地图投影第二章地图投影方法变形分类
地图投影第二章地图投影方法变形分类

1
2
a b=r2
3
4
CHENLI
a> r,b=r 5
a≠b≠r 6
23
CHENLI
24
三、投影变形的性质和大小
长度比和长度变形:
投影面上一微小线段(变形椭圆半径)和球 面上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
m表示长度比, Vm表示长度变形
m ds' ds
Vm m 1
Q(0,0),球面上的各点便以新极点Q为原点,以方
位角和天顶距 Z 表示其位置,从而构成球面极坐标系。
CHENLI
32
球面极坐标系
第二节 地理坐标
在地图测制中是把地球表面作为旋转椭球面处理。 地球椭球面上各点的位置,是以地理坐标即经度 和纬度来确定。经纬度是一种绝对的坐标系统。
P,P1—北、南极
CHENLI
2
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
3
二、投影方式: 1.平行投影
CHENLI
4
2.透视投影
CHENLI
5
3. 广义投影
CHENLI
6
三、地图投影实质: 建立平面上的点(用平面直角坐标或极坐标
CHENLI
16
2. 投影变形的概念 地图投影不能保持平面与球面之间在
长度(距离)、角度(形状)、面积等方 面完全不变。
地球仪上经纬线网格和地图上比较:
CHENLI
17
球面经纬网经过投影之后,其几何特征 受到扭曲——地图投影变形:长度(距离)、 角度(形状)、面积。
地图投影与分类

第四章海图海图(chart)是为适应航海的需要而绘制的一种地图,图上详细地标绘了航海所需要的资料,如岸形、岛屿、礁石、浅滩、水深、底质、水流资料、以及助航设施等。
海图可用于船舶航行前拟定计划航线、制定航行计划;航行中可用于航迹推算、定位与导航;航次结束后可用于总结航行经验,如发生海事可用于判断事故责任。
因此,海图是航海必备的航海资料和工具。
正确地了解海图的特点、熟悉海图上的资料、正确地使用管理海图,是船舶驾驶员的重要任务之一。
第一节地图投影与分类一、地图投影1.地图:按照一定的数学法则,将地面上的一部分或全部按照一定的比例尺绘画在平面上。
2.地图投影(map projection):将地球表面的经、纬线绘画到平面上去,成为地图的经、纬线图网的方法。
3.“地图图网”:在既定的地图投影上的经、纬线图网。
4.投影变形:用投影的方法,解决了地球曲面与地图平面之间的转化,但投影图象不能完全与地球表面相符。
5.投影变形可分为长度变形、面积变形和角度变形。
二、地图投影分类1.按投影变形的性质分类1) 等角投影(equiangle projection),又称正形投影。
定义:指投影面上任意两方向的夹角与地面上对应的角度相等。
性质:在微小的范围内,可以保持图上的图形与实地相似;不能保持其对应的面积成恒定的比例;图上任意点的各个方向上的局部比例尺都应该相等;不同地点的局部比例尺,是随着经、纬度的变动而改变的。
2) 等积投影(equalarea projection)定义:保持地球上的面积与地图上所对应的面积成恒定比例的一种投影方法。
性质:保持等积就不能同时保持等角。
3) 任意投影(orthographic projection)定义:既不是等角投影,又不是等积投影,是根据某种特殊需要或为了解决某种特定问题,而制作的一种地图投影方法。
如大圆海图。
2.按构制地图图网的方法分类1) 平面投影(plane projection),又称方位投影∶定义:将地球表面上的经、纬线投影到与球面相切或相割的平面上去的投影方法;平面投影大都是透视投影,即以某一点为视点,将球面上的图象直接投影到投影面上去。
地图学第二章之二

高斯-克吕格投影
——假设一个椭圆柱横套在地球椭球面上,使其与某 一条经线相切,将椭球面上的经纬线投影到椭圆柱面 上,然后将椭圆柱展成平面;
P
椭圆柱
A C
X P B D 赤道 Y
A C
B D
投影
P
P
投影特点:
投影特点
(1)中央经线和赤道被投影为互相垂直的直线,而 且是投影的对称轴; (2)投影后没有角度变形;
中国政区图,为能完整连续地表示,应选用斜轴方位。
教学用图,选择变形不大的任意投影,如等距投影。
出版方式影响
单幅图的投影选择比较简单; 系列图或图集中的一个图组,应选择同一变形性 质的投影,便于比较; 整个地图集,是由不同主题的图组所构成,在投 影选择上要有变化,应采用同一系统的投影,根 据情况,在变形性质上变化。
(3)中央经线上没有长度变形,离开中经越远变形 越大,最大变形在赤道上。
3.常用的圆锥投影
(1)等角圆锥投影 (2)高斯-克吕格投影
等角圆锥投影
投影条件:地图上没有角度变形,w=0;每一点上经线长度比 与纬线长度比相等,m = n。
a.等角切圆锥投影
1)相切的纬线没有变形,长度比为1。
2)纬线投影后为同心圆弧并且离开标准纬线越远,变形程度
总
结
方位投影的特点是:在投影平面上,由投影点
(平面与球面的切点)向各方向的方位角与实 地相等,其等变形线是以投影中心为圆心的同 心圆。
(2)圆柱投影
以圆柱面作为投影面,使圆柱面与球展为
平面而成。
正轴圆柱投影—圆柱的轴和地轴一致(最常用) ;
方法:假设将地球按比例缩小成一个透明的地球仪
般的球体,在球心、球面、或球外安置一个光源,
测绘技术中常见的地图投影变形分析

测绘技术中常见的地图投影变形分析一、引言地图作为人类的重要工具,可以帮助我们理解和掌握地球上的各种地理信息。
然而,地球是一个球体,而地图通常是以平面的形式呈现出来。
为了将球面上的地理信息转化为平面上的图像,地图投影技术被广泛应用。
然而,由于球面到平面的转换必然会引起投影变形,地图上的各种形状、方位和距离都会产生不同程度的失真。
因此,地图投影变形分析成为了测绘技术中的一个重要课题。
二、地图投影的基本概念地图投影是将地球上的三维地理信息投影到二维平面上的过程。
它通常采用数学模型来描述,通过将球体的表面点映射到平面上,形成一个二维坐标系。
地图投影可以分为等角和等距两类。
等角投影保持角度的相对大小,但会引起形状和面积的变形;而等距投影保持距离的比例关系,但会引起角度和形状的变形。
三、地图投影的常见变形类型1. 面积变形地球的表面是一个光滑的球体,但在地图上,由于需要将三维空间转化为二维平面,地球上的面积会发生变形。
通常情况下,地球的高纬度地区在平面上会比实际大,而低纬度地区则相对较小。
2. 方向变形地图投影也会引起方向的变形。
在等距投影中,方向会被保留,但等角投影中方向通常会发生变化。
这意味着地图上显示的方向和实际地球上的方向可能存在差异。
3. 形状变形球面到平面的投影过程会导致地图上的形状发生变形。
通常情况下,越靠近地图的中心地区,形状变形越小,而远离中心地区的地方形状变形越大。
4. 距离变形地图投影还会引起距离的变形。
在等角投影中,中心地区的距离会被保留,但远离中心地区的距离会被拉伸或压缩。
而在等距投影中,中心地区的距离会被拉伸或压缩,但远离中心地区的距离会被保留。
四、地图投影变形的影响地图投影变形对于地理信息的理解和分析具有一定程度的影响。
首先,地图投影的面积变形对于地理数据的统计和比较具有重要意义。
在进行面积比较时,需要注意不同地图投影所引起的面积变形,避免得出错误的结论。
其次,方向变形对于导航和测量等应用也有一定的影响。
空中导航-地图投影及其分类

19世纪20年代经高斯拟定
约束条件
❖中央经线与投影面相切,投影 后保持长度不变
❖投影后等角
❖ 等角横圆柱投影特点
赤道为直线,与切经线相差90°的经线是直线,其 他经线凹向切经线;
地图等角; 切经线上无失真(切经线左右各3 ° 范围长度失真
图
❖ 高斯投影坐标网
经纬网(地理坐标网)
114°00 14
16
30° 40´
202
α
3396
94 -δ TH/TC
92
18 20 A( 20218 , 3394 )
90
TH/TC= α+(± δ)
δ= ΔλSINΦ 中央经线以东取正,以西取负
❖ 4.兰伯特投影
❖ 也叫等角切(割)正 圆锥投影,德国数学 家Lambert首创,百 万航图和世界地形图 的数学基础
大圆航线为直线,等角航线为凹向极点的螺 旋曲线
❖ 用途
极地领航用图 标画大圆航线的辅助用图
zk1
N
S N
S N
S
N
N
S
S
N
N
S
S
N N
S S 返回
…………
3°E 9°E 01 02
3°W 60
返回
最小比例尺
返回
谢谢
地图等角;标准纬线上无失真。 大圆航线凸向大比例尺一方;等角航线凹向极
点 。
❖ 用途:
世界百万普通地图和百万航图的主要投影方法
❖ 5.极地方位投影
投影原理:将地球视为一透明球体,球心置一点 光源,投影面为平面,投影面通过极点与地球相 切,地球表面的经纬网格投射在平面上。
❖ 极地方位投影特点
第二章下 常用地图投影

(2)变形规律
切点没变形,离切点越远,变形越 大。 等变形线是以切点为圆心的同心圆。 切点向任意一点的方位角没变形。
斜轴等积方位投影
(3)用途
主要用于绘制水、陆半球,除非洲、南极洲以外的各 大洲(例如亚洲、欧洲、大洋洲、北美洲、南美洲)。 适合中高纬地区呈圆形区域的国家或地区。(例如包 含南海诸岛的中国全国)
(2)经纬线形状
纬线投影成一组平行直 线,经线投影成与纬线垂 直的平行直线。 纬线间距,从赤道向两极 放大,经线间距相等。
(3)变形特点
角度没有变形。 赤道没有变形,离赤道越远,面积变形越大。 等变形线是平行于纬线的直线。
(4)用途
常用于绘制世界时区图、世界交通图。 适合绘制赤道附近沿东西延伸的国家或地区 由于等角航线投影为直线,所以广泛用来绘制 海图。
2、正轴割圆锥投影(南海诸岛作插图的中国全图)
正轴等角割圆锥投影(Lambert conformal projection兰勃特) 正轴等积割圆锥投影(Albers projection亚尔勃斯)
(1)投影的几何概念
以圆锥投影作为投影面,使圆锥面与球面相割 (两条割线为标准线),按等角或等积条件将球面 上的经纬线投影到圆锥面上,然后将圆锥面展为平 面而成。
纬线投影为同心圆弧,经线投影为放射状直线。纬 线间隔从标准纬线向南向北是逐渐缩小的。
(3)变形规律
①两条标准线没有变形,离标 准线越远变形越大。 ②等变形线是平行于纬线的圆 弧。 ③在两条标准线之间,长度比 小于 1 ,为负变形;而在两 条标准线之外,长度比大于 1,为正变形。
中国地图(南海诸岛作插图)的标准线: ϕ 1=25°,ϕ 2=45/47°
(完整)2.2地图投影的变形

比较
二、主方向和变形椭圆
1、主方向
主方向:两个在椭球面上正交的方向投影到平面上后仍
然正交,则这两个方向为主方向。
性质:主方向投影后具有最大和最小尺度比。
b
b’
a o
c a’ Io\′
c’dBiblioteka d’2、变形椭圆取地面上一个微分圆(小到可忽略地球曲面的影响, 把它当作平面看待),它投影到平面上通常会变为椭圆, 通过对这个椭圆的研究,分析地图投影的变形状况。这 种图解方法就叫变形椭圆。
= 0 不变 > 0 变大 < 0 变小
四、面积比和面积变形 1、面积比
投影平面上一微小面积dF′与椭球体面上相应 的微小面积dF之比。
据阿波隆尼定理,有 m2 + n2 = a2 + b2
m·n·sinq = a·b
面积比是变量,随位置的不同而变化。
2、面积变形
投影平面上一微小面积dF′与椭球体面上相 应的微小面积dF之差值同这微分面积dF之比 。
地图投影变形的分布规律
任何地图都有投影变形; 不同区域大小的投影其投影变形不同; 地图上存在没有变形的点(或线); 距没有变形的点(或线)愈远,投影变形愈大,反之亦然; 地图投影反映的实地面积越大,投影变形越大,反之越小。
X ' m 为经线长度比; Y ' n
X
Y
X'm
X
Y'n Y
为纬线长度比
VP=( dF′- dF )/ dF= dF′/ dF –1=P-1
= 0 不变 > 0 变大 < 0 变小
五、角度变形
投影面上任意两方向线的夹角与椭球体面上相 应的两方向线的夹角之差,称为角度变形。
第二章上 地球体与地图投影

地球椭球体 地球椭球面
大地水准面
二、地理坐标
以地球的北极、南极、赤道以及本初子午线作为 基本要素,即可构成地球球面的地理坐标系统 。
用经纬度表示地面点位的球面坐标。地理 坐标又按坐标所依据的基准线和基准面的不同 以及求坐标方法的不同,可分为:
天文经纬度 大地经纬度 地心经纬度
大地经纬度:表示地面点在参考椭球面上的位置, 大地经纬度 用大地经度L 、大地纬度 B 和大地高H表示。
正轴切圆柱投影的经纬网:
那么m、n与a、b有何关系: z 当投影后,经纬线正交,那么m、n与a、b一致:
z
当投影后,经纬线不正交,经纬线的交角为θ,那 么m、n与a、b不一致,根据下列公式计算:
m2 + n2 = a2 + b2 m·n·sinθ = a·b
③长度变形(Vμ):长度比与1的差。 Vμ =μ−1
> 0 变大 = 0 不变 < 0 变小
ω
思考题:
1、在某一幅地图上某一点沿经线方向长度比为 1.072,纬线方向长度比为0.931,经纬线交角 为60度,求a,b,P 。 2、已知地图上某点长短轴方向长度比分别为 a=3,b=1,则最大角度变形为多少?
(四)标准线与等变形线
在各种投影地图上,不同点的变形值常常是不一样的,为 了便于观察和了解绘制区域变形的分布,因此,常用标准线和 等变形线来表示制图区域的变形分布特征。
3、在1:100万等积圆锥投影的地图上,某点的经 线长度比为0.95,自该点向东量得图上距离为 2.10cm,求实地长度为多少?(已知经纬线正交)
(二)按构成方式分类
z方位投影 z圆柱投影 z圆锥投影 z伪圆锥投影 z伪圆柱投影 z多圆锥投影 z其他投影
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tan(45
)
b
2
a
长度变形是各种变形的基础!
CHENLI
27
面积比和面积变形:
投影平面上微小面积(变形椭圆面积) dF′与球面上相应的微小面积(微小圆面积) dF之比。
P 表示面积比 Vp 表示面积变形
PddF F'πaπrr*2brab Vp p 1
= 0 不变 > 0 变大 < 0 变小
P = a·b = m ·n (q= 90)(主方向和经向纬向一致)
第2章 地图投影方法、变形和分类
2.1 地图投影的基本方法 2.2 地图投影的变形 2.3 球面极坐标及其换算 2.4 地图投影的分类
CHENLI
1
2.1 地图投影的基本方法
投影面:将地球表面的点、线、面投影于其上的承 受面
地图投影的原理是在原面与投影面之间建立点、线、 面的一一对应关系
地图投影的方法: 几何透视法 数学分析法
= 0 不变 > 0 变大 < 0 变小
长度比是变量,随位置和方向的变化 而变化。
CHENLI
25
角度变形:
投影面上任意两方向线所夹之角与球面上 相应的两方向线夹角之差,称为角度变形。
以ω表示角度最大变形。
CHENLI
26
最大角度变形可用极值长度比a,b表示
sin a b
2 ab
实用上常以下公式求得:
CHENLI
16
2. 投影变形的概念 地图投影不能保持平面与球面之间在
长度(距离)、角度(形状)、面积等方 面完全不变。
地球仪上经纬线网格和地图上比较:
CHENLI
17
球面经纬网经过投影之后,其几何特征 受到扭曲——地图投影变形:长度(距离)、 角度(形状)、面积。
CHENLI
18
地图投影的变形
据阿波隆尼定理,有 m2 + n2 = a2 + b2
m·n·sinq = a·b 22
结论:微分圆长、短半轴的大小,等于该点
主方向的长度比。也就是说,如果一 点上主方向的长度比(极值长度比)已经确 定,则微分圆的大小和形状即可确定。
通过变形椭圆形状显示变形特征
r
r′
r′
ba
a b
ba
ab
实地上的一 a=b=r′< r a=b=r′> r 个 微分圆
当制图区域的中心点是在两极以外的任一点以及制图 区域是沿经线或任一方向延伸的情况,为了减少投影 误差,常采用斜轴或横轴投影。
从本质上讲,地图投影就是按一定的条件确定大 地坐标和直角坐标之间的一一对应关系。
CHENLI
10
CHENLI
11
沿经线直接展开?
CHENLI
12
沿纬线直接展开?
CHENLI
13
沿经线直接展开?
CHENLI
14
沿经线直接展开?
CHENLI
15
§2.2 地图投影的变形
一、投影变形的概念 1. 投影变形产生原因——地球的形状
地球曲面转换成地图平面,不仅仅存在着比例尺变换,而且还存在着投影转换的问题
CHENLI
8
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
9
地图投影的基本思想是,先将参考椭球面上的点 化算到投影面上(可展曲面),再将投影面沿母 线切开展为平面。
CHENLI
21
主方向(底索定律):无论采用何种转换方法,球面
上每一点至少有一对正交方向线,在投影平面上仍 然保持其正交关系”。在投影后仍保持正交的一对 线的方向成为主方向。取主方向为作为微分椭圆的 坐标轴
特殊方向
长轴方向(极大值)a 主方向
短轴方向(极小值)b 经线方向 m ;纬线方向 n CHENLI
X ' m 为经线长度比 Y ' n 为纬线长度比
X
Y
CHENLI
20
X ' m Y ' n
X
Y
代入: X2 + Y2 = R2,令R=1,得
X '2 m2
Y '2 n2
1
微小圆→变形椭圆
该方程证明: 地球面上的微小
圆,投影后通常会变为椭圆,即
以O'为原点,以相交成q角的两共
轭直径的坐标轴的椭圆方程式。
1
2
a b=r2
3
4
CHENLI
a> r,b=r 5
a≠b≠r 6
23
CHENLI
24
三、投影变形的性质和大小
长度比和长度变形:
投影面上一微小线段(变形椭圆半径)和球 面上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
m表示长度比, Vm表示长度变形
m ds' ds
Vm m 1
地图投影中不可避免地存在着变形,建立一个投影时 不仅要建立(x,y)与( ,)之间的关系,而且要研究投 影变形的分布与大小。地图投影的变形主要体现在:
长度变形 面积变形 角度变形
长度变 形
角度变 形
CHENLI
面积变形和 长度变形
19
二、变形椭圆
取地面上一个微分圆(小到可忽略地球曲面 的影响,把它当作平面看待),它投影到平面上通 常会变为椭圆,通过对这个椭圆的研究,分析地图 投影的变形状况。这种图解方法就叫变形椭圆。
P = m ·n ·sin q (q≠ 90)(阿波隆尼定理)
面积比是变量,随位CHE置NLI 的不同而变化。 28
2.3 球面坐标及其换算
球面坐标的意义和换算公式 地理坐标换算球面极坐标
CHENLI
29
球面坐标系的意义
正轴投影以地理坐标,为参数,投影经纬网形状比较 简单,计算方便。但在使用上受到地理位置的限制。例 如,正轴方位投影只适用于两极地区,正轴圆柱投影适 用于赤道附近地区,正轴圆锥投影适用于沿纬线延伸的 中纬度地区。
CHENLI
2
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
3
二、投影方式: 1.平行投影
CHENLI
4
2.透视投影
CHENLI
5
3. 广义投影
CHENLI
6
三、地图投影实质: 建立平面上的点(用平面直角坐标或极坐标
表示)和地球表面上的点(用纬度和经度表 示)之间的函数关系,用数学式表达这种关 系,就是:
x f1 ( , )
y f 2 ( , )
就是将参考椭球面上的元素(大地坐标、角度和 边长)按一定的数学法则化算到平面上的过程。
CHENLI
7
2.2 地图投影的变形
椭球面上的各点的大地坐标,按照一定的数学法 则,变换为平面上相应点的平面直角坐标,通常 称为地图投影。 ✓地理坐标为球面坐标,不方便进行距离、方位、 面积等参数的量算 ✓地球椭球体为不可展曲面 ✓地图为平面,符合视觉心理,并易于进行距离、 方位、面积等量算和各种空间分析