数学建模与数学实验(4版) 模糊综合评判
《数学建模与数学实验》

建模实例分析
通过分析和学习一些优秀的数学建模实例或论文。使学生初步了解数学建模的一般流程,对使用数学知识解决实际问题有较直观的感受,在这个过程中激发学生想自己动手尝试的实践热情。
3
论文写作指导
指导学生正确的论文结构以及书写要求,使学生初步体验规范的学术研究过程。
●“科目实施”
1
教学组织形式
规模:一般15—20个人的规模开展教学活动
1.用数学语言描述实际现象的“翻译”能力。
2.综合应用已学过的数学知识,对问题进行分析处理的能力。
3.想象力和洞察力。进而提高学生的综合素质和创新能力。
4
活动总量
共有超过40个专题,可供高一高二的学生选择,以学期为单位,共4期。学生每学完1期,要求提交一片独立完整的数学建模小论文。
●“科目目标”
1
知识与技能
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
4
教学目标
设计原则和要求
1.教学目标要注重结合基础教材内容。
2.教学目标要注重对规律的总结,授之以渔。
3.教学目标要注重多样性和开放性。
4.教学目标的设计要从学生的实际水平出发,对于高一高二的学生,所能够使用的数学模型多局限于初等数学模型,因此在制定面向大多数学生的实际情况教学目标时要注意这方面的考虑,选取适合学生的材料和内容。
4
实施要求和德育思考
1.通过多种建模方法的培训和大量实例的分析,提高学生学习数学的兴趣与热情。
2.体会应用数学的广泛应用,感悟学有所用的成就感。
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
基于AHP法和模糊综合评判在自编教材质量评价中的应用

革、 专业建设和课程建设的具体情况 , 不断提升教 材编 写和选 用 的 质 量 。对 教 材 的评 价 , 是一 项 复
杂 的系统 工程 , 要 结合方 方面 面的 因素 , 尤其 是学 校 的办学 特 色 及 专 业 建 设 和 课 程 建 设 的具 体 要 求, 对 相关 教材 进 行 客 观 、 公正 、 有 效 的评 价 。 同
和基 本分 析 的 能 力 ; 4 . 培养 学 生 “ 由学 会 转 变 为 会 学” 的能力和 素质 。 因此对 原课 程 内容体 系 进 行 了大 刀阔斧 的改 革 , 强 调培 养学 生 的素 质和 能
力, 删去 了许 多繁 琐 的证 明与讨论 的细节 , 把一 元
全科学 的教材 指标 体 系 , 本 文正 是 适应 这 样需 要
1基于ahp建立评价指标体系技术数学教材评价指标体系技术数学教材评价指标体系c基础理论体系c1心理发展规律c2特色和导向性c3教学可行性c4编校质量c5技术数学知识c11数学技能培养c12例题习题的完整性c13符合心理认知发展c21学习兴趣c22学习积极主动性c23内容与结构特色c31教与学的协调统一c32数学素质的培养c33教学适应性c41认识规律性c42知识结构合理性c43编写和制作水平c51板式设计水平c52印刷工艺与质量c532构建判断矩阵计算权向量并作一致性判断构建一级判断矩阵bb135471313251513112114122131715113????????????????????????1用乘积方根法计算特征向量得b的权重ww1w2w3w4w5t0
第 5期
翟美玲 , 李玉凯 : 基于 A H P法和模糊综合评判在 自编教材 质量评价 中的应用
模糊综合评价法及例题

指标
很好
好
一般
差
疗效
治愈
显效
好转
无效
住院日
≤15
16~20
21~25
>25
费用(元) ≤1400 1400~1800 1800~2200 >2200
表2 两年病人按医疗质量等级的频数分配表
指标
很好 质量好 等级一般 差
疗效 住院日 费用
01年 02年
01年 02年
01年 02年
160 170
180 200
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
共同特点:模糊概念的外延不清楚。 模糊概念导致模糊现象 模糊数学就是用数学方法研究模糊现象。
模糊综合评价
▪ 假设评价科研成果,评价指标集合U={学术水 平,社会效益,经济效益}其各因素权重设为
W {0.3,0.3,0.4}
模糊综合评价
▪ 请该领域专家若干位,分别对此项成果每一因素进行单因素 评价(one-way evaluation),例如对学术水平,有50%的 专家认为“很好”,30%的专家认为“好”,20%的专家认为 “一般”,由此得出学术水平的单因素评价结果为
• 术语来源 Fuzzy: 毛绒绒的,边界不清楚的 模糊,不分明,弗齐,弗晰,勿晰
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
(Fuzzy Sets,Information and Control, 8, 338-353 )
数学模型实验四 综合实验

实验四 综合实验一、 实验目的:通过实验小结,布置小型研究问题(经过数学处理),使学生在练习过程中进一步熟悉MATLAB的使用,以及深入理解数学模型的建模思想。
为后续课程设计教学环节构筑基础。
二、 预备知识:1.具备数学分析、常微分方程、运筹学和概率论的学科知识基础;2.相关学科知识的简单求解方法以及辅助MATLAB求解相关问题。
三、 实验内容及要求(任选一题完成):1、黄河小浪底调水调沙问题2004 年6 月至7 月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功。
整个试验期为20 多天,小浪底从6 月19 日开始预泄放水,直到7 月13 日恢复正常供水结束。
小浪底水利工程按设计拦沙量为75.5 亿m3,在这之前,小浪底共积泥沙达14.15 亿t。
这次调水调沙试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙,在小浪底水库开闸泄洪以后,从6 月27 日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7 月3 日达到最大流量2700m3/s,使小浪底水库的排沙量也不断地增加。
表7 是由小浪底观测站从6 月29 日到7 月10 检测到的试验数据。
现在,根据试验数据建立数学模型研究下面的问题:(1)给出估计任意时刻的排沙量及总排沙量的方法;(2)确定排沙量与水流量的关系。
2、炼油厂将A, B, C三种原油加工成甲、乙、丙三种汽油。
一桶原油加工成一桶汽油的费用为4元,每天至多能加工汽油14000桶。
原油的买入价、买入量、辛烷值、硫含量,及汽油的卖出价、需求量、辛烷值、硫含量由下表给出。
问如何安排生产计划,在满足需求的条件下使利润最大?一般说来,作广告可以增加销售,估计一天向一种汽油投入一元广告费,可使这种汽油日销量增加10桶,问如何安排生产和广告计划使利润最大?原油类别 买入价(元/桶) 买入量(桶/天)辛烷值硫含量(%)A 45 ≤5000 12 0.5B 35 ≤5000 6 2.0 C25≤50008 3.0汽油类别 卖出价(元/桶) 需求量(桶/天)辛烷值硫含量(%)甲 70 3000 ≥10 ≤1.0 乙 60 2000 ≥8 ≤2.0 丙501000≥6≤1.03、合金的强度y 与其中的碳含量x 有比较密切的关系,今从生产中收集了一批 数据如下表1。
模糊综合评价方法及其应用研究

模糊综合评价方法及其应用研究一、本文概述本文旨在探讨模糊综合评价方法及其应用研究。
我们将对模糊综合评价方法进行概述,阐述其基本原理和特点。
接着,我们将深入探讨模糊综合评价方法在各种领域中的应用,包括但不限于企业管理、环境评估、医疗卫生等。
通过对实际案例的分析,我们将展示模糊综合评价方法在解决实际问题中的有效性和实用性。
我们还将对模糊综合评价方法的未来发展进行展望,以期为其在更多领域的应用提供参考和借鉴。
通过本文的研究,我们希望能够为相关领域的研究者和实践者提供有益的启示和帮助。
二、模糊综合评价方法理论基础模糊综合评价方法(Fuzzy Comprehensive Evaluation,简称FCE)是一种基于模糊数学理论的评价方法,旨在解决那些难以用精确数学语言描述的问题。
这种方法最早由我国学者汪培庄于1983年提出,现已在多个领域得到了广泛应用。
模糊综合评价方法理论基础主要包括模糊集合理论、模糊运算规则和模糊关系矩阵。
其中,模糊集合理论是该方法的核心。
它允许在元素对集合的隶属程度不唯不精确的情况下进行定量描述,从而突破了传统集合理论中元素对集合的隶属关系必须明确的限制。
在模糊综合评价中,评价对象通常被视为一个模糊集合,而评价因素则构成该集合的多个子集。
每个子集都有一个隶属函数,该函数描述了评价对象在不同因素下的隶属程度。
通过对隶属函数进行计算和分析,可以得出评价对象在各个因素上的综合评价结果。
模糊运算规则是模糊综合评价方法的另一个重要组成部分。
它定义了模糊集合之间的运算方式,如并、交、补、差等,使得我们能够根据实际需求进行模糊集合的组合和转换。
模糊关系矩阵则用于描述评价对象与评价因素之间的模糊关系。
该矩阵中的元素表示评价对象在不同因素上的隶属度,是进行模糊综合评价的重要依据。
模糊综合评价方法理论基础包括模糊集合理论、模糊运算规则和模糊关系矩阵。
这些理论和方法为我们在复杂系统中进行综合评价提供了有效的工具。
数学建模案例分析-- 模糊数学方法建模2小麦品种的模糊模式识别

§2 小麦品种的模糊模式识别把一批来自同一品种的小麦称为一个小麦亲本。
小麦有各种不同的品种,某一品种的小麦有它自己的很多特性,如抽穗期、株高、有效穗数、主穗粒数和百粒重量等数量性质。
然而对于小麦的一个亲本,我们不能凭其中某一粒或某一株小麦去鉴定它的品种。
实际上,同一品种的小麦中,各株小麦的抽穗期显然是不完全相同的。
在同一种小麦中,百粒重量的每一次样本也是不完全相同的,但总是在各自的均值附近摆动。
这样我们就可以把某一品种的小麦看成是一个模糊集。
不同品种的小麦就对应着不同的模糊集。
如果能肯定待识别小麦亲本的模糊集与某一已知品种小麦的模糊集最贴近,那就可以断言它属于该种小麦了。
由于模糊集合是用隶属函数来表示的,而隶属函数又不同于普通的函数,怎样来度量模糊集的模糊性以及怎样比较两个模糊集是否相贴近还是差别很大,这就要引入一些有关模糊集度量的概念。
一、单个模糊集度量 1、模糊度在论域U 上的任意模糊子集~A 的模糊度)(~A D 应满足:(ⅰ)对任意的U x ∈,当且仅当x 对~A 的隶属度)(~x A μ只取0和1时,)(~A D =0 ;(ⅱ)当)(~x A μ=0.5时,)(~A D 应取最大值,即)(~A D =1;(ⅲ)对任意的U x ∈,设U 的两个模糊子集~A 和~B ,若5.0)()(~~≥≥x x B A μμ或5.0)()(~~≤≤x x B A μμ,则有)()(~~A D B D ≥。
2、模糊熵在模糊数学中,用模糊熵描述模糊度,是模糊集合所含模糊性大小的一种度量,这里仅介绍较其它方法为好的仙农函数引出的模糊熵定义。
设~A 是论域U 上的任意模糊子集,当U x ∈时,记))((2ln 1)(~1~i Ai x S n A H μ∑∞==叫做模糊集~A 的熵,此处)1ln()1(ln )(x x x x x S ----=。
容易验证,上述模糊熵满足模糊度的三个条件。
二、多个模糊集度量 1、海明距离设论域U 上的两个模糊子集~A 和~B ,它们之间的海明距离定义为∑=-=ni i B i A x x B A d 1~~)()(),(~~μμ这个定义适用于论域为有限集时,n 是论域中元素的个数,它又称为绝对海明距离。
数学建模综合评价与衡量方法(定)

所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任何—个指标都反映和刻画事物的—个侧面.从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值•例如,旅游景区质量等级有5A、4A、3A、2A 和1A之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值的变化对评价目的的影响来看,可以将指标分为以下四类:(1)极大型指标(又称为效益型指标)是指标值越大越好的指标;(2)极小型指标(又称为成本型指标)是指标值越小越好的指标;(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4)区间型指标是指标值取在某个区间为最好的指标.例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化围一般是(-10%,+5%)x标的价,超过此围的都将被淘汰,因此投标报价为区间型指标•投标工期既不能太长又不能太短,就是居中型指标.在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换8.2.4评价指标的预处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.1.指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷 等极小型指标则是希望取值越小越好;对于室温度、空气湿度等居中型指标是既不期望 取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必 须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同 的指标权重确定方法和评价模型中,指标一致化处理也有差异.(1) 极小型指标化为极大型指标,将其转化为极大型指标时,只需对指标x 取倒数:jx'二丄,jxjx =M -x ,jjj其中M =max{x},即n 个评价对象第j 项指标值x..最大者.j 1<i<n 可IJ(2) 居中型指标化为极大型指标jj就可以将x 转化为极大型指标.j(3) 区间型指标化为极大型指标对区间型指标x ,x 是取值介于区间[a,b ]时为最好,指标值离该区间越远就越jjjj差.令M =max{x},m =min{x},c =max{a -m,M -b},取j1<i<n ijj1<i<n ijjjjjj对极小型指标xj或做平移变换:对居中型指标xj,令M =max{x}j1<i<n ij 2(x -m)jj —, M -m =V jj2(M -x)j—,M -m,m =min{x},取j1<i<n ijM +mm <x <—J j ;j J2M +m —J j <x <M.2jj就可以将区间型指标x 转化为极大型指标.j类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指标.2.指标的无量纲化处理所谓无量纲化,也称为指标的规化,是通过数学变换来消除原始指标的单位及其数 值数量级影响的过程.因此,就有指标的实际值和评价值之分.—般地,将指标无量纲化处理以后的值称为指标评价值.无量纲化过程就是将指标实际值转化为指标评价值的过程.对于n个评价对象S,S,,S ,每个评价对象有m 个指标,其观测值分别为12nx(i=1,2,,n;j —1,2,,m).ij⑴标准样本变换法令••••••x —xx *—j (1<i <n ,1<j <m ).ijsj其中样本均值x -丄2x ,样本均方差s -£(x —x )2,x *称为标准观测值.jn ij j Vn ijjiji —11i —1特点:样本均值为0,方差为1;区间不确定,处理后各指标的最大值、最小值不相同;对于指标值恒定(s —0)的情况不适用;对于要求指标评价值x *>0的评价方法(如jij 熵值法、几何加权平均法等)不适用.(2)线性比例变换法对于极大型指标,令xx *—j (max x 丰0,1<i<n ,1<j<m ). ijmax x 1<i<nij1对极小型指标,令minxx *—j(1<i <n,1<j <m). ij x或xx *=1-j —(maxx 丰0,1<i <n,1<j <m ).a -x 1——jjc j1,x —b 1——j jx <a;jja <x <b; jjjx >b.jj©maxx 1<i <n ij1<i <nij该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例.但对任一指标来说,变换后的x *=1和x *=0不一定同时出现.ijij特点:当x >0时,x *e[0,1];计算简便,并保留了相对排序关系.ijij(3)向量归一化法对于极大型指标,令优点:当x >0时,x *e[0,1],即£(x *)2=1•该方法使0<x *<1,且变换前ijij ij ij i =1后正逆方向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同.(4) 极差变换法对于极大型指标,令x -minxx *=ij ——1<i <n ij ——(1<i <n,1<j <m). ijmaxx -minx1<i <n ij 1<i <n ij对于极小型指标,令maxx -xx *=——_ij ij ——(1<i <m,1<j <n). ijmaxx -minx1<i <n ij 1<i <n ij其优点为经过极差变换后,均有0<x *<1,且最优指标值x *=1,最劣指标值ijijx *=0•该方法的缺点是变换前后的各指标值不成比例,对于指标值恒定(s =0)的情况ijj不适用.(5) 功效系数法令x -minxx *=c +—ij_i <i <n ij —x d (1<i <n ,1<j <m ). ijmax x -min x1<i <nij1<i <n ij其中c ,d 均为确定的常数.C 表示"平移量”,表示指标实际基础值,d 表示"旋转量”,即表示"放大”或“缩小”倍数,则x *e[c,c+d].ij通常取c =60,d =40,即xx对于极小型指标,令x *ijx-minxx*=60+—j_i<i<n j—x40(1<i<n,1<j<m).ij maxx-minx1<i<n ij1<i<n ij则x*实际基础值为60,最大值为100,即x*e[60,100].ijij特点:该方法可以看成更普遍意义下的一种极值处理法,取值围确定,最小值为c,最大值为c+d•3.定性指标的定量化在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:质量很好、性能一般、可靠性高、态度恶劣等•对于这些指标,在进行综合评价时,必须先通过适当的方式进行赋值,使其量化•一般来说,对于指标最优值可赋值10.0,对于指标最劣值可赋值为0.0•对极大型和极小型定性指标常按以下方式赋值.(1)极大型定性指标量化方法对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.030,5.0,7.0和9.0,对应关系如图8-2所示•介于两个等级之间的可以取两个分值之间的适当数值作为量化值.很低低一般高很高01.03.05.07.09.010.0图8-2极大型定性指标量化方法(2)极小型定性指标量化方法对于极小型定性指标而言,如果指标能够分为很高、高、一般、低和很低等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.很高高一般低很低IIIIII I101.03.05.07.09.010.0模糊综合评价方法在客观世界中,存在着许多不确定性现象,这种不确定性有两大类:一类是随机性现象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到客观实际所造成的,而是事物的一种在结构的不确定属性,称为模糊性现象.模糊数学就是用数学方法研究和处理具有“模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,进行综合评价的一种方法..隶属度函数的确定方法隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学方法建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶属函数的方法.⑴模糊统计法模糊统计法是利用概率统计思想确定隶属度函数的一种客观方法,是在模糊统计的基础上根据隶属度的客观存在性来确定的.下面以确定青年人的隶属函数为例来介绍其主要过程.①以年龄为论域X,在论域X中取一固定样本点x=27.②设A*为论域X上随机变动的普通集合,A是青年人在X上以A*为弹性边界的模糊集,对A*的变动具有制约作用.其中xeA,或x电A,使得x对A的隶属关系000具有不确定性•然后进行模糊统计试验,若n次试验中覆盖x的次数为m,则称m为0n nx对于A的隶属频率.由于当试验次数n不断增大时,隶属频率趋于某一确定的常数,o该常数就是x属于A的隶属度,即m卩(x)=lim--.A0n*n比如在论域X中取x=27,选择若干合适人选,请他们写出各自认为青年人最适0宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若n次试验中覆盖27岁的年龄区间的次数为m,则称m为27岁对于青年人的隶属频率,表8-4是抽样调查n统计的结果.由于27岁对于青年人的隶属频率稳定在0.78附近,因此可得到x=27o属于模糊集A的隶属度卩(27)=0.78.A③在论域X中适当的取若干个样本点x,x,,x,分别确定出其隶属度12n卩(x)(i=1,2,,n),建立适当坐标系,描点连线即可得到模糊集A的隶属函数曲线.Ai将论域X分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到•••青年人的隶属函数曲线,见表8-5与图8-5所示.确定模糊集合隶属函数的模糊统计方法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效方法.特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.16.5~17.5670.51928.5~29.5800.62017.5~18.51240.96129.5~30.5770.59718.5~19.5125 1.0030.5~31.5270.20919.5~20.5129 1.0031.5~32.5270.20920.5~21.5129 1.0032.5~33.5260.20221.5~22.5129 1.0033.5~34.5260.20222.5~23.5129 1.0034.5~35.5260.20223.5~24.5129 1.0035.5~36.510.00824.5~25.51280.992⑵三分法三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观方法•例如建立矮个子A1,中等个子A2,高个子A3三个模糊概念的隶属函数•设P3={矮个子,中等个子,高个子},论域X为身高的集合,取X=(0,3)(单位:m).每次模糊试验确定X的一次划分,每次划分确定一对数(g,n),其中匕为矮个子与中等个子的分界点,耳为中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:即将(g,n)看作二维随机变量,进行抽样调查,求得g、n的概率分布p(x)、P(x)后,再分别导出A1、A?和A3的隶属函数卩(X)、R(X)和g_H_A1A2卩(x),相应的示意图如图8-6所示.A3图8-5年轻人的隶属函数曲线图8-6由概率分布确定模糊集隶属函数通常E 和耳分别服从正态分布N (a ,G 2)和N(a11分别为_gv⑶模糊分布法根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数(论域为实数域),然后再通过实验确定参数.在客观事物中,最常见的是以实数集作论域的情形•若模糊集定义在实数域R 上,则模糊集的隶属函数便称为模糊分布.下面给出几种常用的模糊分布,在以后确定隶属函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求出分布中所含的参数,从而就可以确定出隶属函数了.为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致方向.偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色的“淡”等偏向小的一方的模糊现象,其隶属函数的一般形式为「1,x <a; 卩(x)斗A [f (x),x >a.偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色的“浓”等偏向大的一方的模糊现象,其隶属函数的一般形式为f0,x <a ;卩(x )=\A [f (x ),x >a .中间型模糊分布适合描述像“中”、“暖和“、“中年”等处于中间状态的模糊现象,其隶属面数可以通过中间型模糊分布表示.① 矩形(或半矩形)分布2,G2),则A 1、A 2和A3的隶属函数其中Q (x)二i卩(x)=1—① A1卩(x )=①A21气—e 2dt .(、 x 一a 1丿/ 1GiC\x 一a 2(G 丿2—① 卩(x)=1一① A3x 一a 、Gi丿、x 一ac 2G丿(c)中间型0,x <a ;1,a <x <b ; 0,x >b .卩A x )=<此类分布是用于确切概念.矩形(或半矩形)分布相应的示意图如图8-7所示.图8-7矩形(或半矩形)分布示意图② 梯形(或半梯形)分布梯形(或半梯形)分布的示意图如图8-8所示.③ 抛物形分布(a)偏小型 (b)偏大型 (c)中间型(a)偏小型 (b)偏大型 (c)中间型1,x<a; b —x<<, b —a 0,x>b.卩A(x )=10,x <a;x —a,a <x <b;b —a 1,x >b.0,x <a ,x >d ; ,a <x <b ;b -a 1,b <x <c ;d —x,c <x <d ;d —c(a)偏小型(b)偏大型(c)中间型 图8-8梯形(或半梯形)分布示意图抛物形分布的示意图如图8-9所示.(a)偏小型(b)偏大型(c)中间型图8-9抛物形分布示意图④正态分布(a)偏小型(b)偏大型1,x<a;0,x<a;卩(x)=<(x—a]2卩(x)=<(T—a J2、e〔b,x>a. 1—e—l b丿,x>a.(c)中间型⑤柯西分布(a)偏小型(b)偏大型(c)中间型⑥r 型分布(a)偏小型 (b)偏大型 (c)中间型f l,x <a ; [e _k (x _a ),x >a .f 0,x <a ;卩(x)=kA[1一e _k (x _a ),x >a .卩(x)=<Ae _k (x _a ),x <a; 1,a <x <b; e _k (b _x ),x >b.1,1 x <a; 1+a (x -a)P (a >0,B >0)x >a.0, 1x <a ; Q ,x >a .1+a (x 一a )_P叮x)=1+a (x -a )B'(a >0,B 为正偶数).(a >0,B>0)。
模糊综合评判法原理课件

我们称{Ui}是U的一个划分(或剖分),Ui称为类(或块).
有甲、乙、丙三项科研成果,现要从中评选出优秀项目。 三个科研成果的有关情况表
设评价指标集合: U={科技水平,实现可能性,经济效益}
1965年,美国伯克利加利福尼亚大学电机工程与计算机科 学系教授、自动控制专家L.A. Zadeh(扎德) 发表了文 章《模糊集》(Fuzzy Sets,Information and Control, 8, 338-353 ),第一次成功的运用精确的数学方法描述了 模糊概念,从而宣告了模糊数学的诞生.
2、确定评价对象的评语集.
设 出的V=各{v种1,v总2,的…评,价vn结},果是组评成价的者评对语被等评级价的对集象合可.能做 其 评价中结:v果j代数表.一第般j个划评分价为结3~果5个,等j=级1,.2,…,n. n为总的
评判集、评价集、决断集、评语集、等级集实为同一涵义. 每一个评价等级可对应一个模糊子集. 什么是模糊子集? 论域上的模糊集合称为模糊子集. 经典集合的指示函数扩展为模糊集合的隶属函数.
评语集合: V={高,中,低}
3、确定评价因素的权重向量 设 ai表A=示(a第1,ia个2,…因,素am的)为权权重重,要(权求数ai)>分0配,Σ模a糊i=1矢.量,其中 A反映了各因素的重要程度. 在进行模糊综合评价时,权重对最终的评价结果会产
生很大的影响,不同的权重有时会得到完全不同的结 论. 现在通常是凭经验给出权重,但带有主观性. 权重是以某种数量形式对比、权衡被评价事物总体中 诸因素相对重要程度的量值.
综合评价法(层次分析法)概述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
6、评判指标的处理
• 最大隶属度法 • 加权平均法
若 bl
max{b j
j
}
,则评判结果隶属于
vl
.
取以 b j 为权重,对各个备择元素 v j 进行加权平均的值为评判结果。
n
n
即
V bjv j
bj
j 1
j 1
此法要求将 v j ( j 1,2,, n )中非数量性备择元素数量化。
平均随机一致性指标 R.I.表
矩阵阶数 1
2
3
4
5
6
7
8
R.I.
0
0 0.52 0.89 1.12 1.26 1.36 1.41
矩阵阶数 R.I.
9 1.46
10 1.49
11 1.52
12 1.54
13 1.56
14 1.58
15 1.59
第三步,计算一致性比例 C.R. C.I. ,并进行判断 R.I.
一级模糊综合评判
糊
综
合
评
判
三级模糊综合评判
17
一级模糊综合评判
一级模糊综合评判的基本方法和步骤:
1、建立因素集 因素集是影响评判对象的各种因素为元素所组成的一个普通集合。通常用U 表示,
即
U {u1,u2,,um} ui(i 1,2,, m) 代表影响因素,这些因素可以是模糊的,也可以是非模糊的,但它们 对因素集U 的关系,要么 ui U ,要么 ui U ,二者必居且仅居其一。因此因素集本身
B
A R
(a1 ,
a2
,,
am
)
r21 r22 r2n
rm1 rm2
rm
n
(b1,b2,,bn )
b j ( j 1,2,, n )称为 F 综合评判指标,简称评判指标。
b
j
含义:综合考虑所有因素的影响时,评判对象对备择元
v
j
的隶属度。 21
3. A 的最大特征根为 λ n ,其余 n-1个特征根均为 0
4. A 的任一列(行)都是对应于特征根 n 的特征向量
6
3.计算权向量与判别矩阵的一致性检验
权向量是指判别矩阵各因素针对其准则的相对权重。
计算权向量的方法:
(1)特征根法步骤:
求判别矩阵的最大特征根和相应的特征向量。即计算满足 Aw w 的最 大特征根 及对应的特征向量 w 。Saaty 等人建议用最大特征根对应的归一化
的重要性之比为 a ji
1 aij
5
设判别矩阵为 A (aij )nn ,判别矩阵具有如下性质:
aij 0
1 a ji aij
aii 1
若判别矩阵的所有元素都满足传递性:
aij a jk aik
则称该判别矩阵为一致性矩阵。
一致阵的性质:
1. AT 也是一致矩阵
2. A 的各行成比例,则矩阵的秩 rankA 1
各项指标的变异系数公式如下:
Vi
i(i
xi
1,2,,n)
式中:Vi 是第 i 项指标的变异系数; i 是第 i 项指标的均方差;
xi 是第 i 项指标的平均数。
将Vi 归一化得到各项指标的权重为:
Wi
Vi
n
Vi
i 1
15
四、均方差法
均方差赋权法是“求大异存小同”的方法,其特点是: ①不具有任何主观色彩; ②具有评价过程的透明性、再现性; ③确定的权重不再具有继承性、保序性。
m
模型Ⅴ:指数模型: bj
r ai
ij
i 1
模型Ⅳ不仅考虑了所有因素的影响,而且保留了单因 素评判的全部信息。该模型称为加权平均型模型。在实践 中常常用该模型。
模型Ⅴ的最大特点是评判对象的综合评判指标等于所有
r ai
ij
的最小值,因此为了有效提高评判对象的综合评判指标,务必全面 改善所有单因素指标才能达到目的。该模型是一种制约性全面促进 型模型。
“*”的取法主要有如下几种:
m
模型Ⅰ:M(∧,∨): bj (ai rij ) , (j=1,2,…,n) i 1
这里“”、“”表示取小、取大运算。
模型Ⅰ是一种制约性主因素突出型模型,不宜应用于因素太多或太少的情况。
m
模型Ⅱ:M(· ,∨): bj (ai rij ) , (j=1,2,…,n) i 1
i 1
为了进行后面的一致性检验,求最大特征根 max
1 n
n i 1
( Aw )i wi
9
一致性检验的步骤:
第一步,计算一致性指标 C.I.(consistency index)
C.I. max n
n 1
第二步,查表确定相应的平均随机一致性指标 R.I. (random index)
设评判对象按因素集中第 i 个因素 ui 进行评判,对备择集中第 j 个元素 v j 的隶属程度 为 rij ,则按第 i 个因素 ui 评判的结果为:
Ri [ri1, ri2,, rin ] , i 1,2,, m
将各单因素评判结果为行组成矩阵
r11 r12 r1n
R
ห้องสมุดไป่ตู้(rij
这里“· ”是普通乘法。
m
模型Ⅲ:M(∧, ): bj min{1, (ai rij )} , (j=1,2,…,n) i 1
模型Ⅱ和Ⅲ与模型Ⅰ比较,能较好地反映单因素评判结果和因素的重要22程度。
m
模型Ⅳ:M(·, ): bj min{1, (ai rij )} , (j=1,2,…,n) i 1
• F分布法
n
对 b j ( j 1,2,, n )进行归一化。令 b bj j 1
Bi
b1 b
b2 b
bn b
b1
b2
bn
这样
b
j
反映了评判对象在所评判的特性方面的分布状态,即所占的百分比。
24
例 某露天煤矿有五个边坡设计方案,其各项参数根据 分析计算结果得到边坡设计方案的参数如表所示。
lambda=max(eig(Z))
n=sum(eig(Z))
CI=(lambda-n)./(n-1)
RI=1.12 %查表
To MATLAB
CR=CI./RI if CR>=0.1
(cx1)
error('Z不通过一致性检验');
else 'pass text'
end 运算结果:
lambda=6.35, w =( 0.2636 0.4758 0.0538 0.0981 0.1087)
某个指标的均方差越大,表明指标值的变异程度越大,提供的信息 量越多,其权重也越大。相反,某个指标的均方差越小,表明指标值的 变异程度越小,提供的信息量越少,其权重也应越小。
按公式
1
s(k )
[
n
1
1
n i 1
(X ki
X
(k ))2
2
]
求得均方差,将均方差归一化,得各项指标权重。
16
模
特征向量作为权向量,即归一化向量 w 的各分量为对应元素的相对重要性权
重。在 MATLAB 中利用命令[V,D]=eig(x)非常方便的求出最大特征根和相应的 特征向量。
7
(2)和法步骤:
a 将判别矩阵按列归一化: bij n ij aij
i 1
n
按行求和: vi bij j 1
1 5
2
1
1
1
1
3
1
1
3 5
12
利用MATLAB编写程序cx1:
Z=[1 1/2 4 3 3;2 1 7 5 5;1/4 1/7 1 1/2 1/3;1/3 1/5 2 1 1;1/3 1/5 3 1 1];
[V,D]=eig(Z)
w=V(:,1)/ sum(V(:,1)) %归一化特征向量
首先明确影响问题的因素,并把它条理化、层次 化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成:
目标层(最高层):指决策的目的、要解决的问题; 准则层(因素层):指考虑的因素、目标决策的准则; 方案层(最低层):指决策的备选方案。
4
2.构造判别矩阵
确定判别矩阵的方法为:反复咨询专家,根据判别矩 阵的准则,对元素两两比较哪个重要,重要多少,对重要 性程度按1-9赋值
当 C.R. 0 时,认为判别矩阵具有完全一致性; 当 C.R. 0.1时,认为判别矩阵的一致性是可以接受的;
当 C.R. 0.1时,认为判别矩阵不符合一致性要求,需要对
该判别矩阵进行重新构造,加以修正。
10
例 假期旅游地选择
假期旅游,是去风光秀丽的苏州,还是去迷人的北戴 河,或者是去山水甲天下的桂林,一般会依据景色、 费用、居住、饮食、旅途等因素选择去哪个地方。用 层次分析法确定这五个因素的重要性。
v 归一化: wi n i 即为近似权向量。 vi
i 1
为了进行后面的一致性检验,求最大特征根 max
1 n
n i 1
(
Aw )i wi
8
(3)根法步骤:
n
1
将判别矩阵按行求: vi ( aij )n
j 1
v
归一化得到近似权向量: wi
i n
vi