武大数学建模培训多目标决策模型层次分析法P代数模型离散
2019数学建模竞赛培训会-层次分析法

则P层(方案层)的总排序权重为: n a jbij (i 1, 2, , m) j 1
各排序权重见下表:
n
CR
a jCI j j 1 n
0.1则总排序结果具有满意的一致性
。此时可以
a j RI j
根据P层的总排序权重的大小来确定P层各方
你碰到过的数学模型——“航行问题”
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?
用 x 表示船速,y 表示水速,列出方程:
(x y) 30 750
(x y) 50 750 求解
x =20 y =5
答:船速每小时20千米/小时.
1977年,第一届国际数学建模会议上,萨迪发表了《无结 构决策问题的建模-层次分析理论》。
1982年,萨迪的学生高兰尼柴(H.Gholamnezhad)在中国天 津召开的中美能源、资源、环境学术会议上首次向中国介绍该 方法。
在实际生活中,人们往往需要对许多较为复杂、 较为模糊的问题作出决策。
如:填报高考志愿,选择科研课题等,往往需 要考虑许多因素,对一些备选项目作出排序,从而 作出最后的决策。
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
地面为连续曲面
f() , g()是连续函数
椅子在任意位置 至少三只脚着地
对任意, f(), g()
至少一个为0
数学问题
已知: f() , g()是连续函数 ;
对任意, f() • g()=0 ;
且 g(0)=0, f(0) > 0.
• 椅子位置 利用正方形(椅脚连线)的对称性
多目标决策分析层次分析法多实例解析模型教案

四、多目标决策的求解过程
❖ 第一步,提出问题。 ❖ 第二步,阐明问题。 ❖ 第三步,构造模型。 ❖ 第四步,分析评价。 ❖ 第五步,择优实施。
1)提出问题
❖ 第一步,提出问题。目标高度概括。
2)阐明问题
❖ 第二步,阐明问题。使目标具体化,要确定 衡量各目标达到程度的标准。即属性以及属 性值的可获得性,清楚地说明问题的边界与 环境。
③ 具有最优化决策规则的连续型多目标决策 问题
3. 两类多目标决策问题的对照表
多属性决策问题
多目标决策问题
决策变量 方案集
属性集
离散型 X {x1, x2 ,, xm } Y {y1, y2 ,, yn } 或 F { f1, f2 ,, fn}
连续型,x (x1, x2,, xN )
X x | gi (x) 0, i 1,2,, m, x R N
(1) 层次分析法概述
❖ 层 次 分 析 法 ( Analytic Hierarchy Process,简称AHP)是20世纪70年代由 美国学者萨蒂最早提出的一种多目标评价 决策法。
❖ 将决策者对复杂系统的评价决策思维过程 数学化,保持决策者思维的一致性。
❖ 先分解后综合的系统思想
在决策中使用AHP法的优点:
❖ 适用性 选择和判断 反映了对问题的认识 ❖ 简洁性 应用只需掌握简单的数学工具
特征: 分解、判断、综合 ❖ 实用性 定性与定量结合
优化技术 应用范围广 ❖ 系统性 复杂问题
系统的各个组成部分与相互关系
(2) 层次分析法的基本步骤
❖ 建立层次结构模型; ❖ 构造判断矩阵; ❖ 层次单排序及一致性检验; ❖ 层次总排序及一致性检验。
3)构造模型
❖ 第三步,构造模型。选择决策模型的形式, 确定关键变量以及这些变量之间的逻辑,估 计各种参数,并在上述工作的基础上产生各 种备选方案。
数学建模培训多目标规划

目标有两个:一是利润最大,二是污染最小.该问题 的多目标规划模型如下:
maxF(X ) ( f1(X ), f2(X ))T f1(X ) x1 3x2, f2(X ) 1.5x1 x2 0.5x1 0.25x2 8 (机器能力) 0.2x1 0.2x2 4 (装配能力) x1 5x2 72 (原材料)
当目标函数处于冲突状态时,就不会 存在使所有目标函数同时达到最大或最小 值的最优解,于是我们只能寻求非劣解 (又称非支配解或帕累托解)。
非劣解:可以用图3说明。
图3 多目标规划的劣解与非劣解
二、多 目 标 规 划 问 题 的 建 模 方 法
为了求得多目标规划问题的非劣解, 常常需要将多目标规划问题转化为单目标 规划问题去处理。实现这种转化,有如下 几种建模方法。
解:首先,分别求解两个单目标问题的最优解,由它们 得到的目标函数值组成理想解.
maxf1(X) x1 3x2 0.5x1 0.25x2 8 (机器能力) 0.2x1 0.2x2 4 (装配能力) x1 5x2 72 (原材料)
X 1* (7,13) f1* 46
maxf2(X) 1.5x1 x2 0.5x1 0.25x2 8 (机器能力) 0.2x1 0.2x2 4 (装配能力) x1 5x2 72 (原材料)
240 200
3
x
1
10
x2
300
x1, x2 0
用单纯形法求得其最优解为 x1 12.5,x2 26.25,
f1(x) 402,5 f2(x) 2075,0f3(x) 90
层次分析法数学建模

在某些情况下,层次分析法可能无法合理地分配权重,导致决策结果 与实际情况存在较大偏差。
无法处理动态变化
层次分析法主要用于静态决策问题,对于动态变化的决策问题处理能 力较弱。
05 结论与展望
结论
层次分析法是一种有效的决策分析方法,能够将复杂问题 分解为多个层次和因素,通过比较和判断各因素之间的相 对重要性,为决策提供依据。
实例三:风险评估问题
总结词
层次分析法在风险评估问题中,能够综合考虑风险的多种来源和影响因素,确定各因素之间的权重关 系,为风险的有效控制提供科学的依据。
详细描述
风险评估问题涉及到如何识别、评估和控制各种潜在的风险。层次分析法可以将风险的多种来源和影 响因素进行比较和判断,确定各因素之间的权重关系,为风险的有效控制提供科学的依据。同时,层 次分析法还可以用于制定风险应对策略和预案,提高组织的抗风险能力。
层次单排序与一致性检验
层次单排序
根据判断矩阵的性质和计算方法,计 算出各组成元素的权重值,并按照权 重值的大小进行排序。
一致性检验
对判断矩阵的一致性进行检验,以确 保各组成元素之间的相对重要性关系 符合逻辑和实际情况。
层次总排序与一致性检验
层次总排序
根据各层次的权重值和组成元素的权重值,计算出整个层次结构模型的权重值, 并进行总排序。
确定层次
根据问题的复杂程度和组 成元素的性质,将层次结 构划分为不同的层次,以 便于分析和计算。
判断矩阵的建立
确定判断标准
根据问题的特点和要求,确定判 断各组成元素之间相对重要性的 标准和方法。
构造判断矩阵
根据判断标准,构造出一个判断 矩阵,用于表示各组成元素之间 的相对重要性关系。
数学建模简明教程课件:离散模型

5
②中间层:这一层次中包含了为实现目标所涉及的中间环 节,它可以由若干个层次组成,包括所需考虑的准则、子准则 ,因此也称为准则层.
③最低层:这一层次包括了为实现目标可供选择的各种措 施、决策方案等,因此也称为措施层或方案层.
16
⑤若A的最大特征值λmax对应的特征向量为W=(w1,…,
wn)T,则
aij
wi wj
, i, j 1,2,, n ,即
w1 w1
w1
w1 w2
wn
w2 w2
w2
A w1 w2
wn
wn wn
wn
w1 w2
wn
17
定理6.3 n阶正互反矩阵A为一致矩阵当且仅当其最大特
征根λmax=n,且当正互反矩阵A非一致时,必有λmax>n. 根据定理6.3,我们可以由λmax是否等于n来检验判断矩阵A
当CR<0.10时,认为层次总排序结果具有较满意的一致性
并接受该分析结果.
26
6.1.2 层次分析法的应用
在应用层次分析法研究问题时,遇到的主要困难有两个: (1)如何根据实际情况抽象出较为贴切的层次结构; (2)如何将某些定性的量作比较,接近实际以定量化处理. 层次分析法对人们的思维过程进行了加工整理,提出了一 套系统分析问题的方法,为科学管理和决策提供了较有说服力 的依据.但层次分析法也有其局限性,主要表现在: (1)它在很大程度上依赖于人们的经验,主观因素的影响很 大,它至多只能排除思维过程中的严重非一致性,却无法排除 决策者个人可能存在的严重片面性.
3
6.1.1 层次分析法的基本原理与步骤
数学建模第三讲层次分析法

数学建模第三讲层次分析法在数学建模的领域中,层次分析法(Analytic Hierarchy Process,简称 AHP)是一种相当实用且重要的决策方法。
它能够帮助我们在面对复杂的多准则决策问题时,做出更为合理、科学的决策。
那么,什么是层次分析法呢?简单来说,层次分析法就是把一个复杂的问题分解成若干个层次,通过两两比较的方式,确定各层次元素之间的相对重要性,最后综合这些比较结果,得出最终的决策方案。
比如说,我们要选择一个旅游目的地。
这时候,可能会考虑多个因素,比如景点吸引力、交通便利性、住宿条件、餐饮质量、费用等等。
这些因素就构成了不同的层次。
然后,我们会对每个因素进行两两比较,比如景点吸引力比交通便利性更重要吗?重要多少?通过这样的比较,我们就能给每个因素赋予一个相对的权重。
为了更清楚地理解层次分析法,我们来看看它的具体步骤。
第一步,建立层次结构模型。
这是层次分析法的基础。
我们需要把问题分解成目标层、准则层和方案层。
目标层就是我们最终要实现的目标,比如选择最佳的旅游目的地。
准则层就是影响目标实现的各种因素,像前面提到的景点吸引力、交通便利性等等。
方案层就是我们可以选择的具体方案,比如去三亚、去桂林、去丽江等等。
第二步,构造判断矩阵。
在这一步,我们要对同一层次的元素进行两两比较,比较它们对于上一层某个元素的重要性。
比较的结果通常用 1 9 标度法来表示。
比如说,如果因素 A 比因素 B 稍微重要,就给A 对B 的比较值赋 3;如果 A 比 B 明显重要,就赋 5;如果 A 比 B 极端重要,就赋 9。
反过来,如果 B 比 A 稍微重要,就给 B 对 A 的比较值赋 1/3,以此类推。
第三步,计算权重向量并进行一致性检验。
通过数学方法,比如特征根法,计算出每个判断矩阵的最大特征值和对应的特征向量。
这个特征向量就是我们所需要的权重向量。
但是,为了确保我们的判断是合理的,还需要进行一致性检验。
如果一致性比率小于 01,就认为判断矩阵的一致性是可以接受的;否则,就需要重新调整判断矩阵。
数学建模讲义-层次分析法

优化建模
3、排序原理:
一组元素两两比较其重要性,计算元素相对
重要性的测度问题。
优化建模
二、层次分析法的基本步骤
1、建立层次结构模型。 在深入分析实际问题的基础上,将有关的各个因素按 照不同属性自上而下地分解成若干层次,同一层的诸因素 从属于上一层的因素或对上层因素有影响,同时又支配下 一层的因素或受到下层因素的作用。
优化建模
将问题包含的因素分层: 最高层(解决问题的目的); 中间层(实现总目标而采取的各种措施、必须考虑 的准则等。也可称策略层、约束层、准则层等); 最低层(用于解决问题的各种措施、方案等)。把 各种所要考虑的因素放在适当的层次内。用层次结构图清 晰地表达这些因素的关系。
优化建模
成对比较阵 和权向量
优化建模
1.建立层次结构模型 1.
例. 选择旅游地
目标层
如何在3个目的地中按照景色、 如何在3个目的地中按照景色、 费用、居住条件等因素选择. 费用、居住条件等因素选择.
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
同样求第3层 方案 对第2层每一元素 准则)的权向量 方案)对第 层每一元素(准则 同样求第 层(方案 对第 层每一元素 准则 的权向量
方案层对C 景色 景色) 方案层对 1(景色 的成对比较阵
1 B1 = 1 / 2 1 / 5 2 1 1/ 2 5 2 1
方案层对C 居住 居住) 方案层对 3(居住 的成对比较阵
1/ 2 1 1/ 7 1/ 5 1/ 5
4 7 1 2 3
数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武大数学建模培训多目标决策模型层次分析法P代数模型离散Document number:BGCG-0857-BTDO-0089-2022层次分析法建模层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。
吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,采用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。
传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、社会现象)现象的规律。
基本内容:(1)多目标决策问题举例AHP建模方法(2)AHP建模方法基本步骤(3)AHP建模方法基本算法(3)AHP建模方法理论算法应用的若干问题。
参考书: 1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。
就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉-Reputation);⑤工作环境好(人际关系和谐等)⑥发展晋升(promote, promotion)机会多(如新单位或单位发展有后劲)等。
问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择——或者说他将用什么方法将可供选择的工作单位排序B.假期旅游地点选择暑假有3个旅游胜地可供选择。
例如:1P :苏州杭州,2P 北戴河,3P 桂林,到底到哪个地方去旅游最好要作出决策和选择。
为此,要把三个旅游地的特点,例如:①景色;②费用;③居住;④环境;⑤旅途条件等作一些比较——建立一个决策的准则,最后综合评判确定出一个可选择的最优方案。
目标层准则层方案层C .资源开发的综合判断7种金属可供开发,开发后对国家贡献可以通过两两比较得到,决定对哪种资源先开发,效用最用。
二、问题分析:例如旅游地选择问题:一般说来,此决策问题可按如下步骤进行: (S1)将决策解分解为三个层次,即:目标层:(选择旅游地)准则层:(景色、费用、居住、饮食、旅途等5个准则) 方案层:(有1P ,2P ,3P 三个选择地点) 并用直线连接各层次。
(S2)互相比较各准则对目标的权重,各方案对每一个准则的权重。
这些权限重在人的思维过程中常是定性的。
例如:经济好,身体好的人:会将景色好作为第一选择;中老年人:会将居住、饮食好作为第一选择; 经济不好的人:会把费用低作为第一选择。
而层次分析方法则应给出确定权重的定量分析方法。
(S3)将方案后对准则层的权重,及准则后对目标层的权重进行综合。
(S4)最终得出方案层对目标层的权重,从而作出决策。
以上步骤和方法即是AHP 的决策分析方法。
三、确定各层次互相比较的方法——成对比较矩阵和权向量在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy 等人提出:一致矩阵法.....即:1. 不把所有因素放在一起比较,而是两两相互比较2. 对此时采用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高准确度。
因素比较方法 —— 成对比较矩阵法:目的是,要比较某一层n 个因素n C C C , ,,21 对上一层因素O 的影响(例如:旅游决策解中,比较景色等5个准则在选择旅游地这个目标中的重要性)。
采用的方法是:每次取两个因素i C 和j C 比较其对目标因素O 的影响,并用ij a 表示,全部比较的结果用成对比较矩阵表示,即:)1( 1,0 ,)(=⋅=>=ij ij ijji ij nxn ij a a a a a a A 或 (1)由于上述成对比较矩阵有特点: jiij ij ij a a a a A 1 ,0 , )(=>= 故可称A 为正互反矩阵:显然,由 jiij a a 1=,即:1=⋅ji ij a a ,故有:1=ji a例如:在旅游决策问题中:2112=a =(费用)(景色)21C C 表示:⎩⎨⎧2O 1O 21的重要性为(费用)对目标的重要性为景色)对目标(C C 故:),费用重要性为即景色重要性为21(2112=a14413==a = (居住条件)(景色)31C C 表示:⎩⎨⎧1O C 4O (31的重要性为(居住条件)对目标的重要性为景色)对目标C 即:景色为4,居住为1。
17723==a =(居住条件)(费用)32C C 表示:⎩⎨⎧1O C 7O (32的重要性为(居住条件)对目标的重要性为费用)对目标C 即:费用重要性为7,居住重要性为1。
因此有成对比较矩阵:⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=1135131112513131211714155337412121A 问题:稍加分析就发现上述成对比较矩阵的问题:① 即存在有各元素的不一致性,例如:既然:41114a ;22113313113212112==⇒===⇒==a a C C a C C a 所以应该有:188412131231213223======C C C C a a C C a而不应为矩阵A 中的1723=a②成对比较矩阵比较的次数要求太 ,因:n 个元素比较次数为:!2)1(2-=n n C n 次, 因此,问题是:如何改造成对比较矩阵,使由其能确定诸因素nC C , ,1 对上层因素O 的权重对此Saoty 提出了:在成对比较出现不一致情况下,计算各因素n C C , ,1 对因素(上层因素)O 的权重方法,并确定了这种不一致的容许误差范围。
为此,先看成对比较矩阵的完全一致性——成对比较完全一致性四:一致性矩阵Def :设有正互反成对比较矩阵:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=============== 1 a , , 1 , , 1 1nn 221122222212211121121111n n n n n n j i ij n n nn W W W W a W W a W Wa W W a W W a W W a W W a W W a W W a A(4) 除满足:(i )正互反性:即)1 ( 10=⋅=>ji ij jiij ij a a a a a 或 而且还满足:(ii )一致性:即i, j 1, 2, n i ik ij ik kj j j ka aa a a a a ==⋅==则称满足上述条件的正互反对称矩阵A 为一致性矩阵,简称一致阵。
一致性矩阵(一致阵)性质: 性质1:A 的秩 Rank(A)=1A 有唯一的非0的最大特征根为n性质2:A 的任一列(行)向量都是对应特征根n 的特征向量:即有(特征向量、特征值):⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n n n W W W W W W W W W W WW W W W W W W A212221212111,则向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=321W W W W满足:n nW nW nW W W W W W W W W W W W W W W W A n n n nn n n=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21212112111 即: 0)(=-W nI A启发与思考:既然一致矩阵有以上性质,即n 个元素W 1, W 2, W 3 , …W n 构成的向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=→n W W W W 21是一致矩阵A 的特征向量,则对一致矩阵A 来说,可以把一致矩阵A 的特征向量→W 求出之后,再把一致矩阵A 的特征向量→W 归一化后得到的向量→ω,看成是诸元素W 1, W 2, W 3 , …W n目标O 的权向量。
因此,可以用求一致矩阵的特征根和特征向量的办法,求出元素W 1, W 2, W 3 , …W n 相对于目标O 的权向量。
解释:一致矩阵即:n 件物体n M M M , , ,21 ,它们重量分别为n W W W , , ,21 ,将他们两比较重量,其比值构成一致矩阵,若用重量向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n W W W W 21右乘A ,则:()⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∑⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛称特征根法,求权向量的方法量权向量,此种用特征向为即对上层因素O的权重,,C ,,C C ,就表示诸因素=W=则归一化后的特征向量,=:重量向量 为特征根的特征向量为以的特征根为n 21 1W W W W ,121 i n W W W n n A分析:若重量向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n W W W W 21未知时,则可由决策者对物体n M M M , , ,21 之间两两相比关系,主观作出比值的判断,或用Delphi (调查法)来确定这些比值,使A 矩阵(不一定有一致性)为已知的,并记此主观判断作出的矩阵为(主观)判断矩阵A ,并且此A (不一致)在不一致的容许范围内,再依据:A 的特征根或和特征向量W 连续地依赖于矩阵的元素ij a ,即当ij a 离一致性的要求不太远时,A 的特征根i 和特征值(向量)W 与一致矩阵A 的特征根λ和特征向量W 也相差不大的道理:由特征向量W 求权向量W 的方法即为特征向量法,并由此引出一致性检查的方法。
问题:Remark以上讨论的用求特征根来求权向量W 的方法和思路,在理论上应解决以下问题:1.一致阵的性质1是说:一致阵的最大特征根为n (即必要条件),但用特征根来求特征向量时,应回答充分条件:即正互反矩阵是否存在正的最大特征根和正的特征向量且如果正互反矩阵A 的最大特征根n =max λ时,A 是否为一致阵2.用主观判断矩阵A 的特征根λ和特征向量W 连续逼近一致阵A 的特征根λ和特征向量W 时,即: 由λλ=→k kk lim得到:W W k k =∞→lim即: A A k k =∞→lim是否在理论上有依据。
3.一般情况下,主观判断矩阵A 在逼近于一致阵A 的过程中,用与A 接近的*A 来代替A ,即有A A ≈*,这种近似的替代一致性矩阵A 的作法,就导致了产生的偏差估计问题,即一致性检验问题,即要确定一种一致性检验判断指标,由此指标来确定在什么样的允许范围内,主观判断矩阵是可以接受的,否则,要重新两两比较构造主观判断矩阵。