c om pat i bl ec o mm un ic at io ns be t we en PL Cs fr omd i ff er en t v en do rs, the c on ne ct io n a t t he o th er e nd-t he I/O-i s ev en m or e fr ag me nt ed .Wi th r ar ee x ce pt io ns, I/O i s s ti ll pr op ri et a ry .Ye t t he re ar e t ho se wh of eel t h at I/O wi ll ev en t ua ll y be co me mo r e un iv er sa l .GE Fa nu c i s h op ing t o d o t ha t w ith its Ge ni us sm ar t I/O li ne.T he in de pe n de nt I/O ma ke rs a r e pu ll in g in th e s am e di re ct ion.M a ny sa y t ha t I/O is su ch a h ig h-va l ue it em th at PLC m ak er s w il l a l wa ys w an t to k ee p i t pr op ri et ar y .As K en J an no tt a, sa ys: "T he I/O i s g oi ng t o be a d is pr op or ti on ate am ou nt o f th e h a rd wa re s al e.C e rt a i nl y e ac h P LC v en do r i s g oi ng to tr y t o p ro te ct t ha t. "F or th at r e as on, h e sa ys, P L C m ak er s wo n't b e gi n s el li ng u niv e rs al I/O sy st em f r om o th er v en do r. "i f we s ta rt s el l in g th at k in d of pr od uc t, "sa ys j a nn ot ta, "w ha t d o w e ma nu fa ct ure?"W i th m or e i nt el lig e nt I/O ap pe ar ing, S al Pr ov an za no f ee ls th is w i ll le ad to mo re di ff er en ti at io n am on g I/O fr om di f fe re nt ma ke rs. "W he re th e I/O be c om es ex tr em el y i n te ll ig en t a nd b e co me s p ar t of t h e sy st em, "h e sa y s, "it r ea ll y is ha rd t o de fi ne w h ic h is t he I/O a n d w hi ch i s C PU. It re a ll y C PU, if y ou w il l, is e qu a ll y i nt eg ra ted i n to t he s ys te m a s t he I/O."Connecting PLC I/O to PCsW h il e di ff er en t PL C s pr ob ab ly wi ll c on ti nu e t o u se p r op ri et ar y I/O, se ve ra l ve nd o rs ma ke i t p os si b le to c on ne ct5 t h ei r I/O t o I BM P C-c om pa ti bl e eq ui pm en t. A ll e-b ra de le y, C ou ld, an d C in ci nn at i M i la cr on a lr ea dy h av e, a nd r um or h as i t th at G E i s p la nn in gs o me th in g al on g t h es e sa me l in es .[4]B il l Ke te lhu t, ma na ge o fp r od uc t pl an ni ng a t G E Fa nu c No rt h A me ri ca ,se es t hi s s or t of t hi ng a s a lt er na ti ve to un iv er sa l I/O."I t hi nk t he t ren d ,in st ea d oft o wa rd u ni ve rs al I/O, wi ll b e mul t ip le h os t in ter f ac e ," h es a ys .Jo di e Gl ore,d ir ec to r of ma r ki ng, Sq ua re D A ut om at io nP r od uc ts, V ie ws i t as a no th er i nd i ca ti on th at P LC s ar e, a nd h ave b e en f or s om e tim e, in du s t ri al co m pu te rs.PLCs VS PCsI f t he I BM 7552, t he A ct io n In str u me nt s BC22,a nd o th erc o mp ut er s a re app e ar in g o n t he fa c to ry fl oo r, won't t hi s m ea n n ew c o mp et it io n f or P L Cs? R ic h R ya n: "T he re ar e s om e co n tr ol fu nc ti on s t h at a re be tt er j o bs f or co mp ut er s. Pr o g ra mm ab le c on tr ol le rs ha ve b e en fo rc ed to fi t in to th ose a pp l ic at io ns. "Ye t, t he ma jo ri ty of v e nd or s we su rv eye d d on't li ke th e"P C in va si on"w ill po se a p ro bl em f o r th em .Mo st sa i d th at P LC s and PC s ar e en ou gh a pa rt i na r ch it ec tu re t hat th ey w il l us ua ll y d o th e co nt ro l. Th ey d on't f ee l t h at PC s wi ll t ake j ob s fr om P LC s j u st be ca us e PL C I/O m od ul esc an n o w be co nn ec ted t o P Cs; t he y b el i ev e th is si mp ly me an s t ha t P LCs a n d PC s wi ll b e a b le t o sh ar e the sa me d at a."T he re a re i nh ere n t ar ch it ec tu ral di ff er en ce s bet w ee n ag e ne ra l pu rp os e c o mp ut er," s ay s R i ch R ya n, "an d a pr og ra mm ab lec o nt ro ll er .Th ere ar e ha r dw ar e co n st ru ct s bu il t i n to a lm os t e ve ry m a nu fa ct ur e's pro g ra mm ab le c on tro l le r to da y th at c us to mi ze t heh a rd wa re t o ru n l a dd er l og ic a nd t o so lv e ma ch ine co de. "O nef u nd am en ta l d if fe r en ce he c it es is c al le d st at e of t h e m ac hi ne.Ry an: "W he n y ou s hu t t he m ac hi ne o ff, o r in te rr up t th e c yc l e, or y ou ju mp t o a no th er sp ot i n t he c y cl e, p rog ra mm ab le c on tro l le rs i nh er en tly r e me mb er t he st at e o f t he ma ch ine: w ha t t he ti mer s w er e, wh at thec o un te rs we re ,wh a t t he st at es of a ll th e l at ch es w er e .Co mp ut ersd o n't in he re nt ly d o th at."WORDS AND TERMSbet v.确信optimized n.优化程序corporate adj.共同的mushroom v.迅速发展trigonometric function 三角函数vendor n.厂商tag n.标签smart adj.智能型的compatible adj.兼容的2、外文资料翻译译文单片机基础单片机是电脑和集成电路发展的巅峰,有据可查的是他们也是20世纪最有意义的两大发明。

相关文档
最新文档