蒙特卡罗模拟方法

合集下载

蒙特卡洛模型方法

蒙特卡洛模型方法
蒙特卡罗模型是利用计算机进行数值计算的一类特殊风格的方法,它是把某一现实或抽象系统的某种特征或部分状态,用模拟模型的系统来代替或模仿,使所求问题的解正好是模拟模型的参数或特征量,再通过统计实验,求出模型参数或特征量的估计值,得出所求问题的近似解。目前评价不确定和风险项目多用敏感性分析和概率分析,但计算上较为复杂,尤其各因素变化可能出现概率的确定比较困难。蒙特卡罗模型解决了这方面的问题,各种因素出现的概率全部由软件自动给出,通过多次模拟,得出项目是否应该投资。该方法应用面广,适应性强。
二、理论和方法
蒙特卡洛模拟早在四十年前就用于求解核物理方面的问题。当管理问题更为复杂时,传统的数学方法就难以进行了。模拟是将一个真实事物模型化,然后对该模型做各种实验,模拟也是一个通过实验和纠正误差来寻求最佳选择的数值性求解的过程。模拟作为一种有效的数值处理方法,计算量大。以前只是停留在理论探讨上,手工是无法完成的。在管理领域由于规律复杂随机因素多,很多问题难以用线性数学公式分析和解决,用模拟则有效得多。在新式的计算机普及后,用模拟技术来求解管理问题已成为可能。
从表中数据可以看到,一直到公元20世纪初期,尽管实验次数数以千计,利用蒙特卡罗方法所得到的圆周率∏值,还是达不到公元5世纪祖冲之的推算精度。这可能是传统蒙特卡罗方法长期得不到推广的主要原因。
计算机技术的发展,使得蒙特卡罗方法在最近10年得到快速的普及。现代的蒙特卡罗方法,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情。它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用。
设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。

蒙特卡洛(Monte Carlo)模拟法

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。

设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。

蒙特卡罗模拟因摩纳哥著名的赌场而得名。

它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。

数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。

但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。

最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。

科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特性时才表露出来。

贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。

”蒙特卡罗方法(MC)蒙特卡罗(Monte Carlo)方法:蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。

传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。

这也是我们采用该方法的原因。

蒙特卡罗方法的基本原理及思想如下:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。

蒙特卡洛模拟通俗理解

蒙特卡洛模拟通俗理解

蒙特卡洛模拟通俗理解蒙特卡洛模拟通俗理解蒙特卡洛模拟是一种基于随机抽样的数值计算方法,它可以用来估计某些复杂系统的性质。

这种方法的基本思想是通过随机抽样来模拟系统的行为,从而得到对系统性质的估计。

下面将对蒙特卡洛模拟进行详细介绍。

一、蒙特卡洛模拟的基本原理1.1 随机抽样蒙特卡洛模拟的核心是随机抽样。

在进行蒙特卡洛模拟时,我们需要从所研究问题的所有可能情况中,随机地选取一些情况进行研究。

这些情况被称为“样本”,而从中选取样本的过程被称为“随机抽样”。

1.2 统计规律在进行随机抽样后,我们可以根据所得到的数据来推断整个系统的性质。

这种推断是基于统计规律进行的,即我们可以根据所得到数据中出现频率较高的情况来推断整个系统中该情况出现的概率。

二、蒙特卡洛模拟在实际问题中的应用2.1 金融领域在金融领域中,蒙特卡洛模拟被广泛应用于风险管理和衍生品定价。

例如,在进行股票期权定价时,我们可以通过随机抽样来模拟股票价格的未来走势,并根据所得到的数据来计算期权的价格。

2.2 物理领域在物理领域中,蒙特卡洛模拟被用于研究复杂系统的性质。

例如,在研究分子运动时,我们可以通过随机抽样来模拟分子的运动轨迹,并根据所得到的数据来计算分子的平均速度和能量。

2.3 生物领域在生物领域中,蒙特卡洛模拟被用于研究生物分子的结构和功能。

例如,在研究蛋白质折叠过程中,我们可以通过随机抽样来模拟不同构象之间的转换,并根据所得到的数据来推断蛋白质最稳定的构象。

三、蒙特卡洛模拟的优缺点3.1 优点(1)适用范围广:蒙特卡洛模拟可以用于研究各种类型的系统,包括物理、化学、生物等领域。

(2)精度高:通过增加样本量,蒙特卡洛模拟可以得到非常精确的结果。

(3)易于实现:蒙特卡洛模拟只需要进行随机抽样和统计分析,因此实现起来比较简单。

3.2 缺点(1)计算量大:蒙特卡洛模拟需要进行大量的随机抽样和数据处理,因此计算量比较大。

(2)收敛速度慢:在一些情况下,蒙特卡洛模拟需要进行很多次随机抽样才能得到收敛的结果。

(完整word版)蒙特卡洛方法及其在风险评估中的应用

(完整word版)蒙特卡洛方法及其在风险评估中的应用

(完整word版)蒙特卡洛⽅法及其在风险评估中的应⽤蒙特卡洛⽅法及其应⽤1风险评估及蒙特卡洛⽅法概述1.1蒙特卡洛⽅法。

蒙特卡洛⽅法,⼜称随机模拟⽅法或统计模拟⽅法,是在20世纪40年代随着电⼦计算机的发明⽽提出的。

它是以统计抽样理论为基础,利⽤随机数,经过对随机变量已有数据的统计进⾏抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值解。

蒙特卡洛模拟⽅法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。

通过抽取符合其概率分布的随机数列X1、X2、X3……X n带⼊其函数关系式计算获得Y的值。

当模拟的次数⾜够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。

蒙特卡洛法的特点是预测结果给出了预测值的最⼤值,最⼩值和最可能值,给出了预测值的区间范围及分布规律。

1.2风险评估概述。

风险表现为损损益的不确定性,说明风险产⽣的结果可能带来损失、获利或是⽆损失也⽆获利,属于⼴义风险。

正是因为未来的不确定性使得每⼀个项⽬都存在风险。

对于⼀个公司⽽⾔,各种投资项⽬通常会具有不同程度的风险,这些风险对于⼀个公司的影响不可⼩视,⼩到⼀个项⽬投资资本的按时回收,⼤到公司的总风险、公司正常运营。

因此,对于风险的测量以及控制是⾮常重要的⼀个环节。

风险评估就是量化测评某⼀事件或事物带来的影响的可能程度。

根据“经济⼈”假设,收益最⼤化是投资者的主要追求⽬标,⾯对不可避免的风险时,降低风险,防⽌或减少损失,以实现预期最佳是投资的⽬标。

当评价风险⼤⼩时,常有两种评价⽅式:定性分析与定量分析法。

定性分析⼀般是根据风险度或风险⼤⼩等指标对风险因素进⾏优先级排序,为进⼀步分析或处理风险提供参考。

这种⽅法适⽤于对⽐不同项⽬的风险程度,但这种⽅法最⼤的缺陷是在于,在多个项⽬中风险最⼩者也有可能亏损。

蒙特卡洛方法

蒙特卡洛方法
(x1 (i),x2 (i), ,xs(i)),得到积分的近似值。
其中Dg s为N区域D N sDiN s的1g体(x积1(i),。x2 (这i), 是,数xs(值i))方法难以作到的。
另外,在具有随机性质的问题中,如考虑的系统 形状很复杂,难以用一般数值方法求解,而使用蒙特 卡罗方法,不会有原则上的困难。
通常,蒙特卡罗方法的误差ε定义为
N
上式中 与置信度α是一一对应的,根据问题的要 求确定出置信水平后,查标准正态分布表,就可以确 定出 。
下面给出几个常用的α与的数值:
α 0.5 0.05 0.003
0.674 1.96 3 5
关于蒙特卡罗方法的误差需说明两点:第一,蒙特
卡罗方法的误差为概率误差,这与其他数值计算方法 是有区别的。第二,误差中的均方差σ是未知的,必须 使用其估计值
• 对于任意离散型分布:
F(x) Pi xi x
• 其P离2散中,型x…1分,为布x相2,的应直…的接为概抽离率样散,方型根法分据如布前下函述:数直的接跳抽跃样点法,,P有1,
• 间接蒙特卡洛模拟方法。人为地构造出一 个合适的概率模型,依照该模型进行大量 的统计实验,使它的某些统计参量正好是 待求问题的解。
例:布冯(Buffon)投针实验
• 在平滑桌面上划一组相距为s的平行线,向 此桌面随意地投掷长度l=s的细针,那末从 针与平行线相交的概率就可以得到π的数值。
针与线相交概率
lim P
N
NXNE (X)x 2 1
xet2/2dt
x
平均值
当N充分大时,有如下的近似式
P X N E (X ) N 2 20 e t2/2 d t1
其中α称为置信度,1-α称为置信水平。

期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法期权定价是金融市场中的一个重要问题。

近年来,蒙特卡洛模拟方法在期权定价中得到了广泛的应用。

蒙特卡洛模拟方法是一种基于随机模拟的数值计算方法,通过生成大量的随机样本来估计某些数量的数值。

下面将介绍蒙特卡洛模拟方法在期权定价中的基本原理及应用。

蒙特卡洛模拟方法采用随机数生成器生成大量的随机数,并利用这些随机数进行模拟计算。

在期权定价中,蒙特卡洛模拟方法可以用来估计期权的价格以及其他相关的风险指标,例如风险价值和概率分布等。

在蒙特卡洛模拟方法中,首先需要确定期权定价模型。

常用的期权定价模型包括布朗运动模型和风险中性估计模型等。

然后,根据期权定价模型,生成一个或多个随机数来模拟期权价格的变动。

通过对多个随机样本进行模拟计算,我们可以获得期权价格的分布情况及其他相关指标的估计值。

在期权定价中,蒙特卡洛模拟方法的精确度主要取决于两个方面:模拟路径的数量和模拟路径的长度。

路径的数量越多,模拟结果的精确度越高。

路径的长度越长,模拟结果的稳定性越好。

蒙特卡洛模拟方法在期权定价中的应用非常广泛。

例如,在欧式期权定价中,可以使用蒙特卡洛模拟方法来估计期权的风险价值和概率分布等指标。

在美式期权定价中,由于存在提前行权的可能性,蒙特卡洛模拟方法可以用来模拟期权的提前行权时机并确定最佳行权策略。

此外,在一些复杂的期权定价中,例如亚式期权和障碍期权等,蒙特卡洛模拟方法也可以提供有效的定价方法。

总之,蒙特卡洛模拟方法是期权定价中一种重要的数值计算方法。

它通过生成大量的随机样本来估计期权的价格及相关指标,具有较高的灵活性和精确度。

蒙特卡洛模拟方法在期权定价中广泛应用,为金融市场中的投资者和交易员提供了重要的决策工具。

蒙特卡洛模拟方法在期权定价中的应用非常广泛,下面将进一步介绍其在不同类型期权定价中的具体应用。

首先是欧式期权定价。

欧式期权是指在未来某个特定时间点(到期日)才能行使的期权。

蒙特卡洛模拟方法可以用来估计欧式期权的价格和概率分布等指标。

动力学蒙特卡洛方法

动力学蒙特卡洛方法动力学蒙特卡洛方法(Dynamic Monte Carlo, DMC)是一种基于蒙特卡洛的随机模拟方法,用于研究物理系统的动力学行为。

下面提供十条与动力学蒙特卡洛方法相关的知识点,并展开详细描述。

1. DMC的基本思想:DMC方法是通过随机抽样和模拟粒子的运动轨迹来模拟物理系统的动力学行为的一种方法。

它采用基本的物理模型和蒙特卡洛方法来模拟实际系统的运动。

2. DMC的原理:DMC方法的基本原理是将物理系统视为一组相互作用的粒子,并通过模拟这些粒子与系统中其他粒子的相互作用来模拟系统的动力学行为。

3. DMC的模拟过程:DMC方法的模拟过程包括将系统分为若干步骤,每个步骤中,模拟粒子按随机分布移动,并与系统中的其他粒子相互作用。

4. DMC的应用:DMC方法广泛应用于物理化学、材料科学、生物医学、环境科学等领域。

它可以用来研究分子的构象和结构,材料的物理性质,生物分子的折叠和运动等等。

5. DMC的优点:与传统的分子动力学方法相比,DMC方法具有计算速度快,精度高,能够模拟大尺度物理系统等优点。

它还可以模拟非平衡态系统,对研究筛选具有重要作用。

6. DMC的缺点:尽管DMC方法在许多方面具有优点,但是它的计算复杂度仍然很高。

在处理非均匀系统和长时间模拟等问题上也存在困难。

7. DMC的改进:DMC方法的许多改进方法被提出,包括可扩展性,比例积分等。

这些改进方法使其更加适用于模拟复杂的物理系统。

8. DMC和机器学习的结合:DMC将经验势函数与机器学习相结合,可以提高其应用范围和精度。

机器学习方法可以学习并优化经验势函数,从而提高DMC方法的准确性和效率。

9. DMC的未来发展:未来的研究方向包括将DMC方法与非平衡态动力学相结合,研究固体材料的转变行为,开发高效的算法和软件工具等。

10. DMC在材料科学中的应用:DMC在材料科学中的应用涵盖了从材料的电子结构、晶体结构、缺陷形成和迁移、热传导等多个方面。

动力学蒙特卡洛方法及相关讨论

动力学蒙特卡洛方法及相关讨论引言动力学蒙特卡洛方法是一种基于蒙特卡洛模拟的方法,用于模拟和研究系统的动力学行为。

在这种方法中,系统的状态通过随机抽样来演化,从而得到系统的平均行为。

动力学蒙特卡洛方法在物理学、化学、生物学等领域中都有广泛应用,并且近年来在机器学习和优化问题中也受到了关注。

蒙特卡洛模拟的基本原理蒙特卡洛模拟是一种基于概率和随机抽样的方法,用于模拟和分析复杂系统的行为。

它通过随机抽样来计算系统的统计量,并利用大数定律来近似系统的真实行为。

蒙特卡洛模拟的基本思想是通过随机抽样来表示系统的不确定性,并利用这些随机样本来进行统计推断。

动力学蒙特卡洛方法是一种利用蒙特卡洛模拟来模拟系统动力学行为的方法。

在这种方法中,系统的状态通过随机抽样来演化。

具体来说,系统的状态根据一定的转移概率进行状态转移,从而得到系统的演化轨迹。

随着模拟的进行,系统的状态会逐渐收敛到平衡态,并且可以通过统计分析来得到系统的平均行为。

动力学蒙特卡洛方法的应用动力学蒙特卡洛方法在物理学、化学、生物学等领域中有广泛的应用。

在物理学中,动力学蒙特卡洛方法常用于模拟固体、液体和气体的动力学行为,并研究它们的相变和输运性质。

在化学中,动力学蒙特卡洛方法常用于模拟化学反应的动力学过程,并研究反应速率和反应路径。

在生物学中,动力学蒙特卡洛方法常用于模拟生物分子的动力学行为,并研究其折叠和相互作用。

随着研究的深入,动力学蒙特卡洛方法也得到了不断改进和扩展。

其中一种改进方法是通过引入重要性抽样来加快模拟的收敛速度。

重要性抽样允许根据某个概率分布进行抽样,从而更好地探索系统的高概率区域。

另一种扩展方法是将动力学蒙特卡洛方法与其他计算方法相结合,例如分子动力学方法和Monte Carlo Tree Search方法。

动力学蒙特卡洛方法的优点和局限性动力学蒙特卡洛方法具有一些优点,例如它能够很好地处理复杂系统,并能够得到系统的平均行为。

此外,动力学蒙特卡洛方法还具有较好的可扩展性和灵活性,可以根据需要进行调整和改进。

蒙特卡洛模拟方法

蒙特卡洛模拟方法
蒙特卡洛模拟法是一种统计数学方法,它利用大量的随机模拟实验来对复杂问题进行建模,从而估计概率分布函数,研究问题的期望值、变异性和相关系数。

蒙特卡洛模拟方法通常包括四个步骤:(1)模型建立:将所要求的问题形式化,确定其中的决策变量和参数;(2)数据生成:给定模型各参数值,使用概率分布函数产生随机数据;(3)模拟实验:根据生成的数据,运用模型解即可得到模拟结果;(4)结果分析:重复上述步骤,统计模拟结果,从而得出问题的期望值、变异性和相关系数等信息。

中介效应检验的蒙特卡洛模拟法

中介效应检验的蒙特卡洛模拟法
中介效应检验的蒙特卡洛模拟法是一种基于计算机模拟的方法,用于估计中介效应的不确定性。

其基本思想是通过生成大量的随机样本,模拟中介效应的分布情况,从而估计中介效应的大小和不确定性。

蒙特卡洛模拟法的具体步骤如下:
1. 确定自变量、因变量和中介变量,并建立相应的回归方程。

2. 设定模拟的样本量、迭代次数和置信区间等参数。

3. 使用随机数生成器生成大量的随机样本,模拟数据分布情况。

4. 对于每个模拟样本,计算中介效应的大小,并记录下来。

5. 分析模拟结果的分布情况,估计中介效应的分布范围、均值和标准差等统计量。

6. 根据估计的结果判断中介效应的显著性和不确定性。

蒙特卡洛模拟法的优点是可以处理中介效应的不确定性问题,提供更加准确的估计结果。

但是,蒙特卡洛模拟法需要较长的计算时间和大量的计算机资源,而且需要对计算机编程和统计方法有一定的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1596
斯密思(Smith) 1855 3204
3.1553
福克斯(Fox)
1894 1120
3.1419
拉查里尼 (Lazzarini)
1901 3408
3.1415929
20世纪四十年代,由于电子计算机的出现,利用电子计算机可以 实现大量的随机抽样的试验,使得用随机试验方法解决实际问题 才有了可能。
的平均值来估计,即
X
1 n
n k 1
Xk
收集模型中风险变量的数据 , 确定 风险因数的分布函数
▪ 这时就必须采用主观概率,即由专家做出主观估计得到的概 率。
▪ 另一方面,在对估测目标的资料与数据不足的情况下,不可 能得知风险变量的真实分布时,根据当时或以前所收集到的 类似信息和历史资料,通过专家分析或利用德尔菲法还是能 够比较准确地估计上述各风险因素并用各种概率分布进行 描述的。
)
1, 0,
当x l sin
其他
s N
1 N
N
s(xi ,i )
i 1
P s(x, ) f1(x) f2 ( )dxd d lsin dx 2l
0 0 a a
2l 2l
aP asN
▪ 一些人进行了实验,其结果列于下表 :
实验者
年份 投计次数 π的实验值
沃尔弗(Wolf) 1850 5000
x)
x
1
1t2
e 2 dt
1 N
g N N i1 g(ri )
作为积分的估计值(近似值)。
计算机模拟试验过程
计算机模拟试验过程,就是将试验过 程(如投针问题)化为数学问题,在计算 机上实现。
模拟程序
▪ l=1; ▪ d=2; ▪ m=0; ▪ n=10000 ▪ for k=1:n; ▪ x=unifrnd(0,d/2); ▪ y=unifrnd(0,pi); ▪ if x<0.5*1*sin(y) ▪ m=m+1 ▪ else ▪ end ▪ end ▪ p=m/n ▪ pi_m=1/p
蒙特卡罗方法的基本思想
▪ 蒙特卡罗方法又称计算机随机模拟方法。 它是以概率统计理论为基础的一种方法。
▪ 由蒲丰试验可以看出,当所求问题的解是 某个事件的概率,或者是某个随机变量的 数学期望,或者是与概率、数学期望有关 的量时,通过某种试验的方法,得出该事 件发生的频率,或者该随机变量若干个具 体观察值的算术平均值,通过它得到问题 的解。这就是蒙特卡罗方法的基本思想。
N
1
A aP bL2 cQ 2 d
根据历史数据,预测未来。
1
A aP bL2 cQ 2 d
收集P,L,Q数据,确定分布函 数 f (P), f (L), f (Q)
模拟次数N;根据分
N
抽取 P,L,Q一 组随机 数,带 入模型
统计分析,估计 均值,标准差
X
模型建立的两点说明
▪ Monte Carlo方法在求解一个问题是,总
是需要根据问题的要求构造一个用于求
解的概率统计模型,常见的模型把问题
的解化为一个随机变量 X 的某个参数
的估计问题。
▪ 要估计的参数 通常设定为 X 的数学
期望(亦平均值,即 E(X ) )。按
统计学惯例, 可用 X 的样本 (X1, X2,...X n )
①建立概率统计模型
N
②收集模型中风险变量的数据 , 确定风 险因数的分布函数
⑤根据随机数在各风 险变量的概率分布中 随机抽样,代入第一 步中建立的数学模型
③根据风险分析的精度要求,确
N
定模拟次数 N
N
④建立对随机变量的抽样 方法,产生随机数。
⑥ N个样本值
⑦统计分析,估计均 值,标准差
例子
某投资项目每年所得盈 利额A由投资额P、劳动 生产率L、和原料及能 源价格Q三个因素。
▪ Crystal ball软件对各种概率分布进行拟合以选取最合适的 分布。
抽样次数与结果精度

解的均值与方差的计算公式:
E(X
)
,Var(
X
)
1 n
2 x
中x2的是样随本机量变n很量大X的,方由差统,计而学称的V中a心r极( X限)定为理估知计量方X差。通常渐蒙进特正卡态罗分模布拟,
即:
x n
lim p( X
例.蒲丰氏问题

设针投到地面上的位置
可以用一组参数(x,θ)来描 述,x为针中心的坐标,θ为针 与平行线的夹角,如图所示。

任意投针,就是意味着x
与θ都是任意取的,但x的范围
限于[0,a],夹角θ的范围
限于[0,π]。在此情况下,
针与平行线相交的数学条件是
x l sin
针在平行线间的位置
s(x,
因此,可以通俗地说,蒙特卡罗方法是用随机试 验的方法计算积分,即将所要计算的积分看作服从某
种分布密度函数f(r)的随机变量g(r)的数学期望
g 0 g(r) f (r)dr
概rg2(,r率2通)…,语过,…言某,r来N种,g说试(r)N,验),的从,算将分得术相布到平应密N均的度个值N函观个数察随值f(r)机r中1,变抽r2量取,的N…值,个gr子N(r(样1)用,r1,
蒙特卡罗模拟方法
蒙特卡罗模拟方法
▪ 一、蒙特卡罗方法概述 ▪ 二、蒙特卡罗方法模型 ▪ 三、蒙特卡罗方法的优缺点及其适用范围 ▪ 四、相关案例分析及软件操作 ▪ 五、问题及相关答案
Monte Carlo方法的发展历史
▪ 早在17世纪,人们就知道用事件发生的 “频率”来决定事件的“概率”。从方法 特征的角度来说可以一直追溯到18世纪后 半叶的蒲丰(Buffon)随机投针试验,即 著名的蒲丰问题。
其中作为当时的代表性工作便是在第二次世界大战期间,为解 决原子弹研制工作中,裂变物质的中子随机扩散问题,美国数学 家冯.诺伊曼(Von Neumann)和乌拉姆(Ulam)等提出蒙特卡 罗模拟方法。 由于当时工作是保密的,就给这种方法起了一个代 号叫蒙特卡罗,即摩纳哥的一个赌城的名字。用赌城的名字作为 随机模拟的名称,既反映了该方法的部分内涵,又易记忆,因而 很快就得到人们的普遍接受。
1707-1788
▪ 1777年,古稀之年的蒲丰在家中请来 好些客人玩投针游戏(针长是线距之半), 他事先没有给客人讲与π有关的事。客人 们虽然不知道主人的用意,但是都参加了 游戏。他们共投针2212次,其中704次相交。 蒲丰说,2212/704=3.142,这就是π值。 这着实让人们惊喜不已。
相关文档
最新文档