历年高考排列组合试题及其答案

合集下载

(完整版)经典排列组合问题100题配超详细解析

(完整版)经典排列组合问题100题配超详细解析

1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。

38种 D 。

108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。

7中选两个数字,组成无重复数字的四位数。

其中偶数的个数为 ( ) A 。

56 B. 96 C. 36 D 。

360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。

历年高考排列组合试题及其答案

历年高考排列组合试题及其答案

二项式定理历年高考试题荟萃(三))102 分共计24 题, ( 一、填空题本大题共52的系数是________.(用数字作答)(1+2x)的展开式中x、1的展开式中的第5项为常数项,那么、2的值是正整数.已知,则、3 .(的值等于28的展开式中常数项为)+x(1+2)(1。

、4(用数字作答).展开式中含、5的整数次幂的项的系数之和为(用数字作答).28的展开式中常数项为)。

1+2(x()x-、6(用数字作答)的二项展开式中常数项是( 用数字作、7).答.26的展开式中常数项是).(x (+用数字、8)作答.若的二项展开式中、9的系数为,则.(用数字作答)______3n的展开式中含有常数项,x(2则+)若、10.n最小的正整数等于39)+(x.x展开式中的系数是(用、11数字作答).若、12展开式的各项系数之和为32,则n= ,其展开式中的常数项为。

(用数字作答)的展开式中、13的系数为.(用数字作答)55432+ax+a,则a+a+a+a+a若(x-2)x=a=__________.+ax+ax+ax、1450453212314243的系数为(1-x xx(1+2展开式中)).、15; 各项系数之的展开式中常数项为、16和为.(用数字作答)25的系数是x的二项展开式中)(x、17)用数字作答____________.( 36展开式中的常数项为)(x+(1+x )、18_____________.则若x0,>、19+(2.)(2-)-4.(x-)=______________.268k=______________.则120,的系数小于,x的展开式中)是正整数(k)(1+kx已知、20.n的展开式中第m)项的系数记(2x+、21n2,若为bb=b,则=.4m335的系数为)的二项展开式中x(x+、22)用数字作答_____________.(2n的展开式中没有常(1+x+x))(x+已知、23*且2≤n≤8,则n=_____________.数项,n∈N展开式中x的系数为.、24二项式定理历年高考试题荟萃(三)答案)分102 共计, 题24 共本大题( 一、填空题.2,∴系数为x(2)C=解析:40T、132=40.C·2.解:∵的展开式中的第5项为、2,且常数项,∴,得-256.令x=1,则有a+a+a+x+aa+ax+a+a=0,x++:(1解析-x)=aaxax+a514423235010即、352345(a+a+a)+(a+a+a)=0; ①5123405,=2aa+-a-+a=令x-1,则有-aa5302145②a++a)-(+a+(即aaa. )=2531420.联立①②有(a+a+a)(a+a+a)=-∴54021382=256.-=57.×1+2×1:解析57、4.答案:72解析:∵T= 、5r+1(=,.∴r=0,4,8时展开式中的项为整数次幂,所求系数和为++=72.答案:-42解析:的通项、6T=r+1.2)x(1+2∴=,展开式中常数项为42.-=15解析:、87、--r)2(6xTx=r+1.,令12-3xr==0,得r=4,∴T=15.=4.-312rr答案:2解析:∵、9==2.a∴,.)x(2C=T解析答案:7:、10+1rrr=2()C.-n3xx=2.Cx令3n-r=0,则有6n=7r,由展开式中有常7.最小值为n所以,数项.84 T=,∴9-2r=3.∴r=3.∴、11r+184.n=32.2可得展开式中各项系数之和为x=1令:解析5 10、12.∴n=5.而展开式中通项为2r()T(x=r+1.5-r=)5r-15.令5r-15=0,∴xr=3.3T∴常数项为=C=10.54.7展开式中的)由二项式定理得84 (1-、13项为3第·T(-=3.2=84)·,即84.的系数为5=-32.=(-2)令x=0,则a由二项式定理中的赋值法31 解析:,、140令x=1,则a+a+a+a+a+a=-1.∴a+a+a+a+a=-1-a=31.0514232453012的项x解析:展开式中含-6、1530·1·(2x)·m=22·+(-x)·1.21·1(2x)·31+1(-x)··12·(2x)1.402222的系展开式中=x1(-x)=6x-24x+12x2数为∴系数为-6.,-6x展开式中通项为10 32()T(x=r+1.、1625-rr=)其中常数项为,.T==10;令x=1,可得各项系数之和为35=32.2∵:解析40、173·(·)(x22222的系数为∴(-2)1)=10××·x=40x,x40.6展开式中的项)35 (x+答案:、18的系数与常数项的系数之和即为所求,由.T=·(r+1r=)6-3r r=2∴当,x·.时,=15.当r=3=20.,时15+20=35.故原展开式中的常数项为答案:-23 原式、193-4-3=4+4=-23.844,∵=15k解析答案:1:x的系数为k、20+44k=1.∴,Z∈8,k<120,k<15kn的展开式中第m项为)5 记(2x+、21n-m+1m-1==Tab mn-m+1·(·(2x).m-1,则)n-m+1.又∵b=2b,=b∴2·43mn-2×=22·.n-32·.=n=5.解得,.答案:10··x2=10.×=5.、224n展开式中不含)5解析:(x+答案:、23-2-10项即可,xx、x、由n-r(xF=r+1.r=)n-4.时成立n=5可以验证8,≤n≤2∵r.x2 展开式中含x的项、2430·1·(2x)·n=31·+(-x)·1.21·(2x)1·04·=-4x+6x=2x,1(-x)∴展开式中x的系数为2.。

高中排列组合试题及答案

高中排列组合试题及答案

高中排列组合试题及答案一、选择题1. 从5个人中选出3个人参加比赛,不同的选法有()种。

A. 10B. 15C. 20D. 60答案:B2. 有3个不同的球和3个不同的盒子,每个盒子只能放一个球,不同的放法有()种。

A. 3B. 6C. 9D. 27答案:D3. 从6本不同的书中选3本送给3个不同的人,每人一本,不同的送法有()种。

A. 20B. 60C. 120D. 720答案:B二、填空题4. 一个班级有20名学生,需要选出5名学生组成一个小组,那么不同的选法有______种。

答案:15,5045. 从10个人中选出3个人担任班长、副班长和学习委员,不同的选法有______种。

答案:720三、解答题6. 某学校有5个不同学科的竞赛,每个学生可以选择参加1个或多个竞赛,求至少参加一个竞赛的学生的选法总数。

答案:首先,每个学生有6种选择:不参加任何竞赛,只参加一个竞赛,参加两个竞赛,参加三个竞赛,参加四个竞赛,参加所有五个竞赛。

对于每个学科,学生有两种选择:参加或不参加,所以总共有2^5=32种可能的组合。

但是,我们需要排除不参加任何竞赛的情况,所以选法总数为32-1=31种。

7. 一个班级有30名学生,需要选出一个5人的篮球队,其中必须包括1名队长和4名队员。

如果队长和队员可以是同一个人,那么不同的选法有多少种?答案:首先,选择队长有30种可能,然后从剩下的29人中选择4名队员,有C(29,4)种可能。

但是,由于队长和队员可以是同一个人,我们需要减去只选了4名队员的情况,即C(30,4)种。

所以,总的选法为30*C(29,4) - C(30,4) = 30*1911 - 27,405 = 57,330种。

四、计算题8. 一个数字密码由5个不同的数字组成,每位数字可以是0-9中的任意一个,求这个密码的所有可能组合。

答案:每位数字有10种可能,所以总的组合数为10^5 = 100,000种。

9. 一个班级有15名学生,需要选出一个7人的足球队,不同的选法有多少种?答案:从15名学生中选出7人,不同的选法有C(15,7) = 6,435种。

高中数学排列组合典型题大全含答案

高中数学排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高考试题汇编-排列组合(附答案)

高考试题汇编-排列组合(附答案)

1 .[高考全国卷Ⅰ(河南,河北,广西等)理第12 题]设集合I= 1,2,3,4,5}。

选择 I 的两个非空子集 A 和B,要使 B 中最小的数大于 A 中最大的数,则不同的选择方法共有A.50种 B.49种 C.48种 D.47种2.[高考全国卷Ⅰ(河南,河北,广西等)理第15 题,文第16 题]安排 7 位工作人员在 5 月 1 日到 5 月 7 日值班,每人值班一天,其中甲、乙二人都不安排在 5 月 1 日和 2 日,不同的安排方法共有__________种。

(用数字作答)3.[高考全国卷Ⅱ(吉林,黑龙江, 内蒙,贵州,云南等)文第12 题] 5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有(A) 150种 (B)180种 (C)200种 (D)280种4.[高考北京卷文第4 题]在 1,2,3,4,5 这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数共有(A) 36 个 (B) 24 个(C) 18 个 (D) 6 个5.[高考北京卷理第3 题]在1,2,3,4,5 这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(A) 36 个 (B) 24 个(C) 18 个 (D) 6 个6.[高考天津卷理第5 题]将 4 个颜色互不相同球全部放入编号为 1 和 2 的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10 种B .20 种C .36 种D .52 种7 .[高考天津卷文第16 题]用数字0 ,1 ,2,3,4 组成没有重复数字的五位数,则其中数字1,2 相邻的偶数有个(用数字作答).8 .[高考重庆卷理第8 题]将 5 名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有(A)30种(B)90种(C)180种(D)270种9 .[高考重庆卷文第9 题]高三(一)班学要安排毕业晚会的 4 各音乐节目, 2 个舞蹈节目和 1 个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(A) 1800 (B) 3600 (C) 4320 (D) 504010 .(高考辽宁卷理第15 题,文第16 题)5 名乒乓球队员中,有2 名老队员和3 名新队员.现从中选出3 名队员排成1,2,3 号参加团体比赛,则入选的3 名队员中至少有1 名老队员,且1,2 号中至少有1 名新队员的排法有________种. (以数作答)11.[高考山东卷理第9 题,文第11 题]已知集集合A= {5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(A)33 (B)34 (C)35 (D)3612 .[高考湖南卷理第6 题]某外商计划在四个候选城市投资 3 个不同的项目,且在同一个城市投资项目不超过 2 个, 则该外商不同的投资方案有 ( )A.16 种B.36 种C.42 种D.60 种13 .[高考湖南卷文第6 题]在数字 1,2,3 与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6 B. 12 C. 18 D. 2414 .[高考湖北卷理第14 题]某工程队有6 项工程需要单独完成,其中工程乙须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。

排列组合试题及答案

排列组合试题及答案

排列组合试题及答案一、选择题1. 从5个不同的元素中取出3个元素进行排列,共有多少种不同的排列方式?A. 10B. 20C. 30D. 60答案:D2. 有8个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排列方式?A. 5760B. 5040C. 720D. 1440答案:D3. 从10个不同的元素中取出3个元素进行组合,共有多少种不同的组合方式?A. 120B. 210C. 100D. 1000答案:B二、填空题4. 从8个不同的元素中取出4个元素进行排列,共有______种不同的排列方式。

答案:16805. 从10个不同的元素中取出5个元素进行组合,共有______种不同的组合方式。

答案:252三、解答题6. 有5个不同的球和3个不同的盒子,要求每个盒子至少有一个球,有多少种不同的放法?答案:首先,将5个球分成3组,有C(5,2)种分法。

然后,将分好的3组球放入3个盒子中,有A(3,3)种放法。

所以总共有C(5,2) *A(3,3) = 60种不同的放法。

7. 一个班级有30个学生,现在要选出5个学生组成一个委员会,其中必须包括班长和团支书,共有多少种不同的选法?答案:首先,从28个非班长、团支书的学生中选出3个,有C(28,3)种选法。

然后,将选出的3个学生与班长和团支书一起组成委员会,共有C(28,3)种不同的选法。

8. 有4个不同的苹果和3个相同的盘子,要求每个盘子至少放一个苹果,有多少种不同的放法?答案:首先,将4个苹果分成3组,有C(4,1) + C(4,2) = 7种分法。

然后,将分好的3组苹果放入3个相同的盘子中,有A(3,3) / A(3,3) = 1种放法。

所以总共有7种不同的放法。

四、计算题9. 计算从10个不同的元素中取出4个元素进行排列的总排列数。

答案:A(10,4) = 10 * 9 * 8 * 7 = 504010. 计算从10个不同的元素中取出4个元素进行组合的总组合数。

(完整版)排列组合高考真题及答案

(完整版)排列组合高考真题及答案

1•将标号为1, 2, 3, 4, 5, 6的6张卡片放入3个不同的信圭寸中.若每个 信封放2张,其中标号为1, 2的卡片放入同一信封,则不同的方法共有 【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力 .【解析】标号1,2的卡片放入同一封信有4种方法;其他四封信放入两个信 封,每个信封两个有圧’种方法,共有'M “ 种,故选B.2.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每 天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日, 则不同的安排方法共有(A ) 30 种 (C ) 42 种 解析:法一:所有排法减去甲值 14日或乙值16日,再加上甲值14日且乙值16日的排法即 C ;C : 2 C ;C : C :C 3=42法二:分两类甲、乙同组,贝y 只能排在15日,有C :=6种排法3.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天, 若7位员工中的甲、乙排在相邻两天,丙不排在 10月1日,丁不排在10月 7日,则不同的安排方案共有(A 12 种种【答案】B(B ) 18 种 (C ) 36 种 (D )54 (B ) 36种(D ) 48 种A. 504 种B. 960 种C. 1008 种D.1108种解析:分两类:甲乙排1、2号或6、7号共有2 A2A4A:种方法甲乙排中间, 丙排7 号或不排7 号,共有4A22( A44A31A31A33)种方法故共有1008 种不同的排法4.8 名学生和2 位第师站成一排合影,2 位老师不相邻的排法种数为(A)A88A92(B)A88C92(C)A88A72(D)A88C72答案:A5. 由1、2、3、4、5、6 组成没有重复数字且1、3 都不与5 相邻的六位偶数的个数是(A)72 (B)96 (C)108 (D)144解析:先选一个偶数字排个位,有3 种选法①若5在十位或十万位,则1、3有三个位置可排,3A;A; = 24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A|A2 =12个算上个位偶数字的排法,共计3(24 + 12)= 108个答案:C6. 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288 种(B)264 种(C)240 种(D)168 种【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。

高三数学排列组合综合应用试题

高三数学排列组合综合应用试题

高三数学排列组合综合应用试题1. 7个人排成一排,按下列要求各有多少种排法?(1)其中甲不站排头,乙不站排尾;(2)其中甲、乙、丙3人必须相邻;(3)其中甲、乙、丙3人两两不相邻;(4)其中甲、乙中间有且只有1人;(5)其中甲、乙、丙按从左到右的顺序排列.【答案】(1)3720种(2)720种(3)1440种(4)1200种(5)840种【解析】(1)方法一(直接法):如果甲站排尾,其余6人有种排法,如果甲站中间5个位置中的一个,而乙不站排尾,则有种排法,故共有排法+=3720种.方法二(间接法):7个人排成一排有种排法,其中甲在排头有种排法,乙在排尾有种排法,甲在排头且乙在排尾共有种排法,故共有排法--+=3720种.(2)(捆绑法)将甲、乙、丙捆在一起作为一个元素与其他4个元素作全排列有种,然后甲、乙、丙内部再作全排列有种,故有不同的排法=720种.(3)(插空法)先排甲、乙、丙外的4人有种排法,这四人之间及两端留出五个空位,然后把甲、乙、丙插入到五个空位中有种排法,故共有=1440种排法.(4)甲、乙两人有种排法,现从剩下的五人中选一个插入甲、乙中间,有种排法,然后再将这三人看作一个元素,和其他四个元素作全排列,有种排法,故共有=1200种排法.(5)七个人的全排列为,其中若只看甲、乙、丙不同顺序的排法有种排法,但只有一种顺序符合要求,故符合要求的不同排法有=840种.2.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有A.60种B.70种C.75种D.150种【答案】C.【解析】由已知可得不同的选法共有,故选C.【考点】排列组合.3.把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有种.【答案】36【解析】先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有种摆法,又当A、B相邻又满足A、C相邻,有种摆法,故满足条件的摆法有种.【考点】排列组合,容易题.4.甲乙两人从4门课程中各选修两门,则甲乙所选的课程中至少有1门不相同的选法共有( )种A.30B.36C.60D.72【答案】A【解析】甲、乙所选的课程中至少有1门不相同的选法可以分为两类:(1)甲、乙所选的课程中2门均不相同,甲先从4门中任选2门,乙选取剩下的2门,有种.(2)甲、乙所选的课程中有且只有1门相同,分为2步:①从4门中先任选一门作为相同的课程,有种选法;②甲从剩余的3门中任选1门乙从最后剩余的2门中任选1门有种选法,由分步计数原理此时共有种.综上,由分类计数原理,甲、所选的课程中至少有1门不相同的选法共有6+24=30种.【考点】计数原理,排列组合.5.设是的一个全排列,把排在左边且小于的数的个数称为的顺序数(),例如在排列6,4,5,3,2,1中,5的顺序数是1而3的顺序数是0.在的全排列中,8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数是( )A.48B.96C.144D.192【答案】C【解析】据题意,在8的左边有2个比8小的数,在7的左边有3个比7小的数,在5的左边有3个比5小的数.由于8是最大的数,故8必排在第3位,而7必须排在第5位:.若6在5的右边,则:,共有种;若6在5的左边,则5必在倒数第二位,,共有.所以总共有种.【考点】排列组合.6.一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种 .【答案】186【解析】设取红球个,白球个,则,取法为.【考点】古典概型.7.用0,1,2,3,4这五个数字组成没有重复数字的五位数中,奇数的个数是()A.24B.36C.48D.72【答案】B【解析】第一步排个位,有2种排法;第二步排万位,有3种排法;第三步排中间3位,有种排法.所以共有种排法.【考点】计数原理与排列.8.将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【答案】A【解析】先安排老师有=2种方法,再安排学生有=6,所以共有12种安排方案,选A.9. 8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.B.C.D.【答案】A【解析】8名学生共有种排法,把2位老师插入到9个空中有种排法,故共有种排法.10.在“学雷锋,我是志愿者”活动中,有名志愿者要分配到个不同的社区参加服务,每个社区分配名志愿者,其中甲、乙两人分到同一社区,则不同的分配方案共有()A.种B.种C.种D.种【答案】B【解析】由题意,将问题分成2步.第1步,甲乙分到3个社区中的1个社区,有种方法;第2步,将余下4个人分配到另外2个社区,有种方法,则最终不同的分配方案共有种.故选B.【考点】1.分步计数原理的应用;2.人员分配问题.11.某搬运工不慎将4件次品与6件正品混在一起,由于产品外观一样,需要用仪器对产品一一检测,直至找到所有次品为止,若至多检测6次就能找到所有次品,则不同的检测方法共有()种.A.1950B.2130C.7800D.8520【答案】D【解析】若恰好检测4次就能找到所有次品,不同的检测方法共有种;若恰好检测5次就能找到所有次品,不同的检测方法共有种;若恰好检测6次就能找到所有次品货所有正品,不同的检测方法共有.故满足条件的不同检测方法有种.【考点】排列组合.12.编号为1,2,3,4,5,6的六个同学排成一排,3、4号两位同学相邻,不同的排法()A.60种B.120种C.240种D.480种【答案】C【解析】将34看一个整体,连同1、2、5、6共5个元素进行全排列,共有5!种排法.由于3、4还要进行排列,故共有种排法.【考点】排列.13.科技活动后,名辅导教师和他们所指导的名获奖学生合影留念(每名教师只指导一名学生),要求人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______.(用数字作答)【答案】.【解析】由于学生与其指导老师相邻,先将学生与其指导教师进行捆绑,形成三个整体,考虑每个整体中教师与学生的顺序,以及三个整体的排列,因此共有种不同的站法种数.【考点】排列组合14.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字且能被3整除的四位数,这样的四位数有个.【答案】【解析】依题意,只需组成的四位数各位数字的和能被整除.将这六个数字按照被除的余数分类,共分为类:,,,若四位数含,则另外个数字为、之一、之一,此时有种;若四位数不含,则个数字为,此时有种,由分类计数原理,这样的四位数有个.【考点】排列和组合.15.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数字作答).【答案】324【解析】∵个位、十位和百位上的数字之和为偶数,∴这三个数或者都是偶数,或者有两个奇数一个偶数.当个位、十位和百位上的都为偶数时,则①此三位中有0,则有·4=3×6×4=72(个);②此三位中没有0,则有·3=6×3=18(个).当个位、十位和百位上有两个奇数一个偶数时,则①此三位中有0,则有·4=3×6×4=72(个);②此三位中没有0,则有·3=162(个),∴总共有72+18+72+162=324(个).【方法技巧】1.解决排列组合综合问题,应遵循三大原则:先特殊后一般、先取后排、先分类后分步的原则.2.解决排列组合综合问题的基本类型基本类型主要包括:排列中的“在与不在”、组合中的“有与没有”,还有“相邻与不相邻”“至少与至多”“分配与分组”等.3.解决排列组合综合问题中的转化思想转化思想就是把一些排列组合问题与基本类型相联系,从而把问题转化为基本类型,然后加以解决.16.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36【答案】A【解析】从集合A,B,C中各取一个数有1×2×3=6种取法.其中1,1,5三数可确定空间不同点的个数为3个,另5种每种可确定空间不同点的个数都是6.所以可确定空间不同点的个数为3+5×6=33.17.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【答案】A【解析】【思路点拨】先排第一列三个位置,再排第二列第一行上的元素,则其余元素就可以确定了.解:先排第一列,由于每列的字母互不相同,因此共有3×2×1种不同的方法;再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法,因此共有3×2×1×2=12(种)不同的方法.18.某化工厂生产中需要依次投放2种化工原料,现已知有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲先投放,则不同的投放方案有()A.10种B.12种C.15种D.16种【答案】C【解析】分类完成此事,一类是使用甲原料,则不同的投放方案有1×3=3(种);一类是不使用甲原料,不同的投放方案有4×3=12(种);由分类加法计数原理可知,不同的投放方案有3+12=15(种).19.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数的个数为()A.11B.12C.13D.14【答案】D【解析】数字2出现一次的四位数有4个,数字2出现2次的四位数有6个,数字2出现3次的四位数有4个,故总共有4+6+4=14个.20.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【答案】B2=6种方法;②选1本画【解析】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C41=4种方法.所以不同的赠送方法共有6+4=10(种).册,3本集邮册送给4位朋友,有C421.将甲、乙、丙、丁、戊共五位同学分别保送到北大、上海交大和浙大3所大学,若每所大学至少保送1人,且甲不能被保送到北大,则不同的保送方案共有多少种().A.150B.114C.100D.72【答案】C【解析】先将五人分成三组,因为要求每组至少一人,所以可选择的只有2,2,1,或者3,1,1,所以共有=25种分组方法.因为甲不能去北大,所以有甲的那组只有交大和浙大两个选择,剩下的两组无约束,一共4种排列,所以不同的保送方案共有25×4=100种.22.某班有38人,现需要随机抽取5人参加一次问卷调查,抽到甲同学而未抽到乙同学的可能抽取情况有种. (结果用数值表示)【答案】【解析】甲乙是两个特殊的元素,甲抽到了,而乙未抽到,因此还要从余下的36人中抽4人,共有种抽法.【考点】组合.23.某高校从5名男大学生志愿者和4名女大学生志愿者中选出3名派到3所学校支教(每所学校一名志愿者),要求这3名志愿者中男、女大学生都有,则不同的选派方案共有 ().A.210种B.420种C.630种D.840种【答案】B【解析】从这9名大学生志愿者中任选3名派到3所学校支教,则有种选派方案,3名志愿者全是男生或全是女生的选派方案有+种,故符合条件的选派方案有-(+)=420种.24.数列共有12项,其中,,,且,则满足这种条件的不同数列的个数为()A.84B.168C.76D.152【答案】A【解析】∵,∴前一项总比后一项大一或小一,到中4个变化必然有3升1减,到中必然有5升2减,是排列组合的问题,∴.【考点】1.数列的递推公式;2.排列组合问题.25.桌面上有形状大小相同的白球、红球、黄球各3个,相同颜色的球不加以区分,将此9个球排成一排共有种不同的排法.(用数字作答)【答案】1680【解析】可以考虑将此9个球同色加以区分的排成一排,然后再加以区分,除以相同颜色的球的排列数即可.所以满足题意的排列种数共有.【考点】排列组合26.高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800B.3600C.4320D.5040【答案】B【解析】先排除了舞蹈节目以外的5个节目,共种,把2个舞蹈节目插在6个空位中,有种,所以共有种.【考点】排列组合.27.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为( )A.B.C.D.【答案】A【解析】先安排2,4,因为2,4不在个位和万位,所以2,4只能在十、百、千三个位置,①若2,4均为在百位,即2,4只占十位和千位,则数字5只能从个位和万位选择一个位置,这样共有个五位数;②若2,4某一个数字占据了百位,另一数字占据十位或千位,共有种可能,此时剩下的三个数字安排到余下的三个位置即可,这样的五位数就有个.由①②可知,这样的五位数一共有32个,故选A.【考点】排列组合综合.28. 2011年西安世园会组委会要派五名志愿者从事翻译、导游、礼仪三项工作,要求每项工作至少有一人从事,则不同的派给方案共有()A.25种B.150种C.240种D.360种【答案】B【解析】5个人全部参加工作,可以分先分组为2人、2人、1人或3人、1人、1人,故5个人全部工作共有安排方案种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理历年高考试题荟萃(三)
一、填空题(本大题共 24 题, 共计102分)
1、(1+2x)5的展开式中x2的系数是________.(用数字作答)
2、的展开式中的第5项为常数项,那么正整数的值
是.
3、已知,则(
的值等于 .
4、(1+2x2)(1+)8的展开式中常数项为。

(用数字作答)
5、展开式中含的整数次幂的项的系数之和为(用数字作答).
6、(1+2x2)(x-)8的展开式中常数项为。

(用数字作答)
7、的二项展开式中常数项是(用数字作答).
8、 (x2+)6的展开式中常数项是.(用数字作答)
9、若的二项展开式中的系数为,则______(用数字作答).
10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等
于.
11、(x+)9展开式中x3的系数是.(用数字作答)
12、若展开式的各项系数之和为32,则n= ,其展开式中的常数项为。

(用数字作答)
13、的展开式中的系数为.(用数字作答)
14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________.
15、(1+2x)3(1-x)4展开式中x2的系数为 .
16、的展开式中常数项为 ; 各项系数之和
为 .(用数字作答)
17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)18、(1+x3)(x+)6展开式中的常数项为_____________.
19、若x>0,则(2+)(2-)-4(x-)=______________.
20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________.
21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= .
22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答)
23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.
24、展开式中x的系数为.
二项式定理历年高考试题荟萃(三)答案
一、填空题 ( 本大题共 24 题, 共计102分)
1、40解析:T3=C(2x)2,∴系数为22·C=40.
2、解:∵的展开式中的第5项为,且常数项,
∴,得
3、-256
解析:(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,则有a0+a1+a2+a3+a
+a5=0,
4
即(a0+a2+a4)+(a1+a3+a
)=0;


令x=-1,则有a0-a1+a2-a3+a4-a5=25,
即(a0+a2+a4)-(a1+a3+a5)=2
5.

联立①②有∴(a0+a2+a4)(a1+a3+a5)=-28=-256.
4、57解析:1×1+2×=57.
5、答案:72解析:∵Tr+1=(=,
∴r=0,4,8时展开式中的项为整数次幂,所求系数和为++=72.
6、答案:-42解析:的通项Tr+1=
=,∴(1+2x2)展开式中常数项为=-42.
7、8、15解析:Tr+1=x2(6-r)x-r=x12-3r,令12-3r=0,得r=4,∴T4==15.
9、答案:2解析:∵=,∴a=2.
10、答案:7解析:Tr+1=C(2x3)n-r()r=2C x x=2Cx
令3n-r=0,则有6n=7r,由展开式中有常数项,所以n最小值为7.
11、84 Tr+1=,∴9-2r=3.∴r=3.∴84.
12、5 10 解析:令x=1可得展开式中各项系数之和为2n=32.
∴n=5.而展开式中通项为T
r+1
=(x2)r()5-r=x5r-15.令5r-15=0,∴r=3.
∴常数项为T
4=C3
5
=10.
13、84 由二项式定理得(1-)7展开式中的第3项为T3=·(-)2=84·,即的系数为84.
14、31 解析:由二项式定理中的赋值法,令x=0,则a0=(-2)5=-32.
令x=1,则a
0+a

+a
2
+a

+a
4
+a
5
=-1.∴a
1
+a
2
+a

+a
4
+a
5
=-1-a

=31.
15、-6解析:展开式中含x2的项m=·13·(2x)0··12·(-x)2+·12(2x)1··13·(-x)1+11(2x)2·
14(-x)0=6x2-24x2+12x2=展开式中x2的系数为-6x2,∴系数为-6.
16、10 32 展开式中通项为T r+1=(x2)5-r()r=,其中常数
项为T

==10;令x=1,可得各项系数之和为25=32.
17、40解析:∵·(x3)·()2=10×1×(-2)2·x2=40x2,∴x2的系数为40.
18、答案:35 (x+)6展开式中的项的系数与常数项的系数之和即为所求,
由T
r+1
=·()r=·x6-3r,∴当r=2时,=15.当r=3时,=20.故原展开式中的常数项为15+20=35.
19、答案:-23 原式=4-33-4+4=-23.
20、答案:1解析:x8的系数为k4=15k4,∵15k4<120,k4<8,k∈Z+,∴k=1.
21、5 记(2x+)n的展开式中第m项为Tm=a n-m+1b m-1=·(2x)n-m+1·()
m-1,则b
m =·2n-m+1.又∵b

=2b

,∴·2n-2=2×·2n-3=,解
得n=5.
22、答案:10·x4·=5×2=10.
23、答案:5解析:(x+)n展开式中不含x0、x-1、x-2项即可,
=xn-r()r=x n-4r.∵2≤n≤8,可以验证n=5时成立.
由F
r+1
24、2 展开式中含x的项n=·13·(2x)0··13·(-x)1+·12(2x)1··14(-x)0=-4x+6x=2x,
∴展开式中x的系数为2.。

相关文档
最新文档