维纳滤波恢复的图像共55页

合集下载

[PPT课件]现代信号处理-维纳和卡尔曼滤波

[PPT课件]现代信号处理-维纳和卡尔曼滤波

2.2 维纳滤波器的离散形式——时域解
2.2.2 维纳—霍夫方程
把k的取值代入(2.2.9)式, 得到:
当k=0时,h1rxx(0)+h2rxx(1)+…+hMrxx(M-1)=rxd(0) k=1时, h1rxx(1)+ h2rxx(0)+…+ hMrxx(M-2)= rxd(+1)

k=M-1时, h1rxx(M-1)+ h2rxx (M-2)+…+hMrxx(0)= rxd(M-1)
(2.2.10)

2.2 维纳滤波器的离散形式——时域解
2.2.2 维纳—霍夫方程 定义 T T h h1, h2 ,, hM , Rxd rxd (0), rxd (1),, rxd (M 1),
rxx (0) rxx (0) Rxx r ( M 1) xx
2.1 引 言
为了得到不含噪声的信号 s(n) ,也称为期望信号, 系统的期望输出用 yd(n)表示,yd(n)应等于信号的真值
若滤波系统的单位脉冲响应为 h(n) (如图 2.1.2 所示), s(n);系统的实际输出用y(n)表示,y(n)是s(n)的逼近或
估计,用公式表示为yd(n)=s(n), y(n) =
因此,维纳滤波器的传输函数H(z)的求解转化为 G(z)的求解。
x(n)
1 B( z)
(n )
G(z)
^ y(n)= s (n)
图 2.3.3 维纳滤波解题思路
2.3 离散维纳滤波器的Z域解
2.3.1 非因果维纳滤波器的求解
假设待求维纳滤波器的单位脉冲响应为 ω(n),期 望信号 d(n)=s(n) ,系统的输出信号 y(n)=s(n) , g(n) 是 G(z)的逆Z变换, 如图2.3.3所示。

【精选】图像处理-维纳滤波复原【PPT】PPT课件

【精选】图像处理-维纳滤波复原【PPT】PPT课件
图像处理-维纳滤波复原【PPT】
维纳滤波
逆滤波处理比较简单,但没有清楚地说 明如何处理噪声,而维纳滤波综合了退化函 数和噪声统计特性两个方面进行复原处理。
逆滤波方法不能完全恢复原始信号f(x,y),而只能
求出f(x,y)的一个估计值 ˆf x, y 。
希望找到一种方法,在有噪声条件下,从退化图像 g(x,y)复原出f(x,y)的估计值,该估计值符合一定的准 则。
1.储蓄存款
储 蓄 存 款
各考点细化及理解
考点一
收益
利息利=率本:金年X、利月
利率分:类
定流期动:性收:益转高化,为
1.由央行拟定,国活务期院:批收准益低、
2.贷款利率>存款利率 3. 调风节险存、贷款量—通—胀通货风胀币险、量:提购前
4率.实多际少收益条件适:费中当,最利过好率少,>不过通利多胀于不
“定存两年”相差( ) A.2 719.5元
D B.1 024.98元
C.960元
D.919.5元
80 000×2.85%×2-[80 000×2.25%+(80
000×2.25%)×2.25%]
各考点细化及理解
考点二
1.商业银行 中央银行
不为利润
我 国
债权人——借钱出去 债务人——借钱进来
业务

关于利率的那些事
2.利率作用
利 率 调 节 经 济
各考点细化及理解
考点一
经济过热
提高利率,减少市
经济滞缓
降低利率,增加市
对点训练
1.某商业银行一年和两年定期存款利率分别是2.
,存款到期不取,银行会自动将利息并入本金再转
陈医生有80 000元现金,考虑到可能的应急需要,

威纳滤波图像复原

威纳滤波图像复原

用维纳滤波进行图像复原摘要在图像的获取、传输以及记录保存过程中,由于各种因素,如成像设备与目标物体的相对运动,大气的湍流效应,光学系统的相差,成像系统的非线性畸变,环境的随机噪声等原因都会使图像产生一定程度的退化,图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。

由于图像的退化,使得最终获取的图像不再是原始图像,图像效果明显变差。

为此,要较好地显示原始图像,必须对退化后的图像进行处理,恢复出真实的原始图像,这一过程就称为图像复原。

图像复原技术是图像处理领域一类非常重要的处理技术,主要目的就是消除或减轻在图像获取及传输过程中造成的图像质量下降即退化现象,恢复图像的本来面目。

图像复原的过程是首先利用退化现象的某种先验知识,建立退化现象的数学模型,然后再根据退化模型进行反向的推演运算,以恢复原来的景物图像。

本文利用维纳滤波进行图像的复原,效果明显。

一、 实验原理维纳滤波复原:维纳滤波就是最小二乘滤波,它是使原始图像(),f x y 与其恢复图像()ˆ,f x y 之间的均方误差最小的复原方法。

对图像进行维纳滤波主要是为了消除图像中存在的噪声,对于线性空间不变系统,获得的信号为()()()(),,,,g x y f h x y d d n x y αβαβαβ+∞+∞-∞-∞=--+⎰⎰(12-29)为了去掉(),g x y 中的噪声,设计一个滤波器(),m x y ,其滤波器输出为()ˆ,f x y ,即()()()ˆ,,,fx y g m x y d d αβαβαβ+∞+∞-∞-∞=--⎰⎰(12-30)使得均方误差式()(){}{}22ˆm in ,,e E fx y f x y ⎡⎤=-⎣⎦(12-31)成立,其中()ˆ,f x y 称为给定(),g x y 时(),f x y 的最小二乘估计值。

设(),f S u v 为(),f x y 的相关函数(),f R x y 的傅立叶变换,(),n S u v 分别为(),n x y 的相关函数(),n R x y 的傅立叶变换,(),H u v 为冲激响应函数(),h x y 的傅立叶变换,有时也把(),f S u v 和(),n S u v 分别称为(),f x y 和(),n x y 的功率谱密度,则滤波器(),m x y 的频域表达式为()()()()()()22,1,,,,,n f H u v M u v S u v H u v H u v S u v =+(12-32)于是,维纳滤波复原的原理可表示为()()()()()()()22,1ˆ,,,,,,n f H u v F u v G u v S u v H u v H u v S u v ⎡⎤⎢⎥⎢⎥=⎢⎥+⎢⎥⎣⎦(12-33)对于维纳滤波,由上式可知,当(),0H u v =时,由于存在()(),,n f S u v S u v 项,所以(),H u v 不会出现被0除的情形,同时分子中含有(),H u v 项,在(),0H u v =处,(),0H u v ≡。

图像复原_逆滤波复原法_维纳滤波复原法_去除由匀速运动引起的模糊讲解

图像复原_逆滤波复原法_维纳滤波复原法_去除由匀速运动引起的模糊讲解

(a)图像退化响应 (b)逆滤波器响应 (c)改进的逆滤波器响应
逆滤波复原法
二是:使H(u,v)具有低通滤波性质。
1 2 2 2 (u v ) D0 1 H (u, v) H (u, v) 2 2 2 0 (u v ) D0
逆滤波复原法
• (a)点光源f(x,y)。(b)退化图像g(x,y) • G(u,v)=H(u,v)F(u,v)H(u,v)
维纳滤波复原法
采用维纳滤波器的复原过程步骤如下: (1)计算图像g(x,y)的二维离散傅立叶变换 得到G(u,v)。 (2)计算点扩散函数hw(x,y)的二维离散傅立叶 变换。同逆滤波一样,为了避免混叠效应引起 的误差,应将尺寸延拓。 (3)估算图像的功率谱密度 Pf和噪声的谱密度 Pn。 (4) 计算图像的估计值 。 (5)计算 的逆付氏变换,得到恢复后 的图像 。
式中N为多项式的次数,aij和bij为各项系数。
几何校正
x a
可得
由水平方向均匀直线运动造成的图像模糊的模型及其恢 复用以下两式表示:
去除由匀速运动引起的模糊
沿水平方向匀速运动造成的模糊图像的恢复处理例子。 (a)是模糊图像,(b)是恢复后的图像。
去除由匀速运动引起的模糊
(a) 原始图像
(b) 模糊图像
(c) 复原图像
图像的几何校正
图像在生成过程中,由于系统本身具有非线性或拍摄角 度不同,会使生成的图像产生几何失真。几何失真一般分为 系统失真和非系统失真。系统失真是有规律的、能预测的; 非系统失真则是随机的。 当对图像作定量分析时,就要对失真的图像先进行精确 的几何校正(即将存在几何失真的图像校正成无几何失真的 图像),以免影响分析精度。基本的方法是先建立几何校正 的数学模型;其次利用已知条件确定模型参数;最后根据模 型对图像进行几何校正。通常分两步: ①图像空间坐标的变换; ②确定校正空间各像素的灰度值(灰度内插)。

11720817--维纳滤波实现的图像复原(案例)

11720817--维纳滤波实现的图像复原(案例)

基于维纳滤波实现的图像复原(案例)(1) 图像复原技术图像复原也称图象恢复,是图象处理中的一大类技术。

所谓图像复原,是指去除或减轻在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。

图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像。

从数学上来说,图像复原的主要目的是在假设具备退化图像g 及退化模型函数H 和n 的某些知识的前提下,估计出原始图像f 的估计值f ˆ,f ˆ估计值应使准则 最优(常用最小)。

如果仅仅要求某种优化准则为最小,不考虑其他任何条件约束,这种复原方法称为非约束复原。

(2)维娜滤波复原算法采用维纳滤波是假设图像信号可近似看成为平稳随机过程的前提下,按照使原始图像和估计图像之间的均方误差达到最小的准则函数来实现图像复原的。

它一种最小均方误差滤波器。

[][]g H R sR H H g H Q sQ H H f T n f T T T T 111---+=+= (1)设 Rf 是 f 的相关矩阵:}{T f ff E R = (2)Rf 的第 ij 元素是E{fi fj},代表 f 的第 i 和第 j 元素的相关。

}{T f nn E R = (3)设 Rn 是n 的相关矩阵:根据两个象素间的相关只是它们相互距离而不是位置的函数的假设,可将Rf 和Rn 都用块循环矩阵表达,并借助矩阵W 来对角化:1-=WAW R f (4)1-=WBW R n (5)fe(x, y)的功率谱,记为Sf (u, v) ;ne(x, y)的功率谱,记为Sn(u, v)。

D 是1个对角矩阵,D(k, k) = λ(k),则有:1-=WDW H(6)定义:nf T R R Q Q 1-= (7) 代入:g H Q sQ H H fT T T 1][ˆ-+= (8) 两边同乘以W –1,有:g H R sR H H f T nf T 11][ˆ--+= (9) 最后整理得: ),(),(/),(),(),(),(1),(ˆ22v u G v u S v u S v u H v u H v u H v u F f ⎥⎥⎦⎤⎢⎢⎣⎡+=η (10)(3)MATLAB 仿真及结果仿真中使用的是自己的图片xiaohui.jpgf=imread('C:\Documents and Settings\Administrator\桌面\仿真\xiaohui.jpg'); %读图subplot(2,2,1);imshow(f);title('(A )原始图像'); %显示原始图像PSF=fspecial('motion',7,45); %对图像进行7个像素点,45度角的模糊建模gb=imfilter(f,PSF,'circular'); % 创建一个已知PSF 的退化图像g=imnoise(gb,'gaussian',0,0.0001);%加入均值为0,方差为0.0001的噪声subplot(2,2,2);imshow(g);title('(B )加燥和运动模糊图像');Sn=abs(fft2(noise)).^2; % 噪声功率谱nA=sum(Sn(:))/prod(size(noise)); % 噪声平均能量Sf=abs(fft2(f)).^2; % 图像功率谱fA=sum(Sf(:))/prod(size(f)); % 图像平均能量R=nA/fA; %计算常数比率fr1=deconvwnr(g,PSF,R); %使用常数比率的维纳滤波复原NCORR=fftshift(real(ifft2(Sn))); %噪声自相关函数ICORR=fftshift(real(ifft2(Sf))); %图像自相关函数fr2=deconvwnr(g,PSF,NCORR,ICORR); %使用自相关函数的维纳滤波复原subplot(2,2,3);imshow(fr1);title('(C)常数比率维娜滤波复原');subplot(2,2,4);imshow(fr2);title('(D)自相关函数维娜滤波复原');(4)小结1.维纳滤波最优实施的条件是:要求已知模糊地系统函数,噪声功率谱密度(或自相关函数),原图像功率谱密度(或自相关函数)。

维纳滤波图像复原

维纳滤波图像复原
❖ 1)一般原理 µf h1g g n
Fµ G N
❖ 2)去卷积(反H 滤H波)
问题:H函数有许多零点,N较大时影响复原效
3 经典复原滤波器
❖ 3)维纳去卷积(维纳反滤波)
(1)一维维纳去卷积
❖ MSE最小即滤波器最优的充分必要条件:维纳滤波
器 噪使 声得 )M输 的o u入 互 相/输PP关xx出s函uu的数互。相关函数等于信号/(信号+
❖ 1)无约束复原
(1)反滤波(去卷积)
nS5tepg1线:降H质f性模型代的噪数声项复为 原
j
0
4 1 1 1 1 3
1
j
1
j
2
6
2
2
j
2
2
2
j
4 离散情况下降质分析
Step1: 进行对角化
❖ 5)Q对g 角H化f 在g 降W质DW模1 f型W中1的g 应DW用1 f
对 角
Step2 : 等价傅立叶变换

左式中第k个元素
与 傅
G k
1
M 1
j 2 ik
gie M
Gu
2)邻域处理(空间滤波增强)
❖ 一阶梯度法 ❖ 二阶拉普拉斯法
3)频域处理
❖ 低通滤波
1 概述
4)伪彩色增强
❖ 灰度分层映射 ❖ 频域映射
5)形态学处理
❖ 腐蚀 ❖ 膨胀 ❖ 击中击不中
6)图像增强应用
❖ 图像平滑和去噪:邻域平均、邻域加权平均、多幅
1 概述
图像增强与复原的区别
❖ 图像增强:不考虑图像降质的原因,只将图像中感 兴趣的特征突出,而衰减不需要的特征。改善后的 图像不一定要逼近原图像。

维纳滤波器图像处理

维纳滤波器图像处理

维纳滤波器及其在图像处理中的应用摘要图像由于受到如模糊、失真、噪声等的影响,会造成图像质量的下降,形成退化的数字图像。

退化的数字图像会造成图像中的目标很难识别或者图像中的特征无法提取,必须对其进行恢复。

所谓图像复原就是指从所退化图像中复原出原始清晰图像的过程。

维纳波是一种常见的图像复原方法,该方法的思想是使复原的图像与原图像的均方误差最小原则恢复原图像。

本文进行了对退化图像进行图像复原的仿真实验,分别对加入了噪声的退化图像、运动模糊图像进行了维纳滤波复原,并给出了仿真实验效果以及结果分析。

实验表明退化图像在有噪声时必须考虑图像的信噪比进行图像恢复,才能取得较好的复原效果。

关键词:维纳滤波;图像复原;运动模糊;退化图像AbstractDue to factors such as blurring distorting and noising, image quality deteriorated and led to degenerated digital images which is getting harder to discern the target image or extract the image features. Wiener Filter is often used to recover the degraded image. The principle of the method expects to minimize the mean square error between the recovered image and original image. This paper carried out a restoration simulation experiments on degraded image,restoration of motion blurred images, and the result shows, SNR noise of the autocorrelation function for image restoration must be taken into consideration when restoring degraded images in a noise. Key words:Wiener Filter; motion blurred;degraded image;image restoration概述图像在形成、传输和记录的过程中都会受到诸多因素的影响,所获得的图像一般会有所下降,这种现象称为图像“退化”。

第9章维纳滤波PPT课件

第9章维纳滤波PPT课件
于是维纳-霍夫方程变为:
t
R x s(t) h (t)R x x ()d, t
21.12.2023
.
23
做变量替换,t-=,t-=,得到:
R x s() 0 h ()R x x( )d ,0
或:
R x s() 0 h ()R x x( )d ,0
此时:
L M S R s s(0 ) 0h ()R x s()d
21.12.2023
.
31
H(ej)
0 1
Sss()
Sss()Snn()
Sss() 0,Snn() 0 Sss() 0,Snn() 0
Sss() 0,Snn() 0
21.12.2023
.
32
H(ej) 1
Sss(ej) Snn(ej)
0
非因果维纳滤波器的幅频特性
21.12.2023
.
33
例9.4 设信号的自相关函数是: R ss(m ) 0 .8 m m 0 , 1 , 2 , 噪声是白色的
E [d(t)d ˆ(t)]2m in
• 又限定估计 dˆ ( t ) 是由观察x(t)经线性滤波
器h(t)得出的:
d ˆ(t)x(t)*h(t)tf x()h(t)d t0
21.12.2023
.
11
最优线性均方估计的选取原则是使估计
误差 e(t)d(t)dˆ(t) 与所有的观察值
x(), ∊[t0,tf]正交,也就是说,如果 对每一个 ∊[t0,tf]都有:
21.12.2023
.
17
由于Rss‘(t)是奇函数,所以Rss‘(0)=0 把上式化简得到:
R ss (a ) a R ss (0 ) 0 R s's ( a ) b R s's'( 0 ) 0 故得到:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档