小专题22__与圆的切线有关的计算与证明
(完整版)证明圆的切线经典例题

证明圆的切线方法及例题证明圆的切线常用的方法有:一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直•例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F.求证:EF与O 0相切.证明:连结OE, AD.•/ AB是O 0的直径,••• AD 丄BC.又••• AB=BC ,•••/ 3= / 4.——• BD=DE,/ 1 = / 2.又••• OB=OE , OF=OF ,•••△ BOF ◎△ EOF ( SAS)•••/ OBF= / OEF.••• BF与O O相切,•OB 丄BF.•••/ OEF=9O°.•EF与O O相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD 是/ BAC 的平分线, 求证:PA与O O 相切.证明一:作直径AE ,连结EC.•/ AD 是/ BAC 的平分线, •••/ DAB= / DAC. •/ PA=PD , •••/ 2= / 1+ / DAC. •••/ 2= / B+ / DAB , •••/ 1 = / B.•/ AE 是O O 的直径,• AC 丄 EC ,/ E+ / EAC=90°. •••/ 1 + / EAC=90°. 即OA 丄PA. • PA 与O O 相切.•/ PA=PD , •••/ PAD= / PDA. 又•••/ PDA= / BDE,证明二:延长AD 交O O 于E ,连结•/ AD 是/ BAC 的平分线, • BE=CE , • OE 丄BC.•••/ E+/ BDE=90 0.•/ OA=OE , •••/ E=/ 1. PP 为BC 延长线上一点,且 PA=PD.说明:例3 求证:证明一证明二•••/ 1 + / PAD=90°即OA丄PA.• PA与O O相切此题是通过证明两角互余,证明垂直的如图,AB=AC,AB是O O的直径,DM与O O相切.:连结OD.-AB=AC ,•/ B= / C.-OB=OD ,•/ 仁/ B.•/ 仁/C.•OD // AC.-DM 丄AC,•D M 丄OD.•D M与O O相切:连结OD, AD.•/ AB是O O的直径,•AD 丄BC.又••• AB=AC,• / 1= / 2.•/ DM 丄AC ,•/ 2+Z °,解题中要注意知识的综合运用O O交BC于D, DM丄AC于M • / 3+/4=90°.即0D 丄DM. ••• DM 是O O 的切线解题中注意充分利用已知及图上已知例4 如图,已知:AB 是O 0的直径,点 D 在AB 的延长线上.求证:DC 是O 0的切线 证明:连结OC 、BC.•/ OA=OC ,•••/ A= / 1= / 30°.•••/ BOC= / A+ / 1= 60°. 又••• OC=OB , • △ OBC 是等边三角形 • OB=BC. •/ OB=BD , • OB=BC=BD. • OC 丄 CD. • DC 是O O 的切线.说明:此题是根据圆周角定理的推论例5 如图,AB 是O O 的直径,CD 丄AB ,且OA 2=OD • OP. 求证:PC 是O O 的切线. 证明:连结OC•/ OA 2=OD • OP , OA=OC ,说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,C 在O O 上,且/ CAB=30 °, BD=OB ,3证明垂直的,此题解法颇多,但这种方法较• OC2=OD • OP,OC op ODOC .又•••/ 1= / 1,•••△ OCP s\ODC.•••/ OCP= / ODC.•/ CD 丄AB ,•••/ OCP=9O°.• PC是O O的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与厶CFG的外接圆相切分析:此题图上没有画出△ CFG的外接圆,但△ CFG是直角三角形,圆心在斜边FG的中点, 证明:为此我们取FG的中点O,连结. OC,证明CE丄OC即可得解.取FG中点O,连结OC.T ABCD是正方形,• BC 丄CD , △ CFG 是Rt△•/ O是FG的中点,EC • O是Rt A CFG的外心.•/ OC=OG ,•••/ 3= / G,•/ AD // BC,• / G= / 4.•/ AD=CD , DE=DE ,/ ADE= / CDE=45°,• △ ADE CDE (SAS)•••/ 4= / 1,Z 1 = / 3.•••/ 2+ / 3=90°, •••/ 1 + / 2=90°.即CE 丄OC.• CE 与厶CFG 的外接圆相切、若直线I 与O O 没有已知的公共点, 又要证明I 是O O 的切线,只需作OA 丄I ,A 为垂足,证明 OA 是O O 的半径就行了,简称:"作垂直;证半径”例7 如图,AB=AC , D 为BC 中点,O D 与AB 切于E 点. 求证:AC 与O D 相切.证明一:连结DE ,作DF 丄AC , F 是垂足.••• AB 是O D 的切线,• DE 丄 AB. •/ DF 丄 AC , •••/ DEB= / DFC=90°. •/ AB=AC , •••/ B= / C. 又••• BD=CD ,•••△ BDE 也厶 CDF (AAS ) • DF=DE.• AC 是O D 的切线连结DE , AD ,作DF 丄AC , F 是垂足.••• AB 与O D 相切, • DE 丄 AB.•/ AB=AC , BD=CD , •/ DE 丄 AB , DF 丄 AC , ••• DE=DF.证明二: 負B C••• F 在O D 上.• AC与O D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关•例8 已知:如图,AC, BD与O O切于A、B,且AC // BD,若/ COD=9O0. 求证:CD 是O O的切线.证明一:连结OA , OB,作OE丄CD , E为垂足.•••/ 4+ / 5=90°.•••/ 1 = / 5.• Rt△AOC s Rt△BDO.•AC OC"OB OD.•/ OA=OB ,•AC OC…OA OD.又•••/ CAO= / COD=90°,• △ AOC ODC ,•••/ 1 = / 2.又••• OA 丄AC , OE 丄CD,••• OE=OA.••• E点在O O上.• CD是O O的切线.证明二:连结OA , OB,作OE丄CD于E,延长DO交CA延长线于F.••• AC,BD 与O O 相切,•AC 丄OA , BD 丄OB.•/ AC // BD ,•••/ F=Z BDO.又••• OA=OB ,•△ AOF ◎△ BOD(AAS•OF=OD.•••/ COD=9O°,•CF=CD,/ 1= / 2.又••• OA 丄AC , OE 丄CD ,•OE=OA.•E点在O O上.•CD是O O的切线.证明三:连结AO并延长,作OE丄CD于E ,取CD中点F ,连结OF.••• AC与O O相切,• AC 丄AO.•/ AC // BD , • AO 丄BD.9••• BD与O O相切于B,•AO的延长线必经过点•AB是O O的直径.•/ AC // BD , OA=OB ,B.CF=DF ,••• OF // AC ,•••/ 仁/COF.•••/ COD=90°, CF=DF ,1•OF —CD CF .2•••/ 2=Z COF.•••/ 仁/2.•/ OA 丄AC , OE 丄CD,•OE=OA.•E点在O O上.•CD是O O的切线说明:证明一是利用相似三角形证明/ 1 = / 2,证明二是利用等腰三角形三线合一证明/ 1 = / 2.证明三是利用梯形的性质证明/ 1= / 2,这种方法必需先证明A、0、B三点共线.以上介绍的是证明圆的切线常用的两种方法供同学们参考11。
圆的切线证明方法归纳

圆的切线证明方法归纳切线是指与圆相切且与圆的半径垂直的直线。
在几何学中,圆的切线是一个重要的概念。
证明圆的切线有许多不同的方法,下面将介绍一些常见的证明方法。
1.垂直切线法:这是最常见的证明方法之一。
具体步骤如下:(1)假设圆的半径r,圆心O,切点A和切线上的一点T。
(2)连接OA,并且将OA延长到交切线于点T。
(3)根据勾股定理可得:OA^2 =OT^2 + AT^2。
(4)由于OT和AT都是切线的一部分,所以OT和AT都垂直于OA。
(5)根据垂直定理可知OT和AT平方和等于OA的平方,即OT^2 + AT^2 = OA^2。
(6)根据步骤4和5可得:AT^2 = OA^2 - OT^2。
(7)OT是半径,所以OT^2= r^2,代入上式得:AT^2 = OA^2 -r^2。
(8)AT是切线的一部分,所以AT > 0。
因此,OA^2 - r^2 > 0。
(9)根据正数平方根的性质,OA^2 - r^2的平方根存在。
(10)所以,根据步骤9,AT存在,即OT与切线上的一点T并非同一点。
(11)由于OT与圆的半径相交于点O,所以OT是与半径垂直的直线,即切线。
2.切线垂直与半径的证明:这种证明方法基于一个重要的定理:切线垂直于半径。
具体步骤如下:(1)假设圆的半径r,圆心O,切点A和切线上的一点T。
(2)连接OA和OT。
(3)由于AO是圆的半径,所以AO与圆心O的向量相等,即AO = OT。
(4)由于切线与圆相切,切点A是切线上的一点,所以OA与切线垂直。
(5)根据向量几何的性质可得,向量OA与向量OT垂直。
(6)根据定义,切线上的每一个点与圆心都构成一个向量,这个向量与向量OA垂直。
(7)所以,根据步骤6,切线与所有圆心上的向量都垂直,即切线垂直于半径。
3.外切圆的切线证明:这种证明方法适用于外切圆。
具体步骤如下:(1)假设有一个三角形ABC,其中AB和BC是两条直线段,角ABC是直角。
圆的切线的证明与计算

1、证明相切的基本思路:
无已公知共半径点---------直-“接证连直半线与径半,径垂证直垂; 直” 有常公 用方共法:点 - - -“作垂直,证半径”
证平行、证全等、计算角度、运用角平分线 的性质…… 2、根据切线的性质,构造相似三角形,利
用相似三角形对应边成比例的性质,建 立方程求解,运 用勾股定理,三角函 数……
已知:A是圆⊙O外一点,AO的延长线交⊙O于点C,点B 在圆上,且AB=BC,∠A=30°,求证:直线AB是⊙O的 切线.
【思想方法】 证明圆的切线常用两种方法“作半径, 证垂直”或者“作垂直,证半径”.
【中考变形】
如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD= BC. (1)求证:CD是⊙O的切线; (2)若半径OB=2,求AD的长.
中考数学专题 复习
圆的切线的证明与计算
第四中学
杨琴
一、本课主要知识梳理 1. 定义:与圆只有一个__公__共__点__的直线叫做圆的切线,这个
公共点叫做切点.
O
A CB
2. 切线的性质定理:圆的切线垂直于过__切__点__的半径.
3. 切线的判定定理:经过半径的外端点并且_垂__直___于这条半 径的直线是圆的切线.
4. 证明一条直线是圆的切线方法:
主要有两种:一是利用圆心到直线的距离等于_半__径___,
二 是利用切线的__判__定__定__理__。
常作的辅助线:有切点,连__半__径____证__垂__直__,
无切点,作__垂__直__证__半__径__. 2
类型之一 与切线的性质有关的计算或证明 【教材原型】
【中考预测】
如图,在△ABC中,AB=AC, ∠BAC=54°,以AB为直径的⊙O分别交 AC,BC于点D,E,过点B作⊙O的切线, 交AC的延长线于点F. (1)求证:BE=CE; (2)求∠CBF的度数;
中考数学专题复习---圆的切线有关的证明与计算

与圆的切线有关的证明与计算
切线的性质
垂直 于经过切点的半径. 定理:圆的切线________ 技巧:圆心与切点的连线是常用的辅助线.
垂直 于这条半径的直线是圆 定理: 经过半径的外端并且________ 的切线. 证圆的切线技巧: (1)如果直线与圆有交点,连接圆心与交点的半径,证明直 线与该半径垂直,即“有交点,作半径,证垂直”.
对应训练
4. 如图,∠C=90o,BD平分∠ABC,DE⊥BD , 设⊙O是△BDE的外接圆。 求证:AC是⊙O的切线。
对应训练 5.如图,点C是⊙O的直径AB延长线上的一点, 且有BO=BD=BC. (1)求证:CD是⊙O的切线; (2)若半径OB=2,求AD的长.
解:(1)证明:连结OD,
(2)如果直线与圆没有明确的交点, 则过圆心作该直线的垂 线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.
切线的判定
有交点,连半径,证垂直
例1
对应训练 1.如图所示,点O在∠APB的平分线上,⊙O与PA相切 于点C. (1)求证:直线PB与⊙O相切 (2)PO的延长线与⊙O交于点E,若⊙O的半径为3, PC=4.求弦CE的长.
∵CD平分∠ACB,∴∠ACE=∠ECB.
∴∠PCB=∠CAE.∴∠PCB=∠ACO. ∵∠ACB=90°,
∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=90°,
∴OC⊥PC, ∴直线PC与⊙O相切.
无交点,作垂直,证半径
例:如图 ,已知:O 为 BAC 角平分线上一点,
OD AB 于 D ,以 O 为圆心, OD 为半径作圆。
12 ∴ CF 5
9 在Rt△COF中, OF CO CF 5
圆切线证明的方法(完整资料).doc

【最新整理,下载后即可编辑】切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点.切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可.证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .图1∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,图2AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么? 解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .∵∠COD 是△BOC 的外角, ∴∠COD =∠OCB +∠B =2∠B . ∵∠ACD =2∠B , ∴∠ACD =∠COD . ∵CD ⊥AB 于D ,∴∠DCO +∠COD =90°. ∴∠DCO +∠ACD =90°. 即OC ⊥AC .图3O ABCD2 31∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=BC,∴∠3=∠4.⌒⌒∴BD=DE,∠1=∠2.又∵OB=OE,OF=OF,∴△BOF≌△EOF(SAS).∴∠OBF=∠OEF.∵BF与⊙O相切,∴OB⊥BF.∴∠OEF=900.∴EF与⊙O相切.说明:此题是通过证明三角形全等证明垂直的【例8】如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与⊙O相切.证明一:作直径AE,连结EC.∵AD是∠BAC的平分线,∴∠DAB=∠DAC.∵PA=PD,∴∠2=∠1+∠DAC.∵∠2=∠B+∠DAB,∴∠1=∠B.又∵∠B=∠E,∴∠1=∠E∵AE是⊙O的直径,∴AC⊥EC,∠E+∠EAC=900.∴∠1+∠EAC=900. 即OA⊥PA.∴PA与⊙O相切.证明二:延长AD交⊙O于E,连结OA,OE.∵AD是∠BAC的平分线,⌒⌒∴BE=CE,∴OE⊥BC.∴∠E+∠BDE=900.∵OA=OE,∴∠E=∠1.∵PA=PD,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,∴∠1+∠PAD=900即OA⊥PA.∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.【例9】如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切. 证明一:连结OD.∵AB=AC,∴∠B=∠C.∵OB=OD,∴∠1=∠B.∴∠1=∠C.∴OD∥AC.∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,∴∠1=∠2.∵DM⊥AC,∴∠2+∠4=900∵OA=OD,∴∠1=∠3.∴∠3+∠4=900. DC即OD⊥DM.∴DM是⊙O的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.【例10】如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线证明:连结OC、BC.∵OA=OC,∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600.又∵OC=OB,∴△OBC是等边三角形.∴OB=BC.D ∵OB=BD,∴OB=BC=BD.∴OC⊥CD.∴DC是⊙O的切线.说明:此题解法颇多,但这种方法较好.【例12】如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.证明:连结OC∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP ,OCOPOD OC. 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线.说明:此题是通过证三角形相似证明垂直的【例13】 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F. 求证:CE 与△CFG 的外接圆相切.分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解. 证明:取FG 中点O ,连结OC.∵ABCD 是正方形,∴BC ⊥CD ,△CFG 是Rt △ ∵O 是FG 的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”【例14】如图,AB=AC,D为BC中点,⊙D与AB切于E 点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠1=∠2.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上.∴AC与⊙D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.【例15】已知:如图,AC,BD与⊙O切于A、B,且AC ∥BD,若∠COD=900.求证:CD是⊙O的切线.证明:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠F=∠BDO.又∵OA=OB,∴△AOF≌△BOD(AAS)∴OF=OD.∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.。
专题22解答题重点出题方向圆的证明与计算(原卷版)

专题22 解答题重点出题方向圆的证明与计算(原卷版)模块一2022中考真题解析1.(2022•南通)如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=2√2,点E在BC的延长线上,连接DE.(1)求直径BD的长;(2)若BE=5√2,计算图中阴影部分的面积.2.(2022•呼和浩特)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交线段CA的延长线于点E,连接BE.(1)求证:BD=CD;(2)若tan C=12,BD=4,求AE.3.(2022•娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC 为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值.(2)当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.4.(2022•武汉)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE 的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2√10,求BC的长.5.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.6.(2022•湖北)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.7.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=√2,AD=1,求CD的长度.8.(2022•黔东南州)(1)请在图1中作出△ABC的外接圆⊙O(尺规作图,保留作图痕迹,不写作法);(2)如图2,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CÊ的中点,过点B的切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.9.(2022•淮安)如图,△ABC是⊙O的内接三角形,∠ACB=60°,AD经过圆心O交⊙O于点E,连接BD,∠ADB=30°.(1)判断直线BD与⊙O的位置关系,并说明理由;(2)若AB=4√3,求图中阴影部分的面积.10.(2022•徐州)如图,点A、B、C在圆O上,∠ABC=60°,直线AD∥BC,AB=AD,点O在BD上.(1)判断直线AD与圆O的位置关系,并说明理由;(2)若圆的半径为6,求图中阴影部分的面积.11.(2022•鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O 作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tan A=12,求△OCD的面积.12.(2022•娄底)如图,已知BD是Rt△ABC的角平分线,点O是斜边AB上的动点,以点O为圆心,OB 长为半径的⊙O经过点D,与OA相交于点E.(1)判定AC与⊙O的位置关系,为什么?(2)若BC=3,CD=3 2,①求sin∠DBC、sin∠ABC的值;②试用sin∠DBC和cos∠DBC表示sin∠ABC,猜测sin2α与sinα、cosα的关系,并用α=30°给予验证.13.(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.14.(2022•攀枝花)如图,⊙O的直径AB垂直于弦DC于点F,点P在AB的延长线上,CP与⊙O相切于点C.(1)求证:∠PCB=∠P AD;(2)若⊙O的直径为4,弦DC平分半径OB,求:图中阴影部分的面积.15.(2022•济南)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.16.(2022•铜仁市)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.(1)求证:AB=CB;(2)若AB=18,sin A=13,求EF的长.17.(2022•恩施州)如图,P为⊙O外一点,P A、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.(1)求证:∠ADE=∠P AE.(2)若∠ADE=30°,求证:AE=PE.(3)若PE=4,CD=6,求CE的长.18.(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.19.(2022•随州)如图,已知D为⊙O上一点,点C在直径BA的延长线上,BE与⊙O相切,交CD的延长线于点E,且BE=DE.(1)判断CD与⊙O的位置关系,并说明理由;(2)若AC=4,sin C=1 3,①求⊙O的半径;②求BD的长.20.(2022•天津)已知AB为⊙O的直径,AB=6,C为⊙O上一点,连接CA,CB.(Ⅰ)如图①,若C为AB̂的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⊙O的半径,且OD⊥CB,垂足为E,过点D作⊙O的切线,与AC的延长线相交于点F,求FD的长.21.(2022•新疆)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在⊙O上,AC=CD,连接AD,延长DB交过点C的切线于点E.(1)求证:∠ABC=∠CAD;(2)求证:BE⊥CE;(3)若AC=4,BC=3,求DB的长.22.(2022•绍兴)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求AD̂的长(结果保留π).(2)求证:AD平分∠BDO.23.(2022•宁夏)如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.(1)求证:直线DE是⊙O的切线;(2)求证:AB=AM;(3)若ME=1,∠F=30°,求BF的长.24.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.25.(2022•扬州)如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若sin A=√55,OA=8,求CB的长.26.(2022•陕西)如图,在△OAB中,∠OAB=90°,OA=2,AB=4.延长OA至点C,使AC=8,连接BC,以O为圆心,OB长为半径作⊙O,延长BA,与⊙O交于点E,作弦BF=BE,连接EF,与BO的延长线交于点D.(1)求证:BC是⊙O的切线;(2)求EF的长.27.(2022•阜新)如图,在Rt△ABC中,∠ACB=90°,O是BC边上一点,以O为圆心,OB为半径的圆与AB相交于点D,连接CD,且CD=AC.(1)求证:CD是⊙O的切线;(2)若∠A=60°,AC=2√3,求BD̂的长.28.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.(1)求证:直线CE是⊙O的切线;(2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.29.(2022•锦州)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为BÊ的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=12∠BAC.(1)求证:BF为⊙O的切线;(2)若AE=4,OF=92,求⊙O的半径.30.(2022•鞍山)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,点E为⊙O上一点,EF∥AC交AB的延长线于点F,CE与AB交于点D,连接BE,若∠BCE=12∠ABC.(1)求证:EF是⊙O的切线.(2)若BF=2,sin∠BEC=35,求⊙O的半径.31.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.(1)求证:直线HG是⊙O的切线;(2)若HA=3,cos B=25,求CG的长.32.(2022•黔西南州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交AC于点E,DH⊥AC,垂足为H,连接DE并延长交BA的延长线于点F.(1)求证:DH是⊙O的切线;(2)若E为AH的中点,求EFFD的值.33.(2022•鄂尔多斯)如图,以AB为直径的⊙O与△ABC的边BC相切于点B,且与AC边交于点D,点E为BC中点,连接DE、BD.(1)求证:DE是⊙O的切线;(2)若DE=5,cos∠ABD=45,求OE的长.34.(2022•枣庄)如图,在半径为10cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,点E是BC的中点,OE=6cm.(1)求证:CD是⊙O的切线;(2)求AD的长.35.(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连接AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为边长,在⊙O上依次截取点,再依次连接这些分点,得到正n边形,求n 的值.36.(2022•福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;̂的长(结果保留π).(2)若⊙O的半径为3,∠CAF=30°,求AC37.(2022•衢州)如图,C,D是以AB为直径的半圆上的两点,∠CAB=∠DBA,连结BC,CD.(1)求证:CD∥AB.(2)若AB=4,∠ACD=30°,求阴影部分的面积.38.(2022•荆门)如图,已知扇形AOB中,∠AOB=60°,半径R=3.(1)求扇形AOB的面积S及图中阴影部分的面积S阴;̂只有一个交点C,此时我们称⊙O1为扇形(2)在扇形AOB的内部,⊙O1与OA,OB都相切,且与ABAOB的内切圆,试求⊙O1的面积S1.39.(2022•益阳)如图,C是圆O被直径AB分成的半圆上一点,过点C的圆O的切线交AB的延长线于点P,连接CA,CO,CB.(1)求证:∠ACO=∠BCP;(2)若∠ABC=2∠BCP,求∠P的度数;(3)在(2)的条件下,若AB=4,求图中阴影部分的面积(结果保留π和根号).40.(2022•潍坊)在数学实验课上,小莹将含30°角的直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Geogebra画出如下示意图.小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边AB旋转得到,所以它们的侧面积相等.”你认同小亮的说法吗?请说明理由.41.(2022•德州)如图1,在等腰三角形ABC中,AB=AC,O为底边BC的中点,过点O作OD⊥AB,垂足为D,以点O为圆心,OD为半径作圆,交BC于点M,N.(1)AB与⊙O的位置关系为;(2)求证:AC是⊙O的切线;(3)如图2,连接DM,DM=4,∠A=96°,求⊙O的直径.(结果保留小数点后一位.参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)42.(2022•淄博)已知△ABC是⊙O的内接三角形,∠BAC的平分线与⊙O相交于点D,连接DB.(1)如图①,设∠ABC的平分线与AD相交于点I,求证:BD=DI;(2)如图②,过点D作直线DE∥BC,求证:DE是⊙O的切线;(3)如图③,设弦BD,AC延长后交⊙O外一点F,过F作AD的平行线交BC的延长线于点G,过G作⊙O的切线GH(切点为H),求证:FG=HG.43.(2022•黄石)如图CD是⊙O直径,A是⊙O上异于C,D的一点,点B是DC延长线上一点,连AB、AC、AD,且∠BAC=∠ADB.(1)求证:直线AB是⊙O的切线;(2)若BC=2OC,求tan∠ADB的值;(3)在(2)的条件下,作∠CAD的平分线AP交⊙O于P,交CD于E,连PC、PD,若AB=2√6,求AE•AP的值.44.(2022•绵阳)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧BĈ的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.(1)求证:BC∥PF;(2)若⊙O的半径为√5,DE=1,求AE的长度;(3)在(2)的条件下,求△DCP的面积.45.(2022•西宁)如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC相切于点E,交BC于点F,连接DF,OE交于点M.(1)求证:四边形EMFC是矩形;(2)若AE=√5,⊙O的半径为2,求FM的长.46.(2022•西藏)如图,已知BC为⊙O的直径,点D为CÊ的中点,过点D作DG∥CE,交BC的延长线于点A,连接BD,交CE于点F.(1)求证:AD是⊙O的切线;(2)若EF=3,CF=5,tan∠GDB=2,求AC的长.47.(2022•青海)如图,AB是⊙O的直径,AC是⊙O的弦,AD平分∠CAB交⊙O于点D,过点D作⊙O 的切线EF,交AB的延长线于点E,交AC的延长线于点F.(1)求证:AF⊥EF;(2)若CF=1,AC=2,AB=4,求BE的长.̂的中点,连接48.(2022•柳州)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是EB AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG 交AF于点G,交FB于点H.(1)求证:CD是⊙O的切线;(2)求sin∠FHG的值;(3)若GH=4√2,HB=2,求⊙O的直径.模块二2023中考押题预测1.(2023•红桥区模拟)已知P A与⊙O相切于点A,PO与⊙O相交于点B,点C在优弧AB上,且与点A,B不重合.(1)如图①,若∠P=26°,求∠C的大小;(2)如图②,AC⊥OB,垂足为D,若∠P=∠C,OB=2,求AC的长.2.(2023•蜀山区校级模拟)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:∠EAC=∠ADC(2)若AB=4,BC=6,求DC的长.3.(2023•合肥一模)如图1,AB为⊙O的直径,BC为弦,过圆心O作OD⊥BC于D,点E为AB延长线上一点,CE是⊙O的切线.(1)求证:∠BCE=∠BOD;(2)如图2,取弧AC的中点P,连接OP,AP,若AB=13,BC=5,求弦P A的长.4.(2023•大连模拟)△ABC内接于⊙O,AB=AC,射线AD切⊙O于点A,过点B作BF∥AC,交⊙O于点E,交AD于点F.(1)如图1,求证:四边形ACBF为平行四边形;(2)如图2,连接CE,延长BO交F A的延长线于点G,BC=6,CE=3√10,求BC的长.5.(2023•碑林区校级二模)如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC,垂足为D,连接AD,过点A作⊙O的切线与DO的延长线相交于点E.(1)求证:∠B=∠E;(2)若⊙O的半径为4,OE=6,求AD的长.6.(2023•庐阳区校级一模)如图,在⊙O中,直径为MN,正方形ABCD的四个顶点分别在半径OM、OP 以及⊙O上,并且∠POM=45°.(1)若AB=2,求PD的长度;(2)若半径是5,求正方形ABCD的边长.7.(2023•莱芜区模拟)如图,在△ADC中,AC=CD,∠D=30°,点B是AD上一点,∠ACB的角平分线CE交以AB为直径的⊙O于点E,过点B作BF⊥EC,垂足为F,⊙O恰好过点C.(1)求证:CD是⊙O切线;(2)若AC=4√3,求CF的长.8.(2023•定远县校级模拟)如图1,已知AB是半圆O的直径,BC是半圆O的切线,OC平行于弦AD.(1)连接BD,若BD=BC,求∠C的度数;(2)如图2,过D作DE⊥AB于E,连接AC与DE交于点P,求证:PD=PE.9.(2023•松原一模)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE交BE的延长线于点D,连接CE.(1)判断直线CD与⊙O的位置关系,并说明理由;̂的长(结果保留π).(2)若CD=√3,BC=2√3,求AC10.(2023•西安二模)如图,在△ABC中,∠C=90°,以FB为直径作⊙O,⊙O与直角边AC相切,切点为E.(1)求证:∠DBE=∠EBA;(2)若AB=10,DB=4,求EB的长.11.(2023•工业园区校级模拟)如图,半径为10的⊙M经过x轴上一点C,与y轴交于A、B点,连接AM、AC,AC平分∠OAM,AO+CO=12.(1)判断⊙M与x轴的位置关系,并说明理由;(2)求AB的长.12.(2023•榆阳区校级一模)如图,在Rt△ABC中,∠ABC=90°,BD是△ABC的中线,点E是AB上的一点,以AE为直径的⊙O与BD相切于点M,⊙O交AC于点G,过点G作GF⊥AE交⊙O于另一点F,连接AF.(1)求证AF∥BD;(2)若AB=6,BC=8,求⊙O半径的长.13.(2023•长丰县模拟)如图,AB为⊙O的直径,E为AB的延长线上一点,过点E作⊙O的切线,切点为点C,连接AC、BC,过点A作AD⊥EC交EC延长线于点D.(1)求证:∠BCE=∠DAC.(2)若BE=2,CE=4,求AD的长.14.(2023•庐阳区校级一模)如图,四边形ABCD内接于⊙O,对角线AC是⊙O的直径,CE与⊙O相切于点C,连接BD交AC于点P.(1)求证:∠DCE=∠DBC;(2)若CE=√5,AD=4,求tan∠ABD的值.15.(2023•雁塔区校级模拟)如图,已知△ABC的边AB所在的直线是⊙O的切线,切点为B,AC经过圆心O并与圆交于点D、C,E为AB延长线上一点,连接CE交⊙O于点F,且∠BCE=∠ACB.(1)求证:CE⊥AB;(2)若⊙O的半径是6,AB=8,求EF的长.16.(2023•碑林区校级三模)如图,已知等腰△ABC,AB=AC,AD平分∠BAC,以AD为直径作⊙O,交AB于点E,交AC于点F.(1)求证:BC是⊙O的切线;(2)连接OB与EF交于点P,若OG=3,EG=4,求PG的长.。
中考复习证明圆的切线的两种方法
中考复习证明圆的切线的两种方法
方法一:直角三角形方法证明圆的切线
设圆的圆心为O,半径为r,切点为A,切线为AB。
首先,连接OA和OB。
由于OA是半径,所以OA⊥AB。
由于AB是切线,所以AB⊥OB。
综上可得:OA⊥AB⊥OB,即OA⊥OB,所以O、A、B三点共线。
由于直角三角形AOB中,AO⊥OB,所以AOB为直角三角形。
根据直角三角形的性质,AOB为直角三角形可推出∠OAB=90°。
所以,∠OAB=90°,即OA⊥AB,证明了AB是圆的切线。
方法二:几何方法证明圆的切线
设圆的圆心为O,半径为r,切点为A,切线为AB。
首先,连接OA和OB。
由于OA是半径,所以OA=OB=r。
根据圆的性质,点A到圆心O的距离为r,即AO=r。
因为AB是切线,所以∠OAB=90°。
又知,O、A、B三点共线,所以∠OBA=∠OAB=90°。
所以,三角形OAB是直角三角形。
由于OAB为直角三角形,可以利用勾股定理得到:AB²=OA²+OB²。
代入已知条件,可得AB²=r²+r²=2r²。
化简得到AB²=2r²,取平方根可得AB=√2r。
所以,AB=√2r,证明了AB是圆的切线。
综上所述,根据直角三角形方法和几何方法可以证明圆的切线。
圆的切线证明和有关计算复习
圆的切线证明和相关计算切线的性质与判定 1.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法). (2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.2.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径. (3)切线垂直于经过切点的半径.提示:利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.(模型1:证平行)【例1】 已知:如图,AB 是O ⊙的直径,C 为O ⊙上一点,MN 过C 点,AD MN ⊥于D ,AC 平分DAB ∠.求证:MN 为O ⊙的切线.【例2】 如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;(模型2:证全等)【例3】 如下图所示,以Rt ABC ∆的直角边BC 为直径作半圆O ,交斜边于D ,OE AC ∥交AB 于E ,⑴ 求证:DE是O ⊙的切线;【例4】 如图所示在Rt ABC ∆中,90B ∠=︒,A ∠的平分线交BC 于D ,E 为AB 上一点,DE DC =,以D为圆心,以DB 的长为半径画圆.求证:(1)AC 是D ⊙的切线;EB【例5】 已知:O 为BAC ∠平分线上一点,OD AB ⊥于D ,以O 为圆心.以OD 为半径作圆O .求证:O ⊙与AC相切.【例6】 如图,O ⊙是Rt ABC ∆的外接圆,90ABC ∠=︒,点P 是圆外一点,PA 切O ⊙于点A ,且PA PB =.(1)求证:PB 是O ⊙的切线.(模型3:等量代换)【例7】 如图,AB 是O ⊙的直径,C 点在圆上,CD AB ⊥于D .P 在BA 延长线上,且PCA ACD ∠=∠.求证:PC是O ⊙的切线.BP【例8】 已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠.求证:(1)DC 为O ⊙的切线;【例9】 如图,AC 为O ⊙的直径,B 是O ⊙外一点,AB 交O ⊙于E 点,过E 点作O ⊙的切线,交BC 于D 点,DE DC =,作EF AC ⊥于F 点,交AD 于M 点. (1)求证:BC 是O ⊙的切线;D CB A(模型4:三角形内角和定理) 【例10】 已知:如图,ABC ∆内接于O ,AD 是过A 的一条射线,且B CAD ∠=∠.求证:AD 是O 的切线.【例11】 如图,已知OA 是O ⊙的半径,B 是OA 中点,BC OA ⊥,P 是OA 延长线上一点,且PA AC =.求证:PC是O ⊙的切线.【例12】 如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B .(1)求证:AD 是⊙O 的切线.(2)若⊙O 的半径为3,AB =4,求AD 的长.与圆有关的面积和长度计算设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,弧长公式:π180n Rl =扇形面积公式:21π3602n S R lR ==扇形圆柱体表面积公式:22π2πS R Rh =+圆锥体表面积公式:2ππS R Rl =+(l 为母线) 常见组合图形的周长、面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法A O BD C 补充:在求不规则图形的面积时,注意利用割补法与等积变化法归为规则图形,再利用规则图形的公式求解.例题:已知,如图,扇形AOB 的圆心角为120°,半径OA 为6cm .(1)求扇形AOB 的弧长和扇形面积;(2)若把扇形纸片AOB 卷成一个圆锥无底纸盒,求这个纸盒的高OH.【例1】 如图,在Rt ABC △中,90BAC ∠=,6BC =,点D 为BC 中点,将ABD △绕点A 按逆时针方向旋转120得到AB D ''△,则点D 在旋转过程中所经过的路程为 .(结果保留π)【例2】 如图,已知半圆的直径12AB =厘米,点C D ,是这个半圆的三等分点,求弦AC AD ,和CD 围成的阴影部分面积.(结果用π表示)【例3】 将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,4cm 30AB BAC ︒=∠=,,则图中阴影部分面积为 cm 2.【中考链接】例1.(2016四川省内江市)如图,点A 、B 、C 在⊙O 上,若∠BAC =45°,OB =2,则图中阴影部分的面积为( )B AC DD 'B 'A.π﹣4B.213π-C.π﹣2D.223π-例2.(2016山东省临沂市)如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=3,则阴影部分的面积是()A.32B.6πC.326π-D.336π-例3.(2016山东省潍坊市)如图,在Rt△ABC中,∠A=30°,BC=23,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.15332π-B.15332π-C.7346π-D.7326π-。
专题复习与圆的切线有关的证明与计算剖析
(2)如果直线与圆没有明确的交点,则过圆心作该直线的垂 线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.
有交点,连半径,证垂直
1.如图9所示,点O在∠APB的平分线上,⊙ O与PA相切 于点C. (1)求证:直线 PB与⊙O相切 (2)PO的延长线与⊙ O交于点E,若⊙O的半径为 3, PC=4. 求弦 CE 的长.
解:(1)如图,连结BD, ∵AB是⊙O直径, ∴∠ACB=∠ADB=90°. 在Rt △ABC中, ∵CD平分∠ACB,
AC= AB2-BC2= 102-62=8 cm.
︵︵ ∴AD=BD,∴ AD=BD.
∴Rt △ABD 为等腰直角三角形, AD=BD=5 2cm.
求证:AC是⊙ O的切线。
证明:过O作OE⊥AC于E
∵ AO平分∠BAC
OD⊥AB
∴ OE=OD
E
∵ OE是⊙O的半径
∴ AC是⊙O的切线
【教材原型 】
已知:如图, A是圆⊙O外一点,AO的延长线交⊙ O 于点C,点B在圆上,且 AB=BC,∠A=30°, 求证:直线 AB是⊙O的切线.
证明:连结OB,∵OB=OC,AB=BC, ∠A=30°, ∴∠OBC=∠C=∠A=30°, ∴∠AOB=∠C+∠OBC=60°. ∵∠ABO=180°-(∠AOB+∠A)
证明:( 1)如图 1,连接 OE , ∵OA=OE , ∴∠EAO=∠AEO, ∵AE平分∠ FAH, ∴∠EAO=∠FAE, ∴∠FAE=∠AEO, ∴AF∥OE, ∴∠AFE+∠OEF=180°, ∵AF⊥GF, ∴∠AFE=∠OEF=90°, ∴OE⊥GF, ∵点E在圆上, OE是半径, ∴GF是⊙O的切线.
与圆的切线有关的计算与证明
专题复习 : 与圆有关的证明与计算一、例题讲解例题 1:如图,AB 是⊙ O 的直径,过点 B 作⊙ O 的切线 BM ,弦 CD ∥ BM ,交 AB 于点 F ,且 DA=DC ,连接 AC ,AD ,延长 AD 交 BM 地点 E 。
M(1) 求证:△ ACD 是等边三角形;DE(2) 连接 OE ,若 DE=2,求 OE 的长。
AOBFC练习:如图,⊙ O 为△ ABC 的外接圆, BC 为⊙ O 的直径, AE 为⊙ O 的切线,过点 B 作BD ⊥ AE 于 D 。
(1)求证:∠ DBA=∠ ABC ;(2)如果 BD=1,tan ∠ BAD= 1,求⊙ O 的半径。
AD2EBOC例题 2:如图 ,以线段 AB 为直径作⊙ O , CD 与⊙ O 相切于点 E ,交 AB 的延长线于点 D , 连接 BE , 过点 O OC BE 交切线 DE 于点 C , 连接 AC 。
作 ∥(1)求证: AC 是⊙ O 的切线 ;()若BD=OB= 4 , 求弦 AE 的长。
2练习:如图, AB 是⊙ O 的直径,半径 OD 垂直弦 AC 于点 E .F 是 BA 延长线上一点,CDBBFD 。
(1)判断 DF 与⊙ O 的位置关系,并证明;(2)若 AB=10, AC=8,求 DF 的长。
CD EFA OB1二、课堂练习1.如图,⊙ O是△ ABC 的外接圆, AB= AC ,BD是⊙ O的直径, PA∥BC,与 DB的延长线交于点 P,连接 AD。
(1)求证: PA是⊙ O的切线;( 2)若 AB= 5,BC=4 ,求 AD的长。
2.如图,已知 BC是⊙ O的直径,AC切⊙ O于点 C,AB交⊙ O于点 D,E 为 AC的中点,连结 DE。
(1)若 AD=DB, OC=5,求切线 AC的长;(2)求证: ED是⊙ O的切线。
ADEBOC3.如图,△ ABC中, AB=AC,点 D 为 BC上一点,且 AD=DC,过 A,B,D 三点作⊙O,AE是⊙ O的直径,连结 DE.( 1)求证: AC是⊙ O的切线;(2)若 sin C 4 ,,求⊙O 的直径.5AC=6AOEB DC 4.如图,△ ABC内接于⊙ O,OC⊥AB于点 E,点 D在 OC的延长线上,且∠ B=∠D=30°.(1)求证: AD是⊙ O的切线;(2)若AB6 3 ,求⊙O的半径.AOE CBD25.如图,已知 BC是⊙ O的直径,AC切⊙ O于点 C,AB交⊙ O于点 D,E 为 AC的中点,连结 DE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《小专题22 与圆的切线有关的计算与证明》
1. (白银中考改编)如图,在△ABC中,∠ABC=90°
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写作法,保留作图痕迹)
(2)试判断(1)中AC与⊙O的位置关系,并证明
2. (沈阳中考)如图,BE是⊙O的直径,点A和点D是O上的两点,过点A作⊙O 的切线交BE延长线于点C
(1)若∠ADE=25°,求∠C的度数;
(2)若AB=AC,CE=2,求⊙O半径的长
3. (黄石中考)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC 的内心,连接AE并延长交⊙O于点D,连接BD并延长至点F,使得BD=DF,连接CF,BE.求证:
(1)DB=DE:
(2)直线CF为⊙O的切线
4. (天津中考)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°
(1)如图1,若D为的中点,求∠ABC和∠ABD的大小;
(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小
5. 如图所示,MN是⊙O的切线,点B为切点,BC是⊙O的弦且∠CBN=45°,过点C的直线与⊙O,MN分别交于A,D两点,过点C作CE⊥BD于点E
(1)求证:CE是⊙O的切线;
(2)若∠D=30°,BD=2+2,求⊙O的半径r
6. (河南中考)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F
(1)求证:CE=EF;
(2)连接AF并延长,交⊙O于点G.填空:
①当∠D的度数为时,四边形ECFG为菱形,
②当∠D的度数为时,四边形ECOG为正方形
7. (教材P102习题T12变式)如图,AB是⊙O的直径,C为⊙O上一点,AD与过C点的切线互相垂直,垂足为D,AD交⊙O于点E,DE=2,CD=4
(1)求证:AC平分∠BAD;
(2)求⊙O的半径R;
(3)延长AB,DC交于点F,OH⊥AC于点H.若∠F=2∠ABH,则BH的长为(直接写出)
参考答案
1. 解:(1)作图略,
(2)AC与⊙O相切,证明:过点O作OD⊥AC于点D.∵CO平分∠ACB,∠ABC=90°,∴OB=OD.∵OB为⊙O的半径,⊙O与直线AC相切.
2. 解:(1)连接OA.∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,
即∠OAC=90°.∵∠ADE=25°,∴∠AOE=2∠ADE=50°∴∠C=90°-∠AOE=90°-50°=40°.
(2)∵AB=AC,∴∠B=∠C.∴∠AOC=2∠B=2∠C.∵∠OAC=90°,
∴∠AOC+∠C=3∠C=90°.∴∠C=30∴OC.设⊙O的半径为r.∵CE=2,
∴(r+2).解得r=2.∴⊙O的半径为2.
3. 证明:(1)∵E为△ABC的内心,∴∠DAC=∠DAB,∠CBE=∠EBA.
又∵∠DBC=∠DAC,∠DBE=∠DBC+∠CBE,∠DEB=∠EAB+∠EBA,
∴∠DBE=∠DEB.∴DB=DE.
(2)连接OD∵BD=DF,O是BC的中点,∴OD∥CF.又∵BC为⊙O的直径,OB=OD,∴∠ODB=∠DBO=∠DAC=45°.∴∠BCF=∠BOD=90°.∴BC⊥CF.
又OC为⊙O的半径,∴直线CF为⊙O的切线.
4. 解:(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,
∴∠ABC=180°-∠ACB-∠BAC=180°-90°-38°=52°.∵D为的中点,
∴.∴∠ACD=∠BCD=ACB=45°.∴∠ABD=∠ACD=45°.
(2)连接OD. ∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°.∵DP∥AC,
∠BAC=38°,∴∠P=∠BAC=38°,∴∠AOD=∠P+∠ODP=128°.
∴∠∠AOD=64°.∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°.
∴∠OCD=∠ACD-∠OCA=64°-38°=26°.
5. 解:(1)证明:连接OB,OC.∵MN是⊙O的切线,∴OB⊥MN.∵∠CBN=45°,CE⊥BD,∴∠OBC=45°,∠BCE=45°.∵OB=OC,∴∠OBC=∠OCB=45°.
∴∠OCE=90°,即OC⊥CE.又∵点C在⊙O上,∴CE是⊙O的切线.
(2)∵OB⊥BE,CE⊥BE,OC⊥CE,∴四边形BOCE是矩形.又∵OB=OC,∴四边形BOCE是正方形.∴BE=CE=OB=OC=r.在Rt△CDE中,∠D=30°,CE=r,
∴DE=r.∵BD=2+2,∴r+r=2+2.解得r=2.即⊙O的半径r为2.
6. (1)证明:连接OC.∵CE为⊙O的切线,∴OC⊥CE,即∠OCE=90°.
∴∠ECF+∠FCO=90°.∵DO⊥AB,∴∠BFO+∠B=90°.又∵∠CFE=∠BFO,
∴∠CFE+∠B=90°.∵OB=OC,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=FE.
(2)①30°②22.5°
7. 解:(1)证明:连接OC,∵FD切⊙O于点C,∴OC⊥FD.∵AD⊥FD,
∴OC∥AD.∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO.∴∠DAC=∠CAO,即AC平分∠DAB.
(2)作OG⊥AE于点G,则AG=EG,四边形OCDG为矩形.
∴OG=CD=4,OC=DC =R.
∴EG=R-2=AG.在Rt△AGO中,∴R=5.
(3)2。