直线的倾斜角与斜率、直线的方程与两直线的交点坐标

合集下载

直线的倾斜角和斜率直线方程的点斜式直线方程的斜截式

直线的倾斜角和斜率直线方程的点斜式直线方程的斜截式

直线的倾斜角和斜率、直线方程的点斜式、直线方程的斜截式一. 教学内容:直线的倾斜角和斜率、直线方程的点斜式、直线方程的斜截式[知识点]1. 直线的方程和方程的直线: 定义:(1)以一个方程f (x ,y )=0的解为坐标的点都在直线l 上。

(2)直线l 上的点的坐标都是方程f (x ,y )=0的解。

满足(1)(2)的方程f (x ,y )=0是直线l 的方程,同时称直线l 为方程f (x ,y )=0的直线。

2. 直线的倾斜角:定义:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕交点逆时针旋转与直线重合时,所转过的最小正角为直线倾斜角。

规定:当直线与x 轴平行或重合时,倾斜角为0°。

范围:0°≤α<180° 注意:(1)定义分两部分:一部分是与x 轴相交,另一部分与x 轴平行。

(2)与x 轴相交的定义中,应理解三个地方:①x 轴绕交点旋转;②逆时针方向;③最小正角。

(3)应特别注意倾斜角的范围[0,π)。

(4)任何一条直线有唯一倾斜角,表示直线的倾斜程度,但倾斜角为α的直线有无穷多条。

3. 直线的斜率:定义:倾斜角不是90°的直线,其倾斜角的正切,叫做这条直线的斜率。

符号:常用k 表示,即k =tan α。

注意:(1)所有直线都有倾斜角,但不是所有直线都有斜率。

()由正切的单调性可知,单增,,时单增,两个单2απαππ∈⎛⎝ ⎫⎭⎪∈022[)调区间。

(3)当倾斜角为90°时斜率不存在,但直线存在。

4. 过两点的直线斜率公式:公式推导:如图,已知直线l 过两点P 1(x 1,y 1),P 2(x 2,y 2),倾斜角为α,求斜率k 。

yx O α α P 1 P 2yx Oα α P 1 P 2PyxO α α P 2 P 1yx Oα P 2 P 1P()作或,则,OP P P P P P x x y y →=⎛⎝ ⎫⎭⎪⎪=--→→12211212∴=--=--tan αy y x x y y x x 12122121即:k y y x x y y x x =--=--12122121注意:(1)斜率公式与点的顺序无关。

直线与方程知识点总结

直线与方程知识点总结

直线与方程知识点总结一、直线根本知识 1、直线的倾斜角与斜率 〔1〕直线的倾斜角① 关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为00. ③ 倾斜角α的范围000180α≤<.④ 0,900≥︒≤︒k α; 0,18090 k ︒︒α 〔2〕直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。

②经过两点),(),,(222111y x P y x P 〔21x x ≠〕的直线的斜率公式是1212x x y y k --=〔21x x ≠〕 ③每条直线都有倾斜角,但并不是每条直线都有斜率。

2、两条直线平行与垂直的判定 〔1〕两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,那么有1212//l l k k ⇔=。

特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。

〔2〕两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,那么12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。

如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。

二、直线的方程 1、直线方程的几种形式注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?〔不一定。

〔1〕假设2121y y x x ≠=且,直线垂直于x 轴,方程为1x x =;(2)假设2121y y x x =≠且,直线垂直于y 轴,方程为1y y =; (3)〔3〕假设2121y y x x ≠≠且,直线方程可用两点式表示〕 2、线段的中点坐标公式假设两点),(),,(222111y x P y x P ,且线段21,P P 的中点M 的坐标为),(y x ,那么⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 3. 过定点的直线系①斜率为k 且过定点),(00y x 的直线系方程为)(00x x k y y -=-;②过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ〔λ为参数〕,其中直线l 2不在直线系中.三、直线的交点坐标与距离公式设两条直线的方程是0:1111=++C y B x A l , 0:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的解,假设方程组有唯一解,那么这两条直线相交,此解就是交点的坐标;假设方程组无解,那么两条直线无公共点,此时两条直线平行;反之,亦成立。

直线方程及两直线的位置关系知识梳理

直线方程及两直线的位置关系知识梳理

直线与方程一、基础知识梳理知识点1:直线的倾斜角与斜率(1)倾斜角:一条直线向上的方向与X 轴的 所成的最小正角,叫做直线的倾斜角,范围为(2)斜率:当直线的倾斜角不是900时,则称倾斜角的 为该直线的斜率,即k=t a n α注记:所有直线都有倾斜角,但不是所有直线都有斜率.(当α=900时, k 不存在)(3)过两点p 1(x 1,y 1),p 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式:k=t a n 1212x x y y --=α(当x 1=x 2时,k 不存在,此时直线的倾斜角为900).知识点2:直线的方程直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

二、易错知识梳理1、忽视截距为零【易错题1】求经过点(2,1)且在两坐标轴上截距相等的直线方程. 2、忽视与x 轴平行的情况 【易错题2】已知直线过(1,2)、(2,b ),求直线方程. 3、忽视斜率不存在的情况【易错题3】已知直线l 过点P (1,2)且与以A(-2,-3)、B (3,0)为端点的线段相交,求直线l 的斜率的取值范围. 三、考点类型剖析题型一 斜率与倾斜角的关系例1、 已知过点P(1-a,1+a)和Q(3,2a) 的直线的倾斜角为钝角,则实数 a 的取值范围为归纳小结:任意一条直线都有唯一确定倾斜角,但斜率未必都存在. )000,180⎡∂∈⎣,k R ∈,)000,90⎡∂∈⎣,(0,)k ∈+∞;00(90,180)∂∈(,0)k ∈-∞. 题型二 三点共线问题例2、 求证A (1,5),B (0,2),C (2,8)三点共线.变式训练:(浙江高考)已知a>0,若平面内三点A (1,-a ),B (2, 2a ),C (3, 3a )共线,则a=题型三 待定系数法求直线方程例3、 过点P(1,3)的直线分别与两坐标轴交于A,B 两点,若P 为中点,求直线的方程.变式训练:一条直线过点A (-2,3),并且与两坐标轴围成三角形的面积为1,求此直线方程. 题型四 直线方程的应用问题例4、如右图所示一条光线从点A (3,2)发出,经x 轴反射,通过B(-1,6),求入射光线与反射光线所在的直线方程.变式训练1:已知直线120mx ny ++=在x 轴,y 轴截距分别为-3和-4,求m,n 的值. 变式训练2:已知点A(2,5)与点B(4,-7),试在y 轴上求一点P,使得PA PB +的值最小. 四、知能达标训练基础训练1、过点P (-2, m )和Q (m , 4)的直线斜率等于1,那么m 的值等于 ( ) A 、1或3 B 、4 C 、1 D 、1或42、在直角坐标系中,直线y= -3x+1的倾斜角为( )A 、0120B 、-030C 、060D 、- 060 3、过点(-3, 0)和点(-4,3)的倾斜角是( )A 、030B 、0150C 、060D 、0120 4、如图,直线l 1、l 2、l 3的斜率分别是k 1、k 2、k 3,则有( ) A 、k 1<k 2<k 3 B 、k 3<k 1<k 2 C 、k 3<k 2<k 1 D 、k 1<k 3<k 25.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在3、过两点(-1,1)和(3,9)的直线,在x 轴上的截距是( ) A 、32-B 、23- C 、25 D 、23、过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是( ) A 、2x+y-12=0 B 、2x+y-12=0 或2x-5y=0 C 、x-2y-1=0 D 、x+2y-9=0或2x-5y=0 7、若直线ax+by+c=0在第一、二、三象限,则( )A 、ab>0,bc>0B 、ab>0,bc<0C 、 ab<0,bc>0D 、 ab<0,bc<0 8、把直线l 的一般式260x y -+=化为斜截式,求出直线l 的斜率以及与两坐标轴的截距.综合训练1.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1)C .(3,1)D .(2,1)2.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤ C .324k k ≥≤或 D .2k ≤ 3.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为___________________; 若3l 与1l 关于x 轴对称,则3l 的方程为___________________;若4l 与1l 关于x y =对称,则4l 的方程为________________;5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 7、已知ABC ∆的三个顶点是A (3,-4),B (0,3),C (-6,0),求它的三条边所在的直线方程。

直线的倾斜角与斜率+直线的交点坐标与距离公式(导学)

直线的倾斜角与斜率+直线的交点坐标与距离公式(导学)

直线的倾斜角与斜率一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:● 了解直线倾斜角的概念,掌握直线倾斜角的范围;● 理解直线斜率的概念,理解各倾斜角是90o 时的直线没有斜率;● 已知直线的倾斜角(或斜率),会求直线的斜率(或倾斜角);● 掌握经过两点111(,)P x y 和222(,)P x y 的直线的斜率公式:2121y y k x x -=-(12x x ≠);● 熟练掌握两条直线平行与垂直的充要条件。

重点难点:● 重点:直线的倾斜角和斜率的概念;两条直线平行和垂直的条件。

● 难点:直线斜率存在与不存在的分类讨论;两直线的平行与垂直问题转化与两直线的斜率的关系问题。

学习策略:● 学习时,注意直线的倾斜角与斜率的联系与区别:它们都是表示平面直角坐标系内的直线的倾斜程度;不同是倾斜角是用角来表示直线的倾斜程度,而斜率是用实数来表示直线的倾斜程度,任何直线都有倾斜角,但不是所有的直线都有斜率。

二、学习与应用如图,直线l 过原点,其上一点P (3,2),直线l 与x 轴正半轴的夹角为α,则tan α= 。

“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。

若有其它补充可填在右栏空白处。

知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?知识点一:直线的倾斜角平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按 方向旋转到和直线 时所转的最小正角记为α,则α叫做直线的倾斜角.规定:当直线和x 轴平行或重合时,直线倾斜角为 °,所以,倾斜角的范围是 °α≤< °.要点诠释:(1)要清楚定义中含有的三个条件①直线______方向;②x 轴______向;③小于______°的角.(2)从运动变化观点来看,直线的倾斜角是由x 轴按逆时针方向旋转到与直线重合时所成的角.(3)倾斜角α的范围是 °α≤< °.当00=α时,直线与轴或与轴 .(4)直线的倾斜角描述了直线的 程度,每一条直线都有 的倾斜角和它对应.(5)已知直线的倾斜角不能确定直线的位置,但是,直线上的一点和这条直线的倾斜角可以唯一确定直线的位置.知识点二:直线的斜率倾斜角不是 °的直线,它的倾斜角的 叫做这条直线的斜率,常用k表示,即tan k α=.要点诠释:(一)当直线l 与x 轴平行或重合时,α= °,k =tan0°= ;(二)直线l 与x 轴垂直时,α= °,k .由此可知,一条直线l 的倾斜角α____ __存在,但是斜率k ______ ______存在.知识点三:斜率公式已知点111(,)P x y 、222(,)P x y ,且12P P 与x 轴 ,过两点111(,)P x y 、222(,)P x y 的直线的斜率公式k = .要点诠释:(一)对于上面的斜率公式要注意下面五点:(1) 当x 1=x 2时,公式右边____ __ ______,直线的斜率_____ _______,倾斜角α=____________°,直线与x 轴____________;(2)k 与P 1、P 2的顺序无关,即y 1,y 2和x 1,x 2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k 可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y 1=y 2时,斜率k =____________,直线的倾斜角α=____ _ ______°,直线与x 轴____________或____________;(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.(二)斜率公式的用途:由公式可解决下列类型的问题:(1)由1P 、2P 点的坐标求k 的值;(2)已知k 及1122,,,x y x y 中的三个量可求第四个量;(3)已知k 及1P 、2P 的横坐标(或纵坐标)可求12||PP ;(4)证明三点共线.知识点四:两直线平行设两条不重合的直线21,l l 的斜率分别为21,k k .若21//l l ,则1l 与2l 的倾斜角1α与2α相等.由21αα=,可得1tan α 2tan α,即1k 2k .因此,若21//l l ,则1k 2k .反之,若1k 2k ,则21//l l .要点诠释:(一)公式12//l l ⇔1k 2k 成立的前提条件是:①两条直线的斜率_________分别为21k k ,;②21l l 与____ _____;(二)当两条直线的斜率都不存在且不重合时,21l l 与的倾斜角都是________°,则21//l l .知识点五:两直线垂直设两条直线21,l l 的斜率分别为21,k k .若21l l ⊥,则12k k ⋅= .要点诠释:(一)公式12l l ⊥⇔12k k ⋅= 成立的前提条件是两条直线的斜率都 ;(二)当一条垂直直线的斜率不存在,另一条直线的斜率为0时,两条直线也垂直.类型一:倾斜角与斜率的关系例1.已知直线l 的倾斜角的变化范围为[,)63ππα∈,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用αtan =y 在)2,0[π和),2(ππ上是______函数分别求解.当0>k 时,α∈____________;当0<k 时,α∈_____ _______;当0=k 时,α=____________;当k 不存在时,α=______.反之,亦成立.举一反三:【变式】(2010山东潍坊,模拟)直线cos 320x y α++=的倾斜角的范围是A .5,,6226ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦UB .50,,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U C .50,6π⎡⎤⎢⎥⎣⎦ D .5,66ππ⎡⎤⎢⎥⎣⎦经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。

直线的倾斜角、斜率及方程知识点总结

直线的倾斜角、斜率及方程知识点总结

直线的倾斜角、斜率及方程知识点总结一、倾斜角:重点:取值范围:0≤a <180° 二、斜率k :1、当a ≠90°时,斜率k=tana ;2、当a=90°时,斜率k 不存在;(联系正切函数的定义域去理解)3、两点P1(x1,y1),P2(x2,y2)间的斜率公式:)间的斜率公式:k=y 2-y 1/x 2-x 1理解:①两点间斜率要求x 1≠x 2,因为当x 1=x 2时,直线垂直于x 轴,倾斜角为90°,斜率k 不存在;在;②当x 1≠x 2且y 1=y 2时,直线垂直于y 轴,倾斜角为0°,斜率k=0 三、各表达式之间的区别与联系:名称名称公式公式备注备注点斜式点斜式y-y 0=k(x-x 0)1、联系斜率公式进行理解联系斜率公式进行理解2、已知一定点P 0(x 0,y 0)和斜率k ; 斜截式斜截式 y=kx+b 1、 联系点斜式进行理解;联系点斜式进行理解;2、 此时是已知一定点P (0,b )和斜率k ; 3、 b 表示直线在y 轴上的截距轴上的截距 两点式两点式y-y 1/y 2-y 1=x-x 1/x 2-x 11、 两点式要求x 1≠x 2且y 1≠y 2;2、 当x 1=x 2且y 1≠y 2时,直线垂直于x轴;轴; 3、 当x 1≠x 2且y 1=y 2时,直线垂直于y 轴。

轴。

截距式截距式 x/a+y/b=1 1、 联系两点式进行理解;联系两点式进行理解;2、 点P 1(a ,0),P 2(0,b )分别为直线与坐标轴的交点坐标;线与坐标轴的交点坐标; 一般式一般式Ax+By+C=0(A 、B 不同时为零)不同时为零)1、 联系二元一次方程组的相关知识点理解;理解;2、 熟练掌握A 、B 、C 对直线位置的影响作用。

响作用。

四、斜率k与截距b对直线位置的影响:1、k对直线位置的影响:对直线位置的影响:时,直线向右上方倾斜;①当k>0时,直线向右上方倾斜;时,直线向右下方倾斜;②当k<0时,直线向右下方倾斜;轴;③当k=0时,此时倾斜角为0,直线平行与x轴;轴平行。

数学直线的倾斜角与斜率公式

数学直线的倾斜角与斜率公式

数学直线的倾斜角与斜率公式数学直线是数学中一个重要的概念,在数学的各个领域都有着广泛的应用。

其中直线的斜率与倾斜角也是数学中最基础的概念之一。

下面我们将介绍直线的斜率与倾斜角的基本概念及公式。

一、直线的斜率公式直线的斜率是指直线在平面直角坐标系中的倾斜程度,用于表示其在平面直角坐标系中的方向。

直线的斜率公式如下:斜率 k = (y2 - y1)/ (x2 - x1)其中 (x1, y1) 和 (x2, y2) 分别为直线上的两个点。

在计算斜率时,需要注意的是需要判断两点横坐标是否相等,因为此时斜率是不存在的。

二、直线的倾斜角公式直线的倾斜角是指直线与平面直角坐标系的 x 轴正方向所成的角度。

直线的倾斜角公式如下:倾斜角θ = atan k其中 atan 表示反正切函数,k 为直线的斜率。

需要注意的是,计算倾斜角时需要注意角度的参考系,一般以平面直角坐标系的 x 轴正方向为参考系。

三、斜率与倾斜角的关系斜率与倾斜角是相互关联的。

当我们知道一条直线的斜率时,可以通过求取反正切函数得到该直线的倾斜角。

相反地,当已知一条直线的倾斜角时,可以通过求取正切函数得到对应的斜率。

斜率k = tan θ倾斜角θ = atan k四、直线的性质在数学中,直线有许多重要的性质,这些性质不仅在理论研究中得到应用,也在实践中得到广泛应用。

其中一些性质如下:1. 相互垂直的两条直线的斜率乘积为 -1。

2. 直线的截距是指该直线与 y 轴的交点坐标,可以用斜率和另一个已知点来求解。

3. 两条直线互相平行的斜率相等。

4. 两条直线的夹角公式可以用两条直线的斜率求解。

5. 直线的点斜式表示法可以用已知点和斜率求解。

综上所述,数学直线的斜率与倾斜角是数学中重要的概念,通过斜率和倾斜角可以描述直线的方向和倾斜程度,同时也可以用于求解直线的其他性质。

通过了解这些概念和公式,可以更好地理解和应用数学的基础知识。

直线的倾斜角、斜率、两直线位置关系

§3。

1 直线的倾斜角、斜率、两条直线的平行、垂直位置关系注:直线的倾斜角、斜率在线性规划问题中已经讲完,本节课对此复习,本节课的新授内容是两直线的位置关系.A 。

直线的倾斜角 1.直线的倾斜角定义(ⅰ)直线l 与x 轴有交点时:直线l 向上的方向与x 轴正向所成的最小正角。

(ⅱ)直线l 与x 轴平行或重合时,规定:倾斜角为零角. 2.直线倾斜角的范围:[0,)π.3.直线倾斜角与直线的对应关系 是“一对多”关系.即[0,)π内的任何一个角,都对应无数条平行直线;反过来,坐标平面内的任意一条直线,都有唯一的倾斜角。

B 。

直线的斜率 1.直线的斜率定义2.斜率公式条件:直线经l 过两点:111(,)P x y 、222(,)Px y ,其中12x x ≠。

斜率公式:2121y y k x x -=-(或1212y yk x x -=-). 3。

直线斜率函数图象斜率函数图象可用来解决一下两个范围问题: (1)由直线倾斜角范围求斜率范围. (2)由直线斜率范围求倾斜角范围. 4.直线斜率的求法: (1)定义法; (2)公式法; (3)直线方程法:①方程11()y y k x x -=-表明,直线斜率为因式1()x x -的系数. ②方程y kx b =+表明,直线斜率为x 项的系数。

③方程1x x =表明,直线斜率不存在。

④方程1y y =表明,直线斜率0k =.⑤当0B ≠时,由方程0Ax By C ++=得到直线斜率为A k B=-。

C 。

两条直线位置关系设1l 、2l 为两条不同直线,并且约定:直线1l 斜率存在时,记为1k ,不存在时,记为“1k 不存在”.同理,直线斜2l 率存在时,记为2k ,不存在时,记为“2k 存在”,则1。

直线1212//l l k k ⇔=或1k 、2k 都不存在.k ⎧=⎨⎩ 不存在,90α≠时. tan ,90,αα︒≠πO1π41-事实上,若12//l l ,则它们的位置关系有以下两种:①1l ,2l 与x 轴都相交但不垂直;②1l ,2l 都垂直于轴。

一轮复习:直线的倾斜角、斜率与直线的方程

授课主题直线的倾斜角、斜率与直线的方程教学目标1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 4.掌握两点间的距离公式.教学内容1. 平面直角坐标系中的基本公式(1)两点间的距离公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),则d (A ,B )=x 2-x 12+y 2-y 12.(2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22.2. 直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角.(2)倾斜角的范围:[0°,180°). 3. 直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 (x 1≠x 2).若直线的倾斜角为θ (θ≠π2),则k =tan_θ.4. 直线方程的形式及适用条件名称 几何条件 方程 局限性 点斜式过点(x 0,y 0),斜率为ky -y 0=k (x -x 0)不含垂直于x 轴的直线斜截式斜率为k ,纵截距为by =kx +b不含垂直于x 轴的直线两点式过两点(x 1,y 1),(x 2,y 2),(x 1≠x 2,y 1≠y 2) y -y 1y 2-y 1=x -x 1x 2-x 1 (x 2≠x 1,y 2≠y 1) 不包括垂直于坐标轴的直线 截距式在x 轴、y 轴上的截距分别为a ,b (a ,b ≠0)x a +y b =1 不包括垂直于坐标轴和过原点的直线 一般式Ax +By +C =0平面直角坐标系内的直线都适用题型一 直线的倾斜角与斜率例1、直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.方法点拨:数形结合,由斜率公式求得k P A ,k PB . 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1, k BP =3-00-1=-3,∴k ∈(-∞,-3]∪[1,+∞). 方法技巧求直线倾斜角与斜率问题的求解策略1.求直线倾斜角或斜率的取值范围时,常借助正切函数y =tan x 在[0,π)上的单调性求解,这里特别要注意,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0). 2.先画出满足条件的图形,找到直线所过的点,然后求定点与端点决定的直线的斜率.见典例.【冲关针对训练】已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.答案 -23≤m ≤12解析 如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k P A =-2,k l =-1m ,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.题型二 直线方程的求法又∵2a +1b ≥22ab ⇒12ab ≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4. 此时,直线l 的方程是x 4+y2=1,即x +2y -4=0.(2)设所求直线l 的方程为y -1=k (x -2). 则可得A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0),∴截距之和为2k -1k +1-2k =3-2k -1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+2 2. 此时-2k =-1k ⇒k =-22.故截距之和最小值为3+22,此时l 的方程为y -1=-22(x -2),即x +2y -2-2=0. 方法技巧与直线方程有关问题的常见类型及解题策略1.求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用基本不等式求解最值或用函数的单调性解决.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解. 【冲关针对训练】已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解 (1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4, 当且仅当“a =b =2”时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0, 直线l 的方程为y -1=k (x -1), 则A ⎝⎛⎭⎫1-1k ,0,B (0,1-k ), 所以|MA |2+|MB |2=⎝⎛⎭⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k2=4. 当且仅当k 2=1k2,即k =-1时取等号,此时直线l 的方程为y -1=-(x -1),即x +y -2=0.1.(2017·大庆模拟)两直线x m -y n =a 与x n -ym=a (其中a 是不为零的常数)的图象可能是( )答案 B解析 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号.故选B.2.(2017·豫南九校联考)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( ) A .-12B .-12或-2C.12或2 D .-2答案 D解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.3.(2018·江西南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( )A .150°B .135°C .120°D .105°答案 A解析 由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,2为半径的圆的一部分,如图所示. 由题意知直线l 的斜率存在,设过点P (2,0)的直线l 的方程为y =k (x -2),则圆心到此直线的距离d =|2k |1+k 2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|2k |1+k 22=22-2k 21+k 2,所以S △AOB=12×|2k |1+k 2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1,当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,结合图可知k =-33⎝⎛⎭⎫k =33舍去,故所求直线l 的倾斜角为150°.故选A.4.(2014·四川高考)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.答案 5解析 易知A (0,0),B (1,3),且P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时取“=”).一、选择题1.(2018·朝阳模拟)直线x +3y +1=0的倾斜角为( )A.π6 B.π3 C.2π3 D.5π6答案 D解析 直线斜率为-33,即tan α=-33,0≤α<π,∴α=5π6,故选D. 2.(2017·正定质检)直线x cos140°+y sin40°+1=0的倾斜角是( )A .40°B .50°C .130°D .140°答案 B解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.故选B.3.(2018·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by +c =0的倾斜角为( )A.π4B.π3 C.2π3 D.3π4答案 DA .1B .2C .4D .8答案 C解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·ab=4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.故选C. 9.(2017·烟台期末)直线mx +n2y -1=0在y 轴上的截距是-1,且它的倾斜角是直线3x -y -33=0的倾斜角的2倍,则( )A .m =-3,n =-2B .m =3,n =2C .m =3,n =-2D .m =-3,n =2答案 A解析 根据题意,设直线mx +n2y -1=0为直线l ,另一直线的方程为3x -y -33=0, 变形可得y =3(x -3),其斜率k =3,则其倾斜角为60°,而直线l 的倾斜角是直线3x -y -33=0的倾斜角的2倍,则直线l 的倾斜角为120°,且斜率k =tan120°=-3,又由l 在y 轴上的截距是-1, 则其方程为y =-3x -1;又由其一般式方程为mx +n2y -1=0,分析可得m =-3,n =-2.故选A.10.若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3答案 C解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0. 欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值.而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点和点(m ,n )的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小,最小值为2. 故m 2+n 2的最小值为4.故选C. 二、填空题11.已知P (-3,2),Q (3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 ⎝⎛⎭⎫-73,-13解析 直线l :ax +y +3=0是过点A (0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ=13,k AQ =73,k l =-a .若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a <-13. 12.(2018·石家庄期末)一直线过点A (-3,4),且在两轴上的截距之和为12,则此直线方程是________.答案 x +3y -9=0或y =4x +16解析 设横截距为a ,则纵截距为12-a ,直线方程为x a +y 12-a =1,把A (-3,4)代入,得-3a +412-a =1,解得a =-4,a =9.a =9时,直线方程为x 9+y3=1,整理可得x +3y -9=0.a =-4时,直线方程为x -4+y16=1,整理可得4x -y +16=0.综上所述,此直线方程是x +3y -9=0或4x -y +16=0.13.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为________.答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上知,直线m 的方程为x -2y +2=0或x =2. 14.在下列叙述中:1112 ∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时,直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧ -1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围为[0,+∞). (3)由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.方法与技巧1. 要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3. 求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. 失误与防范1. 求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2. 根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3. 利用一般式方程Ax +By +C =0求它的方向向量为(-B ,A )不可记错,但同时注意方向向量是不唯一的.1. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D 解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.13。

高中数学必修二直线与直线方程题型归纳总结

高中数学必修二直线与直线方程题型归纳总结知识点归纳概括:1.直线的倾斜角为0°≤α<180°,斜率为k=tanα(α≠90°)。

2.已知两点求斜率公式为k=(y2-y1)/(x2-x1)(x2≠x1)。

3.两直线平行时,它们的斜率相等;垂直时,它们的斜率之积为-1.4.直线的五种方程:点斜式、斜截式、两点式、截距式、一般式。

5.两直线的交点坐标可通过联立两直线方程求得,两点间距离可用距离公式计算。

题型归纳分析:1.直线的倾斜角与斜率的计算。

2.平行和垂直直线的判断及斜率之间的关系。

3.直线的方程及其应用。

4.两直线交点坐标和两点间距离的计算。

例1:过点M(-2,a)和N(a,4)的直线的斜率等于1,则a的值为()。

A。

1B。

4C。

1或3D。

1或4解析:由题意可得,直线MN的斜率为1,即(k=(4-a)/(a+2)=1),解得a=2,故选B。

变式1:已知点A(1,3)、B(-1,3),则直线AB的倾斜角是()。

A。

60°B。

30°C。

120°D。

150°解析:由斜率公式可得,k=(3-3)/(-1-1)=0,因为斜率为0,所以直线与x轴平行,倾斜角为0°,故选A。

变式2:已知两点A(3,2)、B(-4,1),求过点C(-1.)的直线l与线段AB有公共点,求直线l的斜率k的取值范围。

解析:首先求出AB的斜率k1=(1-2)/(-4-3)=-1/7,然后求出点C到直线AB的距离d,d=|(-1-3)×(-1)+(?-2)×(-4+3)|/√((-4+3)²+(1-2)²)=|4-2×(?-1)|/√5,因为直线l与AB有公共点,所以点C到直线l的距离也为d,根据距离公式可得,|k1×(-1)+1×(?-1)-d|/√(k1²+1²)=d,化简得,|k1×(-1)+1×(?-1)|=2d√(k1²+1²),即|k1+?(?-1)|=2d√(k1²+1²),因为直线l过点C,所以直线l的斜率为k2=(?-1)/(-1-3),代入得,|k1+k2|=2d√(k1²+1²),整理得,|?-1+7k2|=2d√(50),因为|?-1+7k2|≥0,所以d≥0,又因为√(50)>7,所以|?-1+7k2|≤2d×7,即|?-1+7k2|≤14d,代入得|?-1+7(?-1)/(-1-3)|≤14d,即|-2?-6/(-4)|≤14d,解得-1/2≤d≤1/2,因为d≥0,所以1/2≥d≥0,代入得-1/2≤?-1+7k2≤1/2,解得-3/14≤k2≤1/14,故k2的取值范围为[-3/14,1/14]。

史上最全直线与直线方程题型归纳

精心整理直线与直线方程一、知识梳理1.直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°.倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.2.斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:)(211212x x x x y y k ≠--=3.直线方程的五种形式直线形式 直线方程局限性选择条件 点斜式不能表示与x 轴垂直的直线①已知斜率 ②已知一点 斜截式不能表示与x 轴垂直的直线①已知斜率②已知在y 轴上的截距两点式不能表示与x 轴、y 轴垂直的直线①已知两个定点 ②已知两个截距 截距式(b a 、分别为直线在x 轴和y 轴上的截距)不能表示与x 轴垂直、与y 轴垂直、过原点的直线 已知两个截距(截距可以为负)一般式表示所有的直线求直线方程的结果均可化为一般式方程 7.斜率存在时两直线的平行:21//l l ⇔1k =2k 且21b b ≠. 8.斜率存在时两直线的垂直:⇔⊥21l l 121-=k k .9.特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. 二、典例精析题型一:倾斜角与斜率【例1】下列说法正确的个数是() ①任何一条直线都有唯一的倾斜角;②倾斜角为030的直线有且仅有一条; ③若直线的斜率为θtan ,则倾斜角为θ; ④如果两直线平行,则它们的斜率相等 A.0个B.1个C.2个D.3个【练习】如果0<AC 且0<BC ,那么直线0=++C By Ax 不通过() A.第一象限B.第二象限C.第三象限D.第四象限【例2】如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( ) A .k sin α>0 B .k cos α>0C .k sin α≤0 D .k cos α≤0【练习】图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则().A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2【例3】经过点()2,1P 作直线l ,若直线l 与连接()10—,A ,()1,4B 的线段总有公共点,求直线l 的倾斜角α与斜率k 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师姓名学生姓名填写时间2012-06-15学科数学年级高一上课时间6.16下午1.00-3.00课时计划2教学目标教学内容个性化学习问题解决教学重点、难点教学过程直线的倾斜角与斜率、直线的方程与两直线的交点坐标知识要点倾斜角与斜率1.当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tankθ=. 如果知道直线上两点1122(,),(,)P x y P x y,则有斜率公式2121y ykx x-=-. 特别地是,当12x x=,12y y≠时,直线与x轴垂直,斜率k不存在;当12x x≠,12y y=时,直线与y轴垂直,斜率k=0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y轴平行或者重合. 当α=90°时,斜率k=0;当090α︒<<︒时,斜率0k>,随着α的增大,斜率k也增大;当90180α︒<<︒时,斜率0k<,随着α的增大,斜率k也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1.对于两条不重合的直线1l、2l,其斜率分别为1k、2k,有:(1)12//l l⇔12k k=;(2)12l l⊥⇔121k k⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x轴;….直线的点斜式方程1.点斜式:直线l过点000(,)P x y,且斜率为k,其方程为00()y y k x x-=-.2.斜截式:直线l的斜率为k,在y轴上截距为b,其方程为y kx b=+.3.点斜式和斜截式不能表示垂直x轴直线. 若直线l过点000(,)P x y且与x轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为x x-=,或x x=.4.注意:0y ykx x-=-与00()y y k x x-=-是不同的方程,前者表示的直线上缺少一点000(,)P x y,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1xya b+=. 3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线. 4. 线段12P P 中点坐标公式1212(,)22x x y y ++.直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x B B=--,表示斜率为A B -,y 轴上截距为C B -的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠. 如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B C A B C ⇔==;1l 与2l 相交1122A BA B ⇔≠.两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合. 2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.课前热身1.设直线l 与x 轴的交点是P,且倾斜角为α,若将此直线绕点P 按逆时针方向旋转45°,得到直线的倾斜角为α+45°, 则A.0°≤α<180°B.0°≤α<135°C.0°<α≤135°D.0°<α<135°2.下列四个命题中真命题是A.经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k (x-x 0)表示B.经过任意两个不同点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+by ax 表示D.经过定点A (0,b )的直线都可以用方程y=kx+b 表示3.A 、B 是x 轴上两点,点P 的横坐标为2,且|PA|=|PB|,若直线PA 的方程为x-y+1=0,则直线PB 的方程为A.2x-y-1=0B.x+y-5=0C.2x+y-7=0D.2y-x-4=04.若直线l 经过点(a-2,-1)和(-a-2,1)且与经过点(-2,1),斜率为-32的直线垂直,则实数a 的值为 . 5.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为 .典例剖析例1 若α∈⎪⎭⎫⎢⎣⎡2,6ππ,则直线2xcos α+3y+1=0的倾斜角的取值范围是A.⎪⎭⎫⎢⎣⎡26ππ,B.⎪⎭⎫⎢⎣⎡ππ,65 C.⎪⎭⎫⎢⎣⎡6,0πD.⎪⎭⎫⎢⎣⎡65,2ππ 例2 已知直线l 1:ax+2y+6=0和直线l 2:x+(a-1)y+a 2-1=0,(1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值.例3 求适合下列条件的直线方程: (1)经过点P (3,2),且在两坐标轴上的截距相等; (2)经过点A (-1,-3),倾斜角等于直线y=3x 的倾斜角的2倍.例4 过点P (2,1)的直线l 交x 轴、y 轴正半轴于A 、B 两点,求使: (1)△AOB 面积最小时l 的方程; (2)|PA|·|PB|最小时l 的方程.三角函数复习两角和与差的正弦、余弦和正切知识要点◆ 两角的和与差公式:()())()(S , sin cos cos sin sin S , sin cos cos sin sin βαβαβαβαβαβαβαβα-+-=-+=+()()()())()()()(T , tan tan 1tan tan tan T , tan tan 1tan tan tan C , sin sin cos cos cos C , sin sin cos cos cos βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβα-+-++-=--+=++=--=+解三角形--正弦定理和余弦定理的应用知识要点三角形中的三角问题 ◆ 2- 22 ,22, CB AC B A C B A πππ=+=++=++()()2C sin2cos ,2C cos 2sincosC cos ,sin sin =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+-=+=+B A B A B A C B A正弦定理:C B A cb a R Cc B b A a sin sin sin 2sin sin sin ++++==== 余弦定理:cos 2cos 2 , cos 2222222222C ab b a c B ac c a b A bc c b a -+=-+=-+=变形:abcb a C ac b c a B bc a c b A 2cos 2cos ,2 cos 222222222-+=-+=-+=例1 在△ABC 中,已知a=3,b =2,B=45°,求A 、C 和c.例2 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且CB cos cos =-c a b+2. (1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.例3 △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0.(1)求角A 的大小; (2)若a=3,求bc 的最大值;(3)求c b C a --︒)30sin(的值.等比数列及其前n 项和知识要点等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G xy =±.前n 项和:()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列,(1)若m n p q +=+,则m n p q a a a a =··(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q .注意:由n S 求n a 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.基础自测1.设等比数列{a n }的公比q =2,前n 项和为S n ,则24a S 等于A .2B .4C .215 D .217 2.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为A .1B .-21C .1或-21D .-1或213.如果-1,a ,b ,c ,-9成等比数列,那么A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-94.在等比数列{a n }中,已知a 1a 3a 11=8,则a 2a 8等于A .16B .6C .12D .45.已知{a n }是等比数列,a 2=2,a 5=41,则a 1a 2+a 2a 3+…+a n a n +1等于A .16(1-4-n) B . 16(1-2-n) C .332(1-4-n) D .332(1-2-n) 典例剖析例1 已知{a n }为等比数列,a 3=2,a 2+a 4=320,求{a n }的通项公式.等差数列及其前n 项和知识要点等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和()()11122n n a a n n n S nad +-==+性质:{}n a 是等差数列:(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列, 公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --=(5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组10n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由10n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇,1-=n n S S 偶奇. 基础自测1.记等差数列{a n }的前n 项和为S n ,若a 1=21,S 4=20,则S 6等于A .16B .24C .36D .482.已知等差数列{a n }中,前n 项和为S n ,若a 3+a 9=6,则S 11等于 A .12 B .33 C .66 D .113.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于A .138B .135C .95D .23 4.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且3457++=n n B A n n ,则使得nn b a为整数的正整数n 的个数是A .2B .3C .4D .55.数列a ,b ,m ,n 和x ,n ,y ,m 均成等差数列,则2b +y -2a +x的值为A .正实数B .负实数C .零D .不确定典例剖析例1 已知数列{a n }满足a 1=4,a n =4-14-n a (n ≥2),令b n =21-n a .证:数列{b n }是等差数列.。

相关文档
最新文档