高等有机
《高等有机化学基础》课件

1 2
官能团
决定有机化合物性质的原子或原子团。
系统命名法
按照一定的规则给有机化合物命名的方法。
3
俗名
根据有机化合物的来源或性质得来的名称。
04
有机化学反应机理
取代反应
总结词
取代反应是有机化学中常见的一 种反应类型,其中一个原子或基 团被另一个原子或基团所取代。
详细描述
在取代反应中,一个原子或基团被 另一个原子或基团所取代,生成新 的化合物。这种反应通常涉及电子 的转移和重排。
有机化学在材料科学中的应用
01
高分子材料
有机化学在高分子材料的合成、改性和加工中发挥重要作用,包括合成
功能性高分子材料、研究高分子链的构象和运动等。
02 03
纳米材料
有机化学在纳米材料的合成和修饰中具有广泛应用,如制备碳纳米管、 纳米颗粒和纳米纤维等,并研究它们在能源、催化、生物医学等领域的 应用。
06
有机化学的应用
有机化学在医药领域的应用
药物合成
有机化学在药物合成中发挥着重要作用,通过设计合成路 线和优化反应条件,制备出具有生物活性的药物分子。
药物代谢
有机化学研究药物在体内的代谢过程,包括药物的吸收、 分布、代谢和排泄等环节,有助于理解药物作用机制和优 化药物设计。
药物筛选
有机化学在药物筛选中发挥关键作用,通过高通量筛选和 虚拟筛选等方法,发现具有潜在生物活性的小分子化合物 ,为新药研发提供候选药物。
详细描述
我们日常生活中的许多物品,如衣物、食品、建筑材料和交通工具等,都与有机化合物密切相关。例 如,衣物中的纤维和染料、食品中的添加剂和防腐剂、建筑材料中的塑料和油漆等,都是有机化合物 。此外,许多医疗药物也是有机化合物,对人类的健康和疾病治疗具有重要作用。
高等有机合成

高等有机合成
高等有机合成是指一种大规模、高效率和高产率的有机合成反应或方法,通常用于合成复杂的有机化合物,如天然产物、药物、高分子材料等。
与普通有机合成相比,高等有机合成通常需要使用更高级的合成步骤和方法,以达到更高的合成效率和产率。
高等有机合成常用的反应包括氧化、还原、取代、缩合、环化、开环等,有时还需要使用更复杂的合成策略,如过渡金属催化、不对称合成、微波辐射、超声波促进等。
这些反应和方法的使用可以使得高等有机合成更加高效、简便和环保。
高等有机合成在农药、医药、材料科学等领域有着广泛的应用。
通过高等有机合成,可以合成出更复杂、更有活性和选择性的有机化合物,满足科学研究和工业生产的需求。
同时,高等有机合成还可以帮助研究人员理解有机化学反应的机理和性质,从而进一步发展有机合成领域。
《高等有机化学》课件

04 有机合成策略与技巧
有机合成的基本策略
碳-碳键的形成
选择性反应
通过各种反应如亲核取代、加成反应 、消除反应等构建碳-碳键。
在多取代的碳氢化合物中,选择性地 活化或转化某一特定位置的碳-氢键。
碳-氢键的活化
利用催化剂或反应条件将碳-氢键转化 为活性中间体,以便进行后续的转化 。
逆合成分析
目标分子的解构
自由基反应
总结词
自由基反应是有机化学中的一种重要反应类 型,其特点是反应过程中存在不稳定的自由 基中间体。
详细描述
自由基反应通常由自由基引发剂引发,产生 自由基活性种,随后与其他分子发生反应。 自由基反应的特点是快而连锁,常常需要在 无氧或无水条件下进行。例如,烷烃的裂解 反应中,高温条件下烷烃分子产生自由基, 随后发生链增长反应生成多种小分子。
亲电反应
总结词
亲电反应是有机化学中的另一种常见反应类型,其特点是试 剂向反应中心的负电性较强部分进攻,通常发生在具有电子 缺口的碳原子中。
详细描述
在亲电反应中,具有正电性的试剂(称为亲电试剂)进攻具 有电子缺口的碳原子,形成过渡态,最终形成新的碳-碳键或 碳-杂原子键。例如,在烷烃的溴代反应中,溴分子作为亲电 试剂进攻烷烃的碳原子,形成碳-溴键。
共价键理论
共价键的形成
共价键是由两个或多个原 子共享电子形成的,电子 的共享程度决定了键的类 型和强度。
键的类型
根据电子的共享程度,共 价键可以分为单键、双键 和三键等不同类型。
键极性
共价键具有极性,可以分 为极性键和非极性键,这 决定了分子的性质。
分子轨道理论
分子轨道的概念
分子轨道是描述分子中电子运动状态的波函数。
协同反应
《高等有机化学》PPT课件

h
15
有机化合物的去除研究方法
去除水环境中有机化合物一般采用的方法有
➢ 化学氧化 ➢ 生物降解
饮用水深度处理考虑上述两种方法
北方水厂更适合采用化学氧化,可供选择的 氧化剂有ClO2、KMnO4、H2O2等。如何定量 研究去除规律考察氧化剂与有机化合物的反 应历程,是我们这门课关心的重点。
h
17
谢谢
离解能 键长 键强 ➢酸和碱
➢键的极性
➢电子效应和空间效应
➢分子的极性 ➢同分异构体
➢熔点和沸点 ➢蒸气压
可分为易挥发和不 易挥发有机化合物
可描述有机物从溶液中挥 发出的程度,但水环境下 h 需考虑其他因素。 3
电子效应和空间效应
电子效应
➢ 诱导效应 静态诱导效应 动态诱导效应
➢ 共轭效应 ➢ 苯环上的电子效应
当诱导效应和共轭效应一致时,如酚盐负离子 当两种效应相反时,取决于-I与+C的大小
空间效应
h
5
表征有机污染物主要参数
➢S:水中溶解度(ppm)
➢ Koc 沉淀物水分配系数
➢ Kow辛醇水分配系数
➢生物富集系数BCFs
它表示有机化合物在生物体内或生物组织内浓 度与水中浓度之比
➢另外还有Herry常数、再曝气速率比、光解 K、生物转化K等
高等有机化学ห้องสมุดไป่ตู้
主讲人:崔崇威
h
1
引言
❖饮用水源中有机污染物的去除已经成为饮 用水深度处理的一个研究课题。
❖研究有机化合物的去除规律,首先要认识 它的物理化学性质,水污染物动力学参数, 并根据其来源性质进行简单的分类 。
h
2
有机化合物的性质
❖有机化合物的性质要关心的主要有:
高等有机化学

★ 金属有机化学和元素有机化学,为有机合成化学提
供了高选性的反应试剂和催化剂,以及各种特殊材料及
其加工方法。
• C-M键的活性是近代化学前沿领域。主要方向:新型过渡金
属和稀土金属有机化合物的合成、结构、反应性能和机理的研究, 具有特殊光电磁性能的新型金属有机化合物的合成(如非线性光 学材料、超导材料)。 •有机磷:农药、医药、阻燃剂、萃取剂、润滑油添加剂、水处 理剂、Wittig反应。 • 有机氟:原子能工业、火箭技术、宇航技术。
《高等有机化学》课程简介
课程性质:高等有机化学是由物理化学和有机化 学相结合而发展起来的一门论述有机化合物的结 构、反应、机理及它们之间相互关系的科学。
课程内容:进一步阐述现代有机化学的主要理 论,研究有机分子结构与性能的关系,探讨重 要的有机化学反应机理的细节与规律,如反应 途径、反应 活性中间体与过渡态,各种能量关 系、立体化学特征、环境和结构效应对反应的 影响, 有机分子间的弱相互作用,有机分子结构 与性能的关系等。
×
heat O H2N C NH2 urea (organic)
1854年Berthelot合成了油脂,生命力论被彻底推翻。
☆有机化学是研究有机化合物的来源、制备、结构、 性能、应用以及有关理论和方法的科学 。
C-C键的形成和断裂 有机合成化学 C-X键的形成和断裂
有 机 合 成 方 法 学
试剂,催化剂 温度,溶剂
课程目的:通过本课程的学习,力求更深入 的理解和掌握有机化学的理论,提高运用有 关知识分析解决问题的技巧和能力,鼓励自 我获取、自我更新有机化学知识。
参考书籍:
1. F. A. Carey, R. J. Sundberg,
Advanced Organic Chemistry Part A. Structure and Mechanism
高等有机化学教案(精选)

高等有机化学教案(精选)高等有机化学教案篇1学问目标1、常识性介绍有机化合物的初步概念及性质上的一些共同特点,能够推断生活中的有机物;了解甲烷的存在和物理性质及其可燃性。
2、了解酒精学名、化学式、物理性质、化学性质及重要应用;辨别甲醇及乙醇性质的异同,熟悉甲醇的毒性;常识性介绍醋酸。
3、常识性介绍煤和石油既是重要的能源,又是重要的化工原料。
力量目标1、同学探究甲烷的元素组成化学式的过程中,了解科学创造的过程和方法:发觉问题寻求解决方法实施方案结果分析得出成果,培育同学的试验力量和思维力量。
2、提高同学配平化学方程式的技能。
3、培育同学的自学力量。
情感目标1、通过古代对自然气、沼气的利用,对同学进行爱国主义教育。
联系甲烷燃烧放热,说明甲烷可作重要能源以及对农村进展的重要意义。
2、通过介绍我国在酿酒造醋工艺方面的重大创造和悠久历史,对同学进行爱国主义教育。
3、树立环保意识、能源意识。
教学建议关于甲烷的教学材料分析:化学科学的进展,增进了人类对自然的熟悉,促进了社会的进展。
但某些化学现象可能影响人类的生活和社会的可持续进展,因而关心同学正确熟悉化学与社会进展的关系是非常重要的。
甲烷是继一氧化碳、二氧化碳、碳酸钙等含碳化合物以后又一种含碳化合物,所不同的是,甲烷属于有机物。
有机物学问的增加,是九年义务教育化学教学大纲的一个重要特点。
甲烷作为一种简洁的有机物广泛存在于日常生活中,但同学却未必留意到它的存在、它在生活中所起的重大作用,更难与化学联系在一起。
因此经过提示,极易激发同学的学习爱好。
同时甲烷的广泛存在,使同学简单收集到相关资料,使自主学习成为可能。
本节教学材料分成"有机化合物'、"甲烷'两部分,甲烷是重点,有机物的应用是选学材料。
前一部分着重介绍有机化合物的初步概念。
教学材料在列举了一氧化碳、二氧化碳等含碳化合物后,又列举了蔗糖、淀粉、蛋白质等另一类含碳化合物,使同学对这两类含碳化合物有一个初步的了解。
高等有机化学课件自由基反应
目 录
• 自由基反应概述 • 自由基的生成与性质 • 自由基反应机理 • 自由基反应的应用 • 自由基反应的挑战与展望
01
自由基反应概述
定义与特性
定义
自由基反应是指涉及自由基参与的反 应过程,自由基是一种具有未配对电 子的原子或分子片段。
特性
自由基具有高度的反应活性,通常倾 向于与其他分子或自由基发生反应, 从而导致分子结构的改变。
进行。
链终止是自由基反应的结束步骤,通过自由基 活性种的消除或结合,使反应停止进行。
自由基的结合是两个自由基活性种相互结合,形 成稳定的分子结构,从而使自由基消失。
04
自由基反应的应用
在合成中的应用
01
自由基反应在有机合成中具有重要作用,可以用于 合成多种有机化合物,如烯烃、醇、羧酸等。
02
自由基反应可以通过选择适当的反应条件和催化剂 ,实现选择性合成,提高合成效率。
THANK YOU
提高自由基反应效率的方法包括:使 用高活性的自由基源、优化反应条件 、以及使用催化剂。
新技术的应用与展望
随着科技的发展,新的工具和技术不 断涌现,为解决自由基反应的选择性 和效率问题提供了新的可能性。例如 ,使用计算机辅助的分子设计可以预 测和优化反应条件和底物结构。
VS
展望未来,随着计算化学和人工智能 的发展,自由基反应有望在更短的时 间内实现更高的选择性和效率。同时 ,随着绿色化学的发展,自由基反应 也将在实现可持续化学合成方面发挥 重要作用。
在链增长过程中,自由基可以与不同的反应物分子发生加成、取代等反应 ,形成更复杂的分子结构。
链增长过程中,自由基的活性很高,容易发生连锁反应,导致反应迅速进 行。
高等有机化学课件
3. 对反应活性的影响 伯卤代烷的乙醇解的相对速度是与中心碳原子 连接的烷基大小相关的:
R EtOH + H C Br H
R 相对速度 1.0 0.28 0.03 4.2× 10
-5
H3CCH3CH2(CH3)2CH(Isopropyl)
R EtO C H + HBr H SN2 反应
乙氧基从背后进攻
四. 场效应
五. 空间效应 ( )
1. 对化合物稳定性的影响 2. 对化合物酸性的影响 3. 对反应活性的影响 4. 张力:F-张力,B-张力,角张力
第一章 取代基效应 (Substituent Effects)
H H C Br + OH H H H H C OH + Br
反应的本质: 旧键的断裂,新键的生成 共价键的极性取决于取代基的效应
C2H5 CH3 N Ph O
不同取代开链叔胺分子不具有旋光活性:
R R' R" N
R N R' R"
两种对映体因快速翻转 相互转化,导致消旋。
手性中心 - 其它杂原子:
O
S
CH2Ph
H2C CHCH2 CH3
[α] D = +16.8°
P
[α]27 = +92.4° D
三. 含两个(或多个)手性中心的分子
空间传递
空间效应 (位阻效应) 物理的相互作用
电子效应 (Electronic effect):
由于取代基的作用而导致的共有电子对 沿共价键转移的结果。
O O2N CH2 C O H > CH3
O C O H
一. 诱导效应 (Inductive effect)
高等有机化学
如今: 一个高年级本科生大概1天
★ 高效低毒农药、动植物生长调节剂和昆虫信 息物质的研究和开发,为农业的发展提供了重 要的保证。
➢性信息素具有强烈的生理作用。一只雌蚕蛾交配前在 其尾部每秒钟释放出毫微克量的信息素,顺风扩散可 引诱几个km外的雄蚕蛾逆风飞翔到雌蚕蛾。由于检测 仪器的进步,50年代需几十万只、60年代需几万只, 而80年代后则需10只或更少就能准确确定性信息素的 结构。即便样品量很少(< 100g)也能获得确切的结 构信息。
药学 医学
有机化学对于社会进步以及其它学科的发展的贡献也 是巨大的:
例如:
★ 在对重要的天然产物和生命基础物质的研究中,有机化 学取得了丰硕成果。维生素、抗生素、甾体和萜类化合物、 生物碱、碳水化合物、肽、核苷等的发现、结构测定和合 成,为学科本身的发展增添了丰富的内容,为人类的医药 卫生事业提供了有效的武器。
高等有机化学的研究内容与目的
高等有机化学是有机化学的核心部分(core)
高等 有机化学
分子结构的 基本概念
含碳化合物的 反应性
化合物 中间体
结构
反应过程中的结构变化 反应机理
揭示反应的本质、内在规律,把有机反应有机地 联系起来。
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
目录
化学键和分子结构理论
9. 魏荣宝主编 高等有机化学 高等教育出版社
第一章 绪论
一、有机化学
来源:
☆1784: T. Bergman 首次明确定义有机化学 Organic chemistry is the chemistry of carbon compounds
☆ 1808: 瑞典Berzelius首次使用organic chemistry
高等有机化学PPT课件
CH3CONHNH2 HNO2 CH3CON3
CH3NCO
X
O
C=NOH
CH3NCO
X
O
O
C N O C NHCH3
乃春在芳环邻位是不饱和支链时,极易环化成五元环,这一 性质对杂环的合成具有重要意义:
AX B
H N:
A BX
N
H
第三节:自由基
自由基是共价键发生均裂,每个碎片各保留一个电子,是带 单电子的三价碳的化合物。
2004年1版 6、洪琳编《有机反应活性中间体》高等教育出版社1999.6第一版 7、斯图尔特.沃伦著《有机合成――切断法探讨》丁新腾译,上海科学
技术文献出版社1986年1月第一版 8、黄宪、吴世晖、徐汉生《有机合成》(上、下)
第一章 有机反应活泼中间体及在合成上的应用
在有机反应中,经常出现的活泼中间体是卡宾、乃春、自由基、碳正离子、 碳负离子(包括苯炔、叶立德)
第一章 有机反应活泼中间体 及在合成上的应用
第一节:卡宾(碳烯)(Carbene) 第二节: 乃春 第三节:自由基 第四节:碳正离子 第五节、碳负离子(Carbenion)(活泼亚甲基
化合物)和叶立德
第二章 官能团的选择性互变
第一节 还原反应 第二节 氧化反应
第三章 官能团的保护
第一节: 羟基的保护(醇、酚羟基的保护) 第二节:烯键的保护 第三节:羰基的保护(用醇保护) 第四节:羧基的保护-酯化 第五节:胺基的保护-酰化或成盐
(六)生物有机化学( Bioorganic Chemistry) (七)元素和金属有机化学(Element and Metal Organic Compounds Chemistry) (八)有机化学中的一些重要应用研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅述有机化学中的亲核取代反应机理班级:化学1001 姓名:谢敏学号:100900057摘要:亲核取代反应是有机化学中的一类非常重要的反应,可分为四种类型:①饱和碳原子上的亲核取代反应(SN1和SN2);②不饱和碳原子(主要是芳环)上的亲核取代反应;③经苯炔中间体的亲核取代反应;④底物为羧酸衍生物(酰卤、酸酐、酯、酰胺)的亲核取代反应。
这些亲核取代反应在有机合成上有着极其广泛的应用,但因反应机理的差异性较大,掌握起来困难较大。
文章拟将上述四种类型的亲核取代反应进行系统分析和比较,找出反应的规律性。
关键词:有机化学;亲核取代反应;机理在有机化学中,亲核取代反应是一种特别重要的反应,按照其反应机理可以归纳为四种类型.即①饱和碳原子上的亲核取代(SN1和SN2);②不饱和碳原子(主要是芳环)上的亲核取代;③经苯炔中间体的亲核取代;④底物为羧酸衍生物(酰卤、酸酐酯、酰胺)的亲核取代。
这些反应本质上都是亲核取代,但由于反应机理的差异性较大,掌握起来困难较大。
只有从反应机理上彻底认识并掌握各类亲核取代反应,才是解决问题的根本方法。
1饱和碳原子上的亲核取代反应1.1一般的饱和碳原子上的亲核取代反应这类反应主要涉及卤代烷烃(RX)、醇(ROH) 以及饱和碳原子上连有羟基、卤原子等的其他类型的有机物。
从反应机理讲,分为SNl,SN2两种极限历程。
SN1为单分子亲核取代历程,中间体为碳正离子,整个反应分两步完成,立体化学为外消旋化。
SN2为双分子亲核取代历程,经过渡态一步完成,立体化学为瓦尔登(Walden)翻转,即构型翻转。
简要表示其通式[1]如下:①SN1的反应通式为:②SN2的反应通式为:在SNI中,反应的快慢取决于离去基团的性质。
离去基团的亲核性弱,则易于离去;反之,则不易离去。
离去基团的碱性、中心原子的半径大小等影响着它亲核性的强弱。
一般来说,碱性弱则亲核性弱,易于离去;中心原子的半径大则变形性大(强),也易于离去。
在SN2中,反应的快慢与底物结构、离去基团、亲核试剂的性质有关,有时还与溶剂的极性有关.底物结构简单、试剂的亲核性强,离去基团的碱性弱(即易于离去),都有利于反应的快速进行;反之,反应则不易进行。
对于亲核试剂,碱性强则亲核性强;中心原子的半径大则变形性大,亲核性也强。
对于离去基团,则与SNI相同。
对于那些碱性特别强的离去基团如羟基(一OH)、氨基(一NH2)等,须在酸催化下才能顺利离去,以实现取代。
醇分子间脱水成醚的反应属于亲核取代,反应一般按SN2历程进行。
例如:Williamson合成法制醚的反应也属于亲核取代,反应一般按SN2历程进行反应通式为:RX+NaOR(或NaOAr)—+ROR(或ROAr)因醇钠或酚钠碱性较强而容易引起脱卤化氢的消除反应,反应中所用卤代烃一般要求是一级卤代烃。
醚键断裂的反应是重要的亲核取代反应,特别是环氧乙烷衍生物的开环反应更为重要。
醚键断裂反应的通式为:反应中氢卤酸的活性顺序为:HI>HBr>HCl。
一般用HI进行反应,偶尔用HBr 进行反应,几乎不用HCI,因其反应活性差。
对于脂肪族混合醚,醚键优先在较小烃基一边断裂(SN2机理)[2]:.对于含有叔烃基的脂肪族混合醚,醚键优先在叔烃基一边断裂,因这种断裂可生成稳定的叔碳正离子(SN1机理)[3].对于芳基烷基混合醚与HX反应,醚键总是在脂肪族烃基一边断裂,这是因为芳基碳氧键结合得很牢固(共轭).显然,二芳基醚在HI作用下也不会发生断裂反应.环氧乙烷衍生物的开环反应是一种特殊的亲核取代反应.环氧乙烷衍生物因其具有三元环而能与许多含有活泼氢化合物(如水、醇、胺、酚、氢卤酸等)发生反应,可用酸或碱作催化剂。
不对称环氧乙烷衍生物的开环反应有一个方向问题。
在碱性条件下开环,亲核试剂优先进攻空间位阻较小的环碳原子(SN2机理)。
而在酸性条件下开环,亲核试剂优先进攻取代程度高的环碳原子(带有SN1机理性质)[4]:从立体化学上讲:酸性开环和碱性开环反应都属于SN2类型的反应,如如下两个例子:1.2特殊的碳原子上的亲核取代反应1.2.1烯胺为亲核试剂的亲核取代反应烯胺与活泼卤代烃可进行亲核取代反应.五元环酮或六元环酮形成烯胺后可与活泼卤代烃进行亲核取代,在羰基α一位引入烷基(烃基),生成取代环酮.其反应通式[5]如下:等。
1.2-2丙二酸二乙酯、乙酰乙酸乙酯中活泼亚甲基为亲核试剂的亲核取代反应丙二酸二乙酯、乙酰乙酸乙酯作为特殊的试剂在有机合成上非常有用,可合成众多有机化合物.它们的反应是在强碱作用下形成碳负离子,并作为亲核试剂进行亲核取代反应,从而引人各种不同的基团,再经酮式或酸式分解,可得到不同结构的酮、酸或二酸等.应该特别指出的是,如果引入两个相同的烃基,丙二酸二乙酯可一次完成,而乙酰乙酸乙酯由于无法形成双钠盐,必须分步进行才能完成.I.2.2.1丙二酸二乙酯在有机合成上具体应用反应通式:1.2.2.2乙酰乙酸乙酯在有机合成上具体应用反应通式:作为二取代的特例,可以发生这样的反应:应该指出:①乙酰乙酸乙酯亚甲基上的取代产物可以分别在稀碱或浓碱的作用下发生酮式分解或酸式分解.由于在浓碱的作用下酸式分解时往往伴随有酮式分解,因此,合成羧酸最好使用丙二酸二乙酯.②由于乙酰乙酸乙酯不像丙二酸二乙酯那样能形成双钠盐,因此不能合成三四元环.③如果反应底物为卤代烃、α一卤代酮、α一卤代酸酯等,则机理一般为SN2;如果反应底物为酰卤,则机理为加成一消除历程2芳环碳原子上的亲核取代反应2.1苯环上的亲核取代反应当芳环上连有强拉电子基时可使环上的电子云密度降低,不利于发生亲电取代反应,有利于发生亲核取代反应.亲核试剂首先同芳环加成,然后离去基团离去,重新恢复环的芳香性,反应机理为加成-消除历程:当环上有连有拉电子基,尤其是在邻,对位有拉电子基时,会使反应速率加快.因邻对位拉电子基通过共轭效应,使连有离去基团的碳原子上的电子云密度降低,有利于亲核试剂进攻,也有利于碳负离子中间体的稳定.当卤原子的邻对位有拉电子基团存在时,可以发生水解、醇解、氰解、氯解等亲核取代反应.例如:反应活性顺序与脂肪族卤代烃的亲核取代反应活性顺序正好相反,原因在于反应机理为加成一消除机理,与饱和碳原子上的亲核取代反应机理不同.一个典型的例子是氯苯水解时随着环上硝基数目的增多,取代反应越来越易[5]:拉电子基主要活化其邻、对位,对间位的活化作用很弱.例如:在制备脂基芳基混合醚(Williamson合成法)时,一般选择酚钠和脂肪族卤代烃进行反应.但在芳环上邻、对位连有拉电子基的卤代芳烃,可以和醇钠作用,生成脂基芳基混合醚.例如:2.2吡啶环上的亲核取代反应吡啶具有芳香性,属于含氮芳杂环化合物.由于环上氮原子的拉电子作用,在2位或4位上容易发生亲核取代反应.例如齐齐巴宾(ChicibabinAE)反应[6]:当吡啶的2位或4位上有易离去基团(如C1,Br、NO等)时能与亲核试剂发生亲核取代反应.例如:2.3经苯炔中间体的亲核取代反应苯炔(benzyne)是许多芳族亲核取代反应中的中间体.例如,用强碱(如KNH:)处理不活泼芳卤, 在生成正常取代产物的同时,也会得到变位(cine)取代的异构产物.这些反应的机理均为消除一加成历程.一般是未被活化的芳基卤代物在强碱作用下发生消除反应生成苯炔中间体,而后亲核试剂再对苯炔进行加成反应得到产物:当生成的苯炔不对称时,就产生苯炔的生成方向及加成方向问题.以芳卤的氨解反应为例讨论如下.2.3.1苯炔的生成方向取决于取代基Z的诱导效应式(3)中生成两种苯炔中间体.到底哪一种占优势,取决于碳负离子的稳定性,而碳负离子的稳定性又与取代基的诱导效应有关.当z为拉电子基时,(1)比(2)要稳定,因为前者负电荷更靠近拉电子基z,相应的主要生成苯炔(1,).当z为推电子基时,(2)比(1)要稳定,主要生成苯炔(2).2.3.2苯炔的加成方向也取决于取代基z的诱导效应3底物为羧酸衍生物的亲核取代反应羧酸衍生物(酰卤、酸酐、酯、酰胺)的结构特点是:分子中都有酰基,而且酰基都直接与带有未共用电子对的原子或基团相连,既存在诱导效应,又存在共轭效应.这类化合物发生亲核取代反应的一般通式为:羧酸衍生物的水解、醇解、氨解均属于这类亲核取代,反应活性次序为:酰氯>酸酐>酯>酰胺.此外,酯缩合反应也属于羧酸衍生物的亲核取代反应,其机理加成一消除历程,并且非常重要.如Claisen酯缩合反应和Dieckmann缩合反应.Claisen酯缩合反应[7]:例1完成反应(中南大学2007年硕士研究生招生试题)例2完成反应(江苏大学2O09年硕士研究生招生试题)4.其他的亲核取代反应4.1配合物亲核取代的机理配合物的取代反应包括两类,一类是配合物的内界中的配体被另一种配体取代,称为亲核取代反应;另一类是配合物内界中的中心原于被另一种原子取代,称为亲电取代反应.而在配合物的取代反应中以亲核取代最多,最常见,其过程可用下列通式表示:式中的Y叫亲核试剂或反应的进入基团,x叫反应的离去基团,L为其它配体.亲核取代反应机理可分为离解机理,缔合机理,交换机理三种,主要叙述离解机理. 4.1. 1离解机理(D机理)[8]机理特点:反应开始首先旧键M一X断裂,腾出配位空位,然后Y配体占据空位形成新键M一Y其反应过程如下:(2)式是离解反应,速率最低,其决定全过程的速率,若中心原于的配位数为6,X配体离解后形成配位数为5的中间配合物,它具有三角双锥或四方锥结构与Y配体配位后又还原为八面体结构。
亲核取代反应是有机化学中一类很重要的反应,特别是在有机合成中,显得尤为重要。
,给我们的生活带来很多便利。
只有掌握好其反应机理才能更好地运用亲核取代反应,才能更好地造福人类。
参考文献:【l】高鸿宾.有机化学【M】.北京:高等教育出版社,2005:243,252【2】王积涛,张宝中,王永梅,等.有机化学【M】.2版.天津:南开大学出版社,2()03:313,318,332,239,550,507,508.【3】曾昭琼.有机化学(下册)【M】.北京:高等教育出版社,2004:299-300,81.【4】王永梅,王桂林.有机化学提要·例题和习题【M】.天津:天津大学出版社,1999:125.【5】曾昭琼.有机化学(上册)【M】.北京:高等教育出版社,2004:293.【6】王积涛,张宝中,王永梅,等.有机化学【M】.2版.天津:南开大学出版社【7】高鸿宾.有机化学【M】.北京:高等教育出版社【8】河南大学等.配位化学.郑州.河南大学出版社1989。