高等数学作业题集2013版第六章多元函数微分学答案
《多元函数微分学》练习题参考答案

解:在 L 上任取一点 P ( x, y ),
f (x , y ) = 0
考虑 d = ( x − x0 ) + ( y − y0 ) 在条件 f ( x, y ) = 0 下的极值问题 作 F = ( x − x 0 ) + ( y − y 0 ) + λ f ( x , y ) ,则
' ⎧ ⎪ F x = 2(x − x 0 ) + λ f 'x ( x , y ) = 0 , ⎨ ' ⎪ ⎩F y = 2( y − y 0 ) + λ f 'y (x , y ) = 0 2 2 2 2 2
P87-练习 4 设 z = f ( xy,
x y ) + g ( ) ,其中 f 有二阶连续偏导数, g 有二阶导数,求 y x
∂2z . (2000) ∂x∂y
解: 根据复合函数求偏导公式
∂z 1 y = f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ (− 2 ) , ∂x y x
24
∂2 z ∂ ⎛ ∂z ⎞ ∂ ⎛ 1 y ⎞ = ⎜ ⎟ = ⎜ f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ ( − 2 ) ⎟ ∂x∂y ∂y ⎝ ∂x ⎠ ∂y ⎝ y x ⎠ x 1 1 x y 1 = f1′ + y[ f11′′ x + f12′′ ⋅ (− 2 )] − 2 f 2′ + [ f 21′′ x + f 22′′ ⋅ (− 2 )] − g ′′ ⋅ 3 − g ′ ⋅ 2 y y y y x x 1 x y 1 = f1′ + xyf11′′ − 2 f 2′ − 3 f 22′′ − 3 g ′′ − 2 g ′ y y x x
《高等数学一》第六章多元函数微分学历年试题模拟试题课后习题大汇总(含答案解析)

第六章多元函数微分学[单选题]1、设积分域在D由直线x+y二0所围成,则| dxdy 如图:[单选题]2、A 9B、4C 3【从题库收藏夹删除】【正确答案】A 【您的答案】您未答题 【答案解析】[单选题]3、 设H 二才,则y=()A V皿2-1)B 、xQnx-1)D【从题库收藏夹删除】【正确答案】C 【您的答案】您未答题 【答案解析】首先设出-,J'二一;,然后求出最后结果中把二】用’’次方代换一下就可以得到结果.[单选题]4、Ft F'y,尸空二dx F f y[% I设Z =则去九£ |()km ,(心+& J D )L 『(也几)AK^*°A'X«■【从题库收藏夹删除】【正确答案】D 【您的答案】您未答题【答案解析】本题直接根据偏导数定义得到[单选题]5、 设z=ln (x+弄),示=()A1B 、X+旷"C1-2妒盂+沙DX + 帘一"【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】B 、 lim U m/侃+山+ 3) — / (险用)Ay了0+山』0)—/(兀几)Arlim /(x+Ax.y)-/^)4y|"S 1 I对x求导,将y看做常数,小门•八[单选题]6、设U 了:,;_丁;:£=()【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】<■■-?■■■■■:川[单选题]7、设f(x r x+y) = ^ + x2t则£0,卩)+ £(尽刃二()A丨;B、…C :D ',【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】f(x,兀+y)=砂+ F二疏》+兀)/fcy) = ^yX '(^y)=y二兀£(2)+另(“)=曲[单选题]81,ln(x+y)20》x+》21.综上满足:盘+”1[单选题] 9、函数 的定义域为().少(兀+卩);::x F+丿()•B 、D【从题库收藏夹删除】【正确答案 【您的答案OOA您未答题【答案解析1 1-+-lim —3 -- :—7 = 1 im ——— - 0 心卩齐_砂+尹 gw 兀 y尸2 』 / 尸於一 —]+_一7 x[单选题] 10、()•0宀 2护X + (”In X-2芒)妙(y*" - 2侣)矽+ (H In 兀-—2」壬)必【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】鸣刁严-F 工=j/lnx-£dz - 3/" -”必 + (疋 In z-[单选题] 11、dz1-^'【从题库收藏夹删除】【正确答案】B 【您的答案】您未答题 【答案解析】方程B 、 C与必+ (#阮—函数'■ - 一 I'"的确定的隐函数,贝U 一()•2z口B、” y左右两边求导,dx dx__ -2zdx/-I12、 设Z = X +丿,则在(0,0)处().取得极大值无极值无法判定是否取得极值 【从题库收藏夹删除】 【正确答案】B 【您的答案】您未答题 【答案解析】小务S 釜二心齐2’【从题库收藏夹删除】【正确答案一+ X) — —八)——2&2 — 2/ — 2砂,+ 2”(/+丹B 、 取得极小值B 2-AC<Q t A>0,故取得极小值[单选题] 13、,则【您的答案您未答题【答案解析7矽B、[单选题]14、dz __ 设z=xA2/y,x=v-2u,y=u+2v ,则J ()2(u - 2v)(u- 3v)A、「(K-2V)(K-3V)B、(加+巧2~)(卄刘C(2#+制(u -2vJ(u+邵)(2u+v)3【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】炭边3兀龛创2A D z z . * 2x(y-7^)—二------ H ---- - -- 1+( ----- 7)- J — ---- 母 -- dv dx dy y y2y2_ 2(v~ 2u)(v+ - V - 2u)) _ 2(y - 2u)(v + 3u)(2V+LT)3[单选题](2v+u)15、设函数z=ln(x2+y2),则=()如)B、—:x-yD J - /【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】& 2x & 2y 5c & 2y 2x 2x + 2y 2(x+y) -- • = —: - - = ---- - ;—1 + = ---------------- = ----- =3K F+y3®5?+『’曲勿x2 + y3x2 + y3启+『x3 + y3[单选题]16、设函数,则汕忙丿=().1A、」IzTB、.'■1C、1D、1【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】参见教材P178〜179。
多元函数微分学的应用习题及详细解答

(x, y) 0 下的极值点,下列选项正确的是( D )。
A.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 C.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
B.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 D.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
x 1 y 2 z 1. 1 1 1
5.已知曲面 z x2 y2 z2 上点 P 处的切平面 x 2y 2z 0 平行,求点 P 的坐标以及曲
面在该点的切平面方程。
解:曲面在点 P 处的法向量为 n Fx, Fy, Fz 2x, 2y, 2z 1 ,依题意,n 1, 2, 2 ,
(0, 0) 处取得极小值的一个充分条件是( A )。
A. f (0) 1, f (0) 0 C. f (0) 1, f (0) 0
B. f (0) 1, f (0) 0 D. f (0) 1, f (0) 0
(5)设 f (x, y)与(x, y) 均为可微函数,且y (x, y) 0,已知(x0, y0)是f (x, y)在约束条件
在何处?
解:行星表面方程为 x2 y2 z2 36 .令 L 6x y2 xz 60 (x2 y2 z2 36) ,求
解方程组 6 z 2x 0 , 2 y 2 y 0 , x 2z 0 ,则可得驻点
x
y
z
(4, 4, 2), ( 3, 0,3), (0, 0, 6) ,结合题意易知 H 在 (4, 4, 2) 处最小,且最小值为 12.
2x a2
2y b2
y
0,
y
b2 a2
x y
所以在点
a, 2
b 2
6-8多元函数微分学习题课

x0
x
此极限为函数z f ( x, y)在点( x0 , y0 )处对x 的
偏导数,记为
z x
,f x x0 x
z ,
x x0
x
x x0 y y0
或
f x ( x0 ,
y0 ).
y y0
y y0
同理可定义函数z f ( x, y)在点( x0 , y0 )处对y
的偏导数, 为
某邻域存在;
z
(3)
f
x
(
x,
y)x
f
y
(
x
,
y)y
,
(x)2 (y)2
当 (x)2 (y)2 0时是无穷小量.
小结三:
由一个方程确定的隐函数的求导法: 1 公式法:F(x,y,z)确定了z=z(x,y),则 z Fx , z Fy .
x Fz y Fz 2 解方程法:方程两边同时对x或者y求导,由复合函数求导法则 解出 z , z .
数,则复合函数 z f [ (t ), (t )] 在对应点t 可
导,且其导数可用下列公式计算:
dz z du z dv . dt u dt v dt
以上公式中的导数 dz 称为全导数.
dt
如果u ( x, y)及v ( x, y)都在点( x, y)
具有对x 和y 的偏导数,且函数z f (u,v) 在对应
法线方程为 x x0 y y0 z z0 .
Fx ( x0 , y0 , z0 ) Fy ( x0 , y0 , z0 ) Fz ( x0 , y0 , z0 )
15、方向导数
定义 函数的增量 f ( x x, y y) f ( x, y) 与
12-13(二)高数(工)2测试卷(多元函数微分学)解答

上海应用技术学院2012 —2013 学年第 二 学期 《高等数学(工)2》测试卷(多元函数微分学)解答一.单项选择题(每小题2分,共10分)1.设22),(y xy x y x f -+=,则)0,0(f 是),(y x f 的( C )。
A. 极大值;B. 极小值;C. 非极值;D. 不能确定。
分析:2)0,0(==xx f A 1)0,0(==xy f B 2)0,0(-==yy f C 02<-B AC 故 )0,0(f 非极值点 选C2.设曲面xy z =上点P 的切平面平行于平面1624=++z y x ,则P 点到已知平面的距离 等于( C ) A. 21 B.21 C.2124 D.211分析:先求出切点坐标 z xy z y x F -=),,( {}{}1,,,,-==→x y F F F n z y x根据题意 →n 平行于{}1,2,4 1124-==x y ⎪⎩⎪⎨⎧=-=-=842z y x21241241681)4(2)2(4222=++-⨯+-⨯+-⨯=d 故选C3.设)(222y x f y z -+=,其中)(u f 可微,则:=∂∂+∂∂yz x x z y( B ) A. xyf B. xy 2 C. xyf 2 D.xy分析:x f xz2'=∂∂ f y y y z '-=∂∂22 =∂∂+∂∂y z x x z y xy 2 故选B4.曲面4)cos(2=++-yz ey x x xzπ在点()2,1,0上的切平面方程是( B ).A. 0422=+++z y xB. 0422=-++z y xC. 01=-++z y xD. 01=+++z y x 分析: 直接求出切平面方程4)cos(),,(2-++-=yz e y x x z y x F xzπ22)sin()2,1,0()2,1,0(=+--=z e xy x F xz x ππ2)2,1,0()2,1,0(2=+-=z x F y1)2,1,0()2,1,0(=+=yxe F xz z 0)2()1(2)0(2=-+-+-z y x即 0422=-++z y x 故选B5.设函数z x yz xz u ---=3,则函数u 在点()1,2,1-处方向导数的最大值是( B );A .2B .17C .7D .3 分析: {})1,2,1(),1,2,1(),1,2,1()1,2,1(---=-→z y x u u u gradu{}4,1,0-=梯度矢量的模17就是方向导数的最大值 故选B 二.填空题(每小题3分,共15分) 6.设⎪⎭⎫⎝⎛=x y y e f z x,sin ,其中()v u f ,可微, 则=∂∂x z 122sin x y f e y f x ⎛⎫+- ⎪⎝⎭。
(完整版)多元函数微分学及其应用习题解答

(((x 2 + y 2 ≤ 1, x+ y }(1- (t + 4) 2 解:令 t=xy , lim = lim= lim 2=- t →0 t →0习题 8-11. 求下列函数的定义域:(1) z =解: x -x - y ;y ≥ 0, y ≥ 0 ⇒ D ={x, y ) y ≥ 0, x ≥ y }x(2) z = ln( y - x) +;1 - x2 - y 2解: y - x ≥ 0, x ≥ 0,1 - x 2 - y 2 ⇒ D ={ x , y ) y > x ≥ 0 且 x2+ y 2 < 1}(3) u = R 2 - x 2 - y 2- z 2 +1x 2 + y 2+ z 2 - r 2(R > r > 0) ;解: 0 ≤ R 2 - x 2 - y 2 - z 2,0 < x 2 + y 2 + z 2 - r 2 ⇒⇒ D = {x , y , z ) r 2< x 2 + y 2 + z 2 ≤ R 2}(4) u = arccoszx 2 + y 2。
解:z2 2 ≠ 0 ⇒ D = {x, y ) z ≤x 2 + y 2 且 x 2 + y 2≠ 02. 求下列多元函数的极限::(1) lim ln( x + e y )x →1 x 2 + y 2y →0;解: limx →1y →0ln( x + e y ) x 2 + y 2 = ln(1+ 1)1= ln 2(2) lim 2 - xy + 4x →0xy y →0;1- 2 - xy + 4 2 t + 4 1 x →0xy t 1 4 y →01 / 28x →0 y →0x →0lim x +y = , m 不同时,极值也不同,所以极限不存在 。
(3) lim sin xyx →0x y →5;sin xy sin xy解: lim = 5lim = 5x →0 x 5xy →5y →01 - cos( x2 + y 2 ) (4) lim( x 2 + y 2 )e x 2 y 2;x →0 y →0解:Q 1 - cos( x 2 + y 2 ) = 2(sinx 2 + y 2 2)2 ,∴ l im x →0 y →01 - cos( x2 + y 2 ) 1= 2 ⋅ ⋅ 0 = 0( x 2 + y 2 )e x 2 y 2 2(5) lim( x 2 + y 2 ) xy 。
高数答案(全集)第六章参考答案

高数答案(全集)第六章参考答案第六章常微分方程1. (1) b,c,d (2) a,c (3) b,d2. (1) 二阶,线性 (2) 一阶,非线性 (3) 一阶,非线性 (4) 一阶,非线性3. (1)-(3)均为微分方程0222=+y dxy d ω的解,其中(2) (3)为通解 4. (1)将变量分离,得dx ydy cos 2= 两边积分得 c x y +=-sin 1通解为,sin 1c x y +-=此外,还有解0=y(2)分离变量,得dx x x y y d xx dx dy y y )111(1)1(2112222+-=+++=+或两边积分,得cx x y ln )1ln(ln )1ln(212++-=+即(1+ 2y )(1+ x)2=c 1 2x(3)将变量分离,得1122=-+-yydy xxdx积分得通解21x -+)20(12还有使因子21x -?012=-y 的四个解.x=(±)11 y -, y=(±)11 x - (4)将方程改写为(1+y 2)ex2dx-[]0)1( )e y +(1y=+-dy yex2dx=dy y y ??++-2y11 (e 积分得--=y e e y x arctan 212)1ln(212y +-21(5)令 z=x+y+1,z dx dz sin 1+=分解变量得到dx zdz=+sin 1………………(*) 为了便于积分,用1-sinz 乘上式左端的分子和分母,得到dz z z z se dz zzdz z z )tan sec (cos sin 1sin 1sin 1222-=-=-- 将(*)两端积分得到tanz-secz=x+c22z-∏)=x+c,将z 换为原变量,得到原方程的通解 X+c=-tan(214++-∏y x )6.令y=ux,则dy=udx+xdu 代入原方程得x 2( u 2-3)(udx+xdu)+2 x 2udx=0分离变量得du x dx 1)-u(u u 22-=,即得y 3=c(2y -2x ) 7. 令xy u =,则原方程化为dx x udu 1=,解得c x u ==ln 212,即,ln 2222cx x x y +=由定解条件得4=c ,故所求特解为,ln 4222x x x y +=8. 将方程化为x y xyy +-='2)(1,令x yu =,得,u u x y +'=代入得dx x du u 1112=- 得c x u ln ln arcsin +=,cx xyln arcsin= 9.化为x e x y dx dy x =+,解得)(1xe c xy +=,代入e y =)1(得0=c 特解x e y x = 10.由公式得1)()(-+=-x ce y x ??11.化为x y x y dx dy ln 2=+为贝努里方程令xyu =,则原方程化为dx dy y dx du 2--= 代入方程的x u x dx du ln 1-=-用公式求得])(ln 21[2x c x u -=解得12])(ln 21[1--=x c x y 另为,0=y 也是原方程的解 12.为贝努里方程令x yu =,则原方程化为322x xu dx du -=+用公式求得122+-=-x ce u x解得1122+-=-x cey x13.23x y yx dx dy =-将上式看成以y 为自变量的贝努里方程令x z 1=有3y yz dxdy-=- 22212+-=-y ce z y ,得通解1)2(2212=+--y cex y14.令x y N x y M +-=-=4,32有xNy M ??==??1,这是全微分方程0=duxy x y dy x y dx x y u y x +--=---=?32),()0,0(22)4()3(,即方程得通解为c y x xy =--232 15.化为0122=+-+xdx yx xdy ydx ,得通解为c x xy xy =+-+211ln 16.该方程有积分因子221y x +,)(arctan ))ln(21(2222x y d y x d y x ydx xdy xdy ydx ++=+-++ 17.1c e xe dx e xe e xd dx xe y xx x xx x+-=-==='?21211)2()(c x c x e c e xe x c e dx c e xe y x x x x x x ++-=+-++-=+-=?18.xx x dx x x y x1ln 32ln 12--=+=''? 2ln ln 213)1ln 3(21---=--='?x x x dx x x x y x 21ln 2223)2ln ln 213(2212+--=---=?x x x x dx x x x y x19.令y z '=,则xz z =-',xx x dxdx e c x c e x e c dx xe e z 111)1(])1([][++-=++-=+??=--?即x e c x y 1)1(++-='得2121c e c x y x ++--=20.令p y =',则dy dp p dx dy dy dp dx dp y =?==''所以0)(2323=+-=+-p p dy dp y p p p dy dp p y 则得p=0或02=+-p p dy dp y,前者对应解,后者对应方程y dy p p dp =-)1(积分得y c pp11=-即y c y c p dx dy 111+==两边积分得21||ln c x y c y '+='+,因此原方程的解是21||ln c x y c y '+='+及y=c 。
高等数学作业(高升专)答案

高等数学作业答案(高起专)第一章函数作业(练习一)参考答案一、填空题1.函数x x x f -+-=5)2ln(1)(的定义域是 。
解:对函数的第一项,要求02>-x 且0)2ln(≠-x ,即2>x 且3≠x ;对函数的第二项,要求05≥-x ,即5≤x 。
取公共部分,得函数定义域为]5,3()3,2( 。
2.函数392--=x x y 的定义域为 。
解:要使392--=x x y 有意义,必须满足092≥-x 且03>-x ,即⎩⎨⎧>≥33x x 成立,解不等式方程组,得出⎩⎨⎧>-≤≥333x x x 或,故得出函数的定义域为),3(]3,(+∞⋃--∞。
3.已知1)1(2+=-x e f x ,则)(x f 的定义域为 解. 令u e x =-1, 则()u x +=1ln , (),11ln )(2++=∴u u f 即(),11ln)(2++=∴x x f .故)(x f 的定义域为()+∞-,14.函数1142-+-=x x y 的定义域是 .解. ),2[]2,(∞+--∞ 。
5.若函数52)1(2-+=+x x x f ,则=)(x f .解. 62-x二、单项选择题1. 若函数)(x f y =的定义域是[0,1],则)(ln x f 的定义域是( ) .A . ),0(∞+B . ),1[∞+C . ]e ,1[D . ]1,0[ 解: C2. 函数x y πsin ln =的值域是)(.A . ]1,1[-B . ]1,0[C . )0,(-∞D . ]0,(-∞ 解: D3.设函数f x ()的定义域是全体实数,则函数)()(x f x f -⋅是( ). A.单调减函数; B.有界函数;C.偶函数;D.周期函数 解:A, B, D 三个选项都不一定满足。
设)()()(x f x f x F -⋅=,则对任意x 有)()()()()())(()()(x F x f x f x f x f x f x f x F =-⋅=⋅-=--⋅-=-即)(x F 是偶函数,故选项C 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x x y4(x,y) (2,0)yy
解:(1)
1 xy1
1;
(x,y) (0,1)x2 y21lim
(2
)
11
lim
(x,y) (0,0)(x,y) 42 2lim
sin(xy)sin(xy)sin(xy)
lim x lim limx 2
(x,y) (2,0)(x,y) (2,0)xy 0x 2yxyxylim
y22xyuuv
,y解:令x y u, v,由此得:x
x1 v1 v
2.已知f(x y,) x y,求f(x,y)
u2uv2u2(1 v)x2(1 y)
) ()故代入得:f(u,v) (即:f(x,y) 1 v1 v1 v1 y
3.求下列各极限(1)
1 xy(2
)lim
(x,y) (0,1)x2 y2(x,y) (0,0)lim
x ky
(x,y) (0,0)
limf(x,y)不存在,从而函数f(x,y)在(0,0)处不连续.
z 4
.曲线(1,1处的切线与y轴正向的夹角是多少?
x 1
解:设所求的角为,由偏导数的几何意义知
:
tan
z y
,所以.
65.设f(x,y,z) xy2 yz解:
2
zx
2
,求fxx(0,0,1),fxz(1,0,2),fyz(0, 1,0),fzzx(2,0,1)
(2)讨论函数f(x,y)在(0,0)是否连续解: (1)由偏导数的定义
f(0 x,0) f(0,0)( x)2
fx(0,0) lim lim 0
x 0 x 0 x x
0 ( y)2
f(0,0 y) f(0,0)02 ( y)4
fy(0,0) lim lim 0
y 0 y 0 y y
xy2ky4k
lim (2)因为lim2,其极限值随k的不同而不同,所以极限2y 0x y4y 0k2y4 y4k 12
2 2 3 ***** x y zrrrrrr
三全微分及其应用
1.求函数z
xy
当x 2,y 1, x 0.01, y 0.03时的全增量和全微分
x2 y2
解z
(2 0.01) (1 0.03)2 1
0.0282 2222
(2 0.01) (1 0.03)2 1
zy(y2 x2) 2 x(x y2)2dz
所以k取不同值,上面的极限就有不同的结果,故原极限不存在.
二偏导数
1.求下列函数的偏导数
yx2 y2
)(3)z exysin(x y)(1)z(2)z ln(x 2xxy
x 2y2
(4)x(5)u xysin
z
yz
(6)f(x,t)解: (1) z
x at
x at
(u)du为连续函数
z1y 2 xyx
(3)
x2 y2x2 y***-*****
(4)由不等式0 4而( )lim(2 2) 0 *****x x y2xy2yx2yxy
x2 y2
0由加逼准则有lim4
x x y4y
4.证明下列极限不存在
x 2yx2y
(1)lim(2)lim
(x,y) (0,0)x y(x,y) (0,0)x4 y2
证明: (1)当(x,y)沿y kx(k 1)趋于(0,0)时,
2
x) (y 1,1)处的偏导数f x解
: f
y
(1,1)
(1,1)
f(x,1) x f(1,y)
y
x
x 1 (ecos
***** (y 1) ( y 1
y1 y
(x,y) (0,0)(x,y) (0,0)
x
exsin
x)
x 1
e
y 1
4
xy2
3.设函数f(x,y) x2 y4
0
(1)试计算fx(0,0),fy(0,0)
fx y2 2zx
fxx 2zfxz 2x
2fxz
fy 2xy z2 fyz 2z fz 2yz x2 (1, 0,2)fy2z
(0 ,1,f0z)zx0
(
fzz 2y fzzx 0 fxx(0,0, 1)
2 3 x 2 3
6.设xy 3xz,求,2,,3,
xy x x y z x y x
3
3Leabharlann 22u1zx1 2 yyx
xy
yx
y2 z2x2 y (2) y xx x(2x2 y)2x
1
(3)
z1
2
y yx 2x y2x
1 z zxy
xexysin(x y) exycos(x y) yexysin(x y) ecosx ( y) x y
(4)
z u
yzxy 1 xz u
xy lnx z yz 1 yz u
zx(y2 x2)
2
y(x y2)2
2
2
z z(y x) x y 2(x y y x)22 x y(x y)
1
0.0278 36
dz
x 2y 1 x 0.01 y 0.03
2.求下列函数的全微分
(1)u xyyzzx(2)z arcsin
x
y
22
(3)z exysin(x y)(4)u xy 3xz
高等数学作业题集
一多元函数的基本概念
1.求下列定义域并画出草图:
x2 y21
(1
)z x y)(2)z arcsin arccos2
2
4x y
(3
)z ln(y x)
(4) u
22
解: (1) {(x,y)x 0,y x}; (2){(x,y) x y 4};
***-*****
(3) {(x,y)y x,x 0,x y 1} (4){(x,y,z)x y z,x y z 1}
解: 3x2y3 6xz2
xy 2u1 9x2y2 2
x yy
2u
6xy3 6z22 x 3u
6y3 x
3
3 u
0
x y z
2r 2r 2r2
7
.验证:r 2 2 2
x y zr
r
证明
: x
2r22y2 z2
23 xr 2rx2 z2
由对称性有:
y2r3 2rx2 y2
z2r3
2r 2r 2ry2 z2x2 z2x2 y22(x2 y2 z2)2r22
xy lnx yz lny z
ux 2y21x 2y2
ysin xycos (5) xzzz
ux 2y2x 2y2 ux 2y242x 2y2
xycos xsin xycos
zz2z yzzz
(6) fx (x at) (x at)2
.求函数f(x,y) exycos(
ft a[ (x at) (x at)]
x 2yx 2kx1 2k
lim
(x,y) (0,0)x yx 0x kx1 ky kx
lim
所以k取不同值,上面的极限就有不同的结果,故原极限不存在.
x2ykx4k
lim (2)当(x,y)沿y kx趋于(0,0)时, lim 2(x,y) (0,0)x4 y2x 0x4 k2x41 k2
2
y kx