修订线性代数作业答案第四章

合集下载

(完整版)线性代数练习册第四章习题及答案

(完整版)线性代数练习册第四章习题及答案

第四章 线性方程组§4-1 克拉默法则一、选择题1.下列说法正确的是( C )A.n 元齐次线性方程组必有n 组解;B.n 元齐次线性方程组必有1n -组解;C.n 元齐次线性方程组至少有一组解,即零解;D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A 。

当0D ≠时,非齐次线性方程组只有唯一解;B 。

当0D ≠时,非齐次线性方程组有无穷多解;C 。

若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题1.已知齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= 1 ,μ= 0 。

2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠,则方程组有唯一解i x =iD D. 三、用克拉默法则求解下列方程组 1.832623x y x y +=⎧⎨+=⎩解:832062D ==-≠123532D ==-,2821263D ==-所以,125,62D Dx y D D====- 2.123123123222310x x x x x x x x x -+=-⎧⎪+-=⎨⎪-+-=⎩解:213112112122130355011101r r D r r ---=--=-≠+---11222100511321135011011D r r ---=-+-=---,212121505213221310101101D r r --=-+-=-----, 3121225002112211511110D r r --=+=---所以, 3121231,2,1D D Dx x x D D D ======3.21241832x z x y z x y z -=⎧⎪+-=⎨⎪-++=⎩解:132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=,2322112102112100123125D c c -=-+=--, 31320101241204120182582D c c =-=--所以, 3121,0,1D D Dx y z D D D ====== 4.12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩解:2131412131111111111214012322315053733121102181231235537013814222180514r r D r r r r r r r r ---=------------+=----=-+---3214212325111511102221422518231523528110121101005110010525182733214210252823522c c D c c c c c c --------=----------+=-----=----212314113231511151112140723222150123733021101518723230132123733031284315181518r r D r r r r r r r r -----=--------------=----=------12342213111512151031224522182325111132283101101002510200251521852974265211228115127c c D c c c c c c -------=---------+=-----=----12432322111152115312125252223121135231200100215215552502714251152604c c D c c r r r r --------=----------+=----=---所以, 312412341,2,3,1D D D Dx x x x D D D D========-§4-2 齐次线性方程组一、选择题1.已知m n ⨯矩阵A 的秩为1n -,12,αα是齐次线性方程组0AX =的两个不同的解,k 为任意常数,则方程组0AX =的通解为( D )。

【最新试题库含答案】线性代数练习册第四章习题及答案

【最新试题库含答案】线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案:篇一:线代第四章习题解答第四章空间与向量运算习题4.14-1-1、已知空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C??2,2,1? (1)求向量,,的坐标,并在直角坐标系中作出它们的图形;(2)求点A与B之间的距离.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB??4-1-2.利用坐标面上和坐标轴上点的坐标的特征,指出下列各点的特殊位置: A?3,4,0?; B?0,4,3? ; C?3,0,0? ;D?0,?1,0? 解: A (3,4,0) 在xoy面上 B(0,4,3)点在yoz面上C(3,0,0)在x轴上 D(0,-1,0)在y轴上 4-1-6. 设u?a?b?2c,v??3b?c,试用a、b、c表示3u?3v.解:3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c4-1-7. 试用向量证明:如果平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由已知AO=OC,DO=OB 因为AB =AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以ABCD为平行四边形。

4-1-8. 已知向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.?解:.prju?u)?4*cos60=4?r?rcos(r。

3=23 24-1-9. 已知一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为(x,y,z)prjxAB?(2?x0)?4prjyAB?(?1?y)??4 prjzAB?(7?z0)?7解得:x??2y?3z0?04-1-12. 求下列向量的模与方向余弦,并求与这些向量同方向的单位。

线性代数第四章练习题答案

线性代数第四章练习题答案

线性代数第四章练习题答案第一篇:线性代数第四章练习题答案第四章二次型练习4、11、写出下列二次型的矩阵2(1)f(x1,x2,x3)=2x12-x2+4x1x3-2x2x3;(2)f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4。

解:(1)因为⎛2f(x1,x2,x3)=(x1,x2,x3) 0 2⎝⎛2 所以二次型f(x1,x2,x3)的矩阵为: 0 2⎝0-1-10-1-12⎫⎪-1⎪0⎪⎭⎛x1 x2 x⎝3⎫⎪⎪, ⎪⎭2⎫⎪-1⎪。

0⎪⎭(2)因为⎛0 f(x1,x2,x3,x4)=(x1,x2,x3,x4) 1 1⎝⎛0 1所以二次型f(x1,x2,x3,x4)的矩阵为: 1 1⎝***11⎫⎪0⎪1⎪⎪0⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪,⎪⎪⎭1⎫⎪0⎪。

⎪1⎪0⎪⎭2、写出下列对称矩阵所对应的二次型:⎛1 1(1) -2 1 ⎝212⎛01⎫⎪2⎪1 -2⎪;(2)2 ⎪-1⎪2⎪⎭0⎝12-11212-112012⎫0⎪⎪1⎪2⎪。

1⎪⎪2⎪1⎪⎪⎭-0-2T解:(1)设X=(x1,x2,x3),则⎛1 f(x1,x2,x3)=XTAX=(x1,x2,x3) -2 1 ⎝2-120-21⎫⎪2⎪-2⎪⎪⎪2⎪⎭⎛x1 x2 x⎝3⎫⎪⎪⎪⎭=x12+2x32-x1x2+x1x3-4x2x3。

(2)设X=(x1,x2,x3,x4)T,则⎛0 1f(x1,x2,x3,x4)=XTAX=(x1,x2,x3,x4)2 -1 0⎝12-11212-11201 2⎫0⎪⎪1⎪2⎪1⎪⎪2⎪1⎪⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪⎪⎪⎭2=-x2+x4+x1x2-2x1x3+x2x3+x2x4+x3x4。

练习4、21、用正交替换法将下列二次型化为标准形,并写出所作的线性替换。

22(1)f(x1,x2,x3)=2x1+x2-4x1x2-4x2x3;(2)f(x1,x2,x3)=2x1x2-2x2x3;222(3)f(x1,x2,x3)=x1+2x2+3x3-4x1x2-4x2x3。

线代第4章习题答案

线代第4章习题答案

第4章1.(1)是;(2)是;(3)是;(4)否.2. 证:(1)假设零向量不唯一,即存在两个零向量120,0,但1200≠,则由10αα+=和20αα+=推出1200=,这与假设矛盾. (2)类似(1)中证明. (3)0()0k k k k αααα=-=-=, (1)(01)01ααααα-=-=-=-, 0()0k k k k αααα=-=-=. 3.(1)是;(2)是;(3)否;(4)否. 4. 证:设11223344k A k A k A k A O +++=,则有12341234123412340,0,0,0,k k k k k k k k k k k k k k k k ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩系数矩阵11111111111101011111001111110001A --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥--⎢⎥⎢⎥----⎣⎦⎣⎦,则()4r A =, 故12340k k k k ====,即1234,,,A A A A 线性无关.又对任意一个11122122a a A a a ⎡⎤=⎢⎥⎣⎦,若11223344k A k A k A k A A +++=, 则可得123411123412123421123422,,,,k k k k a k k k k a k k k k a k k k k a ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩解得唯一一组解为:()()()()1111221222111221223111221224111221221,41,41,41,4k a a a a k a a a a k a a a a k a a a a ⎧=+++⎪⎪⎪=-+-⎪⎨⎪=+--⎪⎪⎪=-++-⎩即任意一个A 都可以由这组矩阵线性表出,且表达式唯一,则22dim()4R ⨯=,且1234,,,A A A A 构成22R ⨯的一组基.5. 解:令123110100,,000011A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则由112233k A k A k A O ++=可解得1230k k k ===,即123,,A A A 线性无关. 又对任意一个A V ∈,a ab Ac c +⎡⎤=⎢⎥⎣⎦,若112233k A k A k A A ++=,可解得唯一一组解为: 123,,k a k b k c ===,即任意一个A 都可以由123,,A A A 线性表出,且表达式唯一,则dim()3V =,且123,,A A A 构成V 的一组基. 6. 解:2()65f x x x =-+,故在这组基下的坐标为[]6,5,1T-.7. 解:(1)根据过渡矩阵C 的3个列向量分别是21,1,(1)x x ++在基21,,x x 下的坐标,可得111012001C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. (2)新的基为:21,1,2x x x -+-+. 8. 解:(1)显然对加法和数乘封闭.(2)令1100A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,2010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,…,001n A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ . 若1122n n k A k A k A O ++= ,显然可推出120n k k k ==== ,即12,,,n A A A 线性无关.又对任意一矩阵12A n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,若 1122n n k A k A k A A ++= ,可解得唯一一组解为:121,2,,n k k k n === .即任意一个A W ∈都可以由12,,,n A A A 线性表出,且表达式唯一,则dim()W n =,且12,,,n A A A 构成W 的一组基. 9. 解:11211121211101111103001301170000A --⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =,故由1234,,,αααα 生成的子空间维数是3,一组基为123,,ααα(或124,,ααα).11.解:过渡矩阵为:205133113C ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦,若有一非零向量[],,T w x y z =,满足w Cw =,则可得方程组25,33,3,x x z y x y z z x y z =+⎧⎪=++⎨⎪=---⎩对系数矩阵经初等行变换后得阶梯形方程组50,0,x z y z +=⎧⎨-=⎩ 可解得一般解为: [5,,]w c c c =-,c 为任一非零常数.12. 证:已知()()()()112112212211,,313b a a b a a b a a b αβ-⎛⎫⎛⎫==-+-+ ⎪ ⎪-⎝⎭⎝⎭, (1)()()()()112212,3,b a a b a a αββα=-+-+=;(2)()()()()()1112221122,33,,c a b a b c a b a b αβγαγβγ+=+--+--++=+; (3)()()()()112212,3,k kb a a kb a a k αβαβ=-+-+=;(4)()()()()22112212122,320a a a a a a a a a αα=-+-+=-+≥,若(),0αα=,当且仅当1220,0,a a a -=⎧⎨=⎩ 故120a a ==,即0α=.由于(),αβ满足定义4.6中的4个性质,故是2R 的内积.13. 解:(1)1||α=2||α=,3||α=.因为()2323,cos ||||10ααθαα==-,故arccos 10θ⎛⎫=- ⎪ ⎪⎝⎭. (2)设与123,,ααα都正交的向量为()1234,,,b b b b β=,则可得12341234123420,230,220,b b b b b b b b b b b b +-+=⎧⎪++-=⎨⎪---+=⎩ 经过初等行变换可得阶梯形矩阵:123423420,330,b b b b b b b +-+=⎧⎨-+-=⎩ 解得一般解为()34343455,33,,Tb b b b b b β=-+-,其中34,b b 为自由变量,或者通解表达式为1255331001k k β-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.14. 解:()111,0,1,1Tβα==,)1111,0,1,1||Tβγβ==. ()22211121,,1,,333Tβααγγ⎛⎫=-=-- ⎪⎝⎭,)2221,3,2,1||Tβγβ==--. ()()333113223112,,,,,5555Tβααγγαγγ⎛⎫=--=-- ⎪⎝⎭,)3333,1,1,2||Tβγβ==--. 15. 解:()110,0,1Tβα==,()10,0,1Tγ=. ()()22211,0,1,0T βααγγ=-=,()20,1,0Tγ=.()()()33311322,,1,0,0T βααγγαγγ=--=,()31,0,0Tγ=. 16. 证:(1)()()T T T T T AB AB B A AB B EB B B E ====.(2)A 正交,则||1A =±,*1*||A A A A -==±,则**1111()()()T T T A A A A A A E E ----====. 17. 解:已知1T X X =,则(2)(2)(2)(2)T T T T T T Q Q E XX E XX E XX E XX =--=-- 44()44T T T T T E XX X X X X E XX XX E =-+=-+=, 即Q 为正交矩阵.若T X =,则122122123221T Q E XX --⎡⎤⎢⎥=-=--⎢⎥⎢⎥--⎣⎦. 18. 解:73217737326a Q b c -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,通过T Q Q E =得 214960,1421180,621120,a bc abc -+-=⎧⎪-+=⎨⎪---=⎩解得626,,777a b c =-==-.19. 证:因为T Q Q E =,故对任意n X R ∈,有()()()22||,||TT T T QX QX QX QX QX X Q QX X X X =====,则一定有 ||||QX X =.20.(1)否;(2)是;(3)是;(4)否. 21. 解:(1)A 112(1,1,0)T εεε==+,A 212(1,1,0)T εεε=-=-, A 33(0,0,1)T εε==,所求矩阵为:110110001D ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦. (2) A ()12110T,,ηη==,A()212002T,,ηη==,A ()31232012T,,ηηηη==-+,故所求的矩阵为022101001⎛⎫⎪- ⎪ ⎪⎝⎭.22. 解:(1)A 1123(2,3,5)235T εεεε==++,A 2ε=A 110⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 1123(1,3,5)35T εεεε=---=---,A 2ε=A 111⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 2ε-A 1123(1,1,1)T εεεε=--=-+-,故所求的矩阵为211331551A --⎛⎫⎪=- ⎪ ⎪--⎝⎭.(2)已知1232αεεε=-+,则21124331110551114y AX --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭.23. 解:010001000D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦24. 证:必要性:因为12,,,n εεε 是V 的标准正交基,则(,),1,i j ij i j n εεδ=≤≤. 因为A 是正交变换,则(A ()i ε,A ()j ε)ij δ=, 1,i j n ≤≤. 即A ()i ε,A ()j ε,…,A ()n ε是V 的标准正交基. P 40.3.(作业册)解:211111111111011312240000---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,解得4343423x x x X x x -⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥⎣⎦,则解空间的解向量为[]10,1,1,0T α=,[]22,3,0,1Tα=-,通过Schmidt 标准正交化得]10,1,1,0T γ=,]24,3,3,2Tγ=--.。

线性代数 (清华大学出版)课后习题部分解答(第四章)

线性代数 (清华大学出版)课后习题部分解答(第四章)

第四章课后习题 及解答1. 证明:T )(1,1,1,11=α, T )(1,1,1,12--=α, T )(1,1,1,13--=α, T )(1,1,1,14--=α是4R 的一组基, 并求T )(1,1,2,1=β在这组基下的坐标.证明:0161111111111111111,,,4321≠-=------=)(αααα.R ,,,44321的一组基是αααα∴设β在这组基下的坐标为x ,则x )(4321,,,ααααβ=,从而 βαααα14321,,,-=)(x⎝⎛⎪⎪⎪⎪⎪⎭⎫--→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------4141414510001000010000111211111111111111111⎪⎪⎪⎪⎪⎭⎫⎝⎛--=∴111541x 2. 已知3R 的两组基为.6,1,1,1,2,5,4,1,3,1,7,3,3,3,2,1,2,1T3T 2T 1T1T 2T 1)()()()()()(-======βββααα求:(1)向量T2,6,3)(=γ在基{}321,,ααα下的坐标; (2)基{}321,,ααα到基{}321,,βββ的过渡矩阵; (3)用公式(4.7)求γ在基{}321,,βββ下的坐标。

解:(1)设γ在基{}321,,ααα下的坐标为x ,则:x )(321,,αααγ=从而 γααα1321,,-=)(x⎪⎪⎪⎭⎫- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫112100010001263131732321 ⎪⎪⎪⎭⎫⎝⎛-=∴112x(2)设基{}321,,ααα到基{}321,,βββ的过渡矩阵为A ,则:A ,,,,321321)()(αααβββ=从而 )()(3211321,,,,A βββααα-= ⎪⎪⎪⎭⎫--- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫-8124920941712710010001614121153131732321 ⎪⎪⎪⎭⎫⎝⎛---=∴81249209417127A (3)设γ在基{}321,,βββ下的坐标为y ,则:x y 1A -= ⎪⎪⎪⎭⎫-⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫----4832534153100100111281249209417127⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴83106153414832534153y3. 已知4R 的两组基为.2,1,3,1,2,1,1,2,2,2,1,0,1,0,1,21,0,1,1,1,1,2,1,1,1,1,1,0,1,2,1T4T3T2T1T4T 3T 2T 1)()()()()()()()(=-===--=-=-=-=ββββαααα(1)求基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵;若γ在基{}4321,,,αααα下的坐标为T 0,0,0,1)(,求γ在基{}4321,,,ββββ下的坐标.(2)求基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵;若ξ在基{}4321,,,ββββ下的坐标为T 0,1,2,1)(-,求ξ在基{}4321,,,αααα下的坐标.(3)已知向量α在基{}4321,,,αααα下的坐标为T 0,1,2,1)(-,求它在基{}4321,,,ββββ下的坐标.解:(1)设基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵为A ,则:A ,,,,,,43214321)()(ααααββββ=从而 )()(432114321,,,,,,A ββββαααα-=⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------0111101011100110001000010000122211120311112021110011112121111 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴010111010111001A 设γ在基{}4321,,,ββββ下的坐标为y ,则:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0001A 1-y⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫101-01000100001000010001010111010111001 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴101-0y(2) 设基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵为B ,则:B ,,,,,,43214321)()(ββββαααα= ),,,(),,,(432114321B ααααββββ-=⎪⎪⎪⎪⎪⎭⎫----⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------11111000001111101000100001000011110111121211112221112031111202⎪⎪⎪⎪⎪⎭⎫⎝⎛----=∴1111100000111110B设ξ在基{}4321,,,αααα下的坐标为x ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1131012101011101011100101-21A x(3)设α在基{}4321,,,ββββ下的坐标为z ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=20130121111110000011111001-21B z 4. 在4R 中找一个向量γ,它在自然基{}4321,,,εεεε和基T4T3T2T13,1,6,6,1,2,3,5,0,1,3,0,1,1,1,2)()()()(===-=ββββ下有相同的坐标.解:设所求坐标为x ,则它满足:x x )()(43214321,,,,,,ββββεεεε= 即:0211111163216501=⎪⎪⎪⎪⎪⎭⎫⎝⎛-x⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110010101001211111163216501 ∴此齐次线性方程组的一般解为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=1111k x ⎪⎪⎪⎪⎪⎭⎫⎝⎛---==∴1111,,,4321k x )(可取εεεεγ 5. 已知)()()(2,2,1,1,1,1,3,2,1,1,2,1---=-=-=γβα。

线性代数第四章答案

线性代数第四章答案

第四章 向量组的线性相关性1 设v1(1 1 0)T v2(0 1 1)T v3(3 4 0)T求v1v2及3v12v2v3解v1v2(1 1 0)T(0 1 1)T(10 11 01)T(1 0 1)T3v12v2v33(1 1 0)T 2(0 1 1)T (3 4 0)T(31203 31214 30210)T(0 1 2)T2 设3(a1a)2(a2a)5(a3a) 求a其中a1(2 5 1 3)Ta2(10 1 5 10)T a3(4 1 1 1)T解由3(a1a)2(a2a)5(a3a)整理得(1 2 3 4)T3 已知向量组A a1(0 1 2 3)T a2(3 0 1 2)T a3(2 3 0 1)TB b1(2 1 1 2)T b2(0 2 1 1)T b3(4 4 1 3)T证明B组能由A组线性表示但A组不能由B组线性表示证明由知R(A)R(A B)3 所以B组能由A组线性表示由知R(B)2 因为R(B)R(B A) 所以A组不能由B组线性表示4 已知向量组A a1(0 1 1)T a2(1 1 0)TB b1(1 0 1)T b2(1 2 1)T b3(3 2 1)T证明A组与B组等价证明由知R(B)R(B A)2 显然在A中有二阶非零子式故R(A)2 又R(A)R(B A)2 所以R(A)2 从而R(A)R(B)R(A B) 因此A组与B组等价5 已知R(a1a2a3)2 R(a2a3a4)3 证明(1) a1能由a2a3线性表示(2) a4不能由a1a2a3线性表示证明 (1)由R(a2a3a4)3知a2a3a4线性无关故a2a3也线性无关又由R(a1 a2a3)2知a1a2a3线性相关故a1能由a2a3线性表示(2)假如a4能由a1a2a3线性表示则因为a1能由a2a3线性表示故a4能由a2a3线性表示从而a2a3a4线性相关矛盾因此a4不能由a1a2a3线性表示6 判定下列向量组是线性相关还是线性无关(1) (1 3 1)T (2 1 0)T (1 4 1)T(2) (2 3 0)T (1 4 0)T (0 0 2)T解 (1)以所给向量为列向量的矩阵记为A因为所以R(A)2小于向量的个数从而所给向量组线性相关(2)以所给向量为列向量的矩阵记为B因为所以R(B)3等于向量的个数从而所给向量组线性相无关7 问a取什么值时下列向量组线性相关?a1(a 1 1)T a2(1 a 1)T a3(1 1 a)T解以所给向量为列向量的矩阵记为A由如能使行列式等于0,则此时向量组线性相关(具体看书后相应答案)8 设a1a2线性无关a1b a2b线性相关求向量b用a1a2线性表示的表示式解因为a1b a2b线性相关故存在不全为零的数12使(a1b)2(a2b)01由此得设则b c a1(1c)a2c R9 设a1a2线性相关b1b2也线性相关问a1b1a2b2是否一定线性相关?试举例说明之(也可看书后答案)解不一定例如当a1(1 2)T, a2(2 4)T, b1(1 1)T, b2(0 0)T时有a1b1(1 2)T b1(0 1)T, a2b2(2 4)T(0 0)T(2 4)T而a1b1a2b2的对应分量不成比例是线性无关的10 举例说明下列各命题是错误的(1)若向量组a1a2a m是线性相关的则a1可由a2a m线性表示解设a1e1(1 0 0 0) a2a3a m0则a1a2a m线性相关但a1不能由a2a m线性表示(2)若有不全为0的数12m使a1m a m1b1m b m01成立则a1a2a m线性相关, b1b2b m亦线性相关解有不全为零的数12m使a1m a m 1b1m b m01原式可化为(a1b1) m(a m b m)01取a1e1b1a2e2b2a m e m b m其中e1e2e m为单位坐标向量则上式成立而a1 a2a m和b1b2b m均线性无关(3)若只有当12m全为0时等式a1m a m1b1m b m01才能成立则a1a2a m线性无关, b1b2b m亦线性无关解由于只有当12m全为0时等式由1a1m a m1b1m b m0成立所以只有当12m全为0时等式(a1b1)2(a2b2) m(a m b m)01成立因此a1b1a2b2a m b m线性无关取a1a2a m0取b1b m为线性无关组则它们满足以上条件但a1a2a m线性相关(4)若a1a2a m线性相关, b1b2b m亦线性相关则有不全为0的数12m使a1m a m0 1b1m b m01同时成立解a1(1 0)T a2(2 0)T b1(0 3)T b2(0 4)Ta12a2 01221b12b2 01(3/4)210 与题设矛盾1211 设b1a1a2b2a2a3 b3a3a4 b4a4a1证明向量组b1b2b3b4线性相关证明由已知条件得a1b1a2a2b2a3 a3b3a4 a4b4a1于是a1 b1b2a3b1b2b3a4b1b2b3b4a1从而b1b2b3b40这说明向量组b1b2b3b4线性相关12 设b1a1b2a1a2b r a1a2 a r且向量组a1a2a r线性无关证明向量组b1b2b r线性无关证明已知的r个等式可以写成上式记为BAK因为|K|10 K可逆所以R(B)R(A)r从而向量组b1b2b r线性无关13 求下列向量组的秩, 并求一个最大无关组(1)a1(1 2 1 4)T a2(9 100 10 4)T a3(2 4 2 8)T解 由知R(a1a2a3)2 因为向量a1与a2的分量不成比例故a1a2线性无关所以a1 a2是一个最大无关组(2)a1T(1 2 1 3) a2T(4 1 5 6) a3T(1 3 4 7)解由知R(a1T a2T a3T)R(a1a2 a3)2 因为向量a1T与a2T的分量不成比例故a1T a2T 线性无关所以a1T a2T是一个最大无关组14 利用初等行变换求下列矩阵的列向量组的一个最大无关组(1)解因为所以第1、2、3列构成一个最大无关组.(2)解因为所以第1、2、3列构成一个最大无关组(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15 设向量组(a 3 1)T (2 b 3)T(1 2 1)T (2 3 1)T的秩为2 求a b解设a1(a 3 1)T a2(2 b 3)T a3(1 2 1)T a4(2 3 1)T因为而R(a1a2a3a4)2 所以a2 b516 设a1a2a n是一组n维向量已知n维单位坐标向量e1e2e n能由它们线性表示证明a1a2a n线性无关证法一记A(a1a2a n) E(e1e2e n) 由已知条件知存在矩阵K使EAK两边取行列式得|E||A||K|可见|A|0 所以R(A)n从而a1a2a n线性无关证法二因为e1e2e n能由a1a2a n线性表示所以R(e1e2e n)R(a1a2a n)而R(e1e2e n)n R(a1a2a n)n所以R(a1a2a n)n从而a1a2a n线性无关17 设a1a2a n是一组n维向量, 证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示证明必要性设a为任一n维向量因为a1a2a n线性无关而a1a2a n a 是n1个n维向量是线性相关的所以a能由a1a2a n线性表示且表示式是唯一的充分性已知任一n维向量都可由a1a2a n线性表示故单位坐标向量组e1 e2e n能由a1a2a n线性表示于是有nR(e1e2e n)R(a1a2a n)n即R(a1a2a n)n所以a1a2a n线性无关18 设向量组a1a2a m线性相关且a10证明存在某个向量a k (2km) 使a k能由a1a2a k1线性表示证明因为a1a2a m线性相关所以存在不全为零的数12m使a12a2m a m01而且23m不全为零这是因为如若不然则1a10由a10知10 矛盾因此存在k(2km) 使0 k1k2m0k于是a12a2k a k01a k(1/k)(1a12a2k1a k1)即a k能由a1a2a k1线性表示19 设向量组B b1b r能由向量组A a1a s线性表示为(b1b r)(a1a s)K其中K为sr矩阵且A组线性无关证明B组线性无关的充分必要条件是矩阵K的秩R(K)r证明 令B(b1b r) A(a1a s) 则有BAK必要性设向量组B线性无关由向量组B线性无关及矩阵秩的性质有rR(B)R(AK)min{R(A) R(K)}R(K)及R(K)min{r s}r因此R(K)r充分性因为R(K)r所以存在可逆矩阵C使为K的标准形于是(b1b r)C( a1a s)KC(a1a r)因为C可逆所以R(b1b r)R(a1a r)r从而b1b r线性无关20 设证明向量组12n与向量组12n等价证明将已知关系写成将上式记为BAK因为所以K可逆故有ABK1由BAK和ABK1可知向量组12n与向量组12n可相互线性表示因此向量组12n与向量组12n等价21 已知3阶矩阵A与3维列向量x满足A3x3A x A2x且向量组x A x A2x线性无关(1)记P(x A x A2x) 求3阶矩阵B使APPB解因为APA(x A x A2x)(A x A2x A3x)(A x A2x 3A x A2x)所以(2)求|A|解由A3x3A x A2x得A(3x A x A2x)0因为x A x A2x线性无关故3x A x A2x0即方程A x0有非零解所以R(A)3 |A|0(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。

线性代数第四章习题答案


0 a+1 1 −1
1 − a2 = (a + 1)2 (a − 2). a
a −1 a
0 a + 1 −1 − a
1 −1
所以, a = −1 或 a = 2 时向量组线性相关. 更常规的思路是: 向量组 a1 , a2 , a3 线性相关, 则存在不全为零的数 k1 , k2 , k3 使得
k1 a1 + k2 a2 + k3 a3 = 0.
50
第四章 向量组的线性相关性 解: (1) 因为
A= −1 2 3 1 1 0 1 −1 0 0 2 7 2 1 7 2 −1 0 0 2 1 0 1 1 , 0
r2 + 3r1 4 r3 + r1 1
可见 R(A) = 2, 所以该向量组是线性相关的. 或者: 由 −1 2 1 3 + 1 = 4 1 0 1 知线性相关. (2) 因为

1 a3 = −1 1
4
.
解: 由 3(a1 − a) + 2(a2 + a) = 5(a3 + a) 得 2 10 1 1 5 + 1 1 a = (3a1 + 2a2 − 5a3 ) = 6 2 1 3 5 3= 3 0 1
2
;

4 −2 1 , b3 = B : b1 = , b2 = 1 1 1 3 1 2
2


0


4
.
即线性方程组

线性代数第四章答案解析

线性代数第四章答案解析第四章向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1,3)T ,a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T .解由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61TT T --+==(1, 2, 3, 4)T .3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明由-=312123111012421301402230) ,(B A ????? ??-------971820751610402230421301~r ????? ?------531400251552000751610421301 ~r-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由-????? ??---????? ??-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R(B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明由- ??- ??--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示;(2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1,a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为-???? ??-???? ??-=000110121220770121101413121~~r r A , 所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1,a , -1)T , a 3=(1, -1, a )T . 解以所给向量为列向量的矩阵记为A . 由aa aA 111111||--=如能使行列式等于0,则此时向量组线性相关.(具体看书后相应答案)8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1,a 2线性表示的表示式. 解因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0, 由此得2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=,设211λλλ+-=c , 则b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. (也可看书后答案)解不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.10. 举例说明下列各命题是错误的:(1)若向量组a 1, a 2, ? ? ?, a m 是线性相关的, 则a 1可由a 2, ? ? ?,a m 线性表示. 解设a 1=e 1=(1, 0, 0, ? ? ?, 0), a 2=a 3= ? ? ? =a m =0, 则a 1, a 2, ? ? ?, a m 线性相关, 但a 1不能由a 2, ? ? ?, a m 线性表示.(2)若有不全为0的数λ1, λ2, ? ? ?, λm 使λ1a 1+ ? ? ? +λm a m +λ1b 1+ ? ? ? +λm b m =0成立, 则a 1, a 2, ? ? ?, a m 线性相关, b 1, b 2, ? ? ?, b m 亦线性相关. 解有不全为零的数λ1, λ2, ? ? ?, λm 使λ1a 1+ ? ? ? +λm a m +λ1b 1+ ? ? ? +λm b m =0,原式可化为λ1(a1+b1)++λm(a m+b m)=0.取a1=e1=-b1,a2=e2=-b2,,a m=e m=-b m,其中e1,e2,,e m为单位坐标向量,则上式成立,而a1,a2,,a m和b1,b2,,b m均线性无关.(3)若只有当λ1,λ2,,λm全为0时,等式λ1a1++λm a m+λ1b1++λm b m=0才能成立,则a1,a2,,a m线性无关, b1,b2,,b m亦线性无关.解由于只有当λ1,λ2,,λm全为0时,等式由λ1a1++λm a m+λ1b1++λm b m=0成立,所以只有当λ1,λ2,,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)++λm(a m+b m)=0成立.因此a1+b1,a2+b2,,a m+b m线性无关.取a1=a2==a m=0,取b1,,b m为线性无关组,则它们满足以上条件,但a1,a2,,a m线性相关.(4)若a1,a2,,a m线性相关, b1,b2,,b m亦线性相关,则有不全为0的数,λ1,λ2,,λm使λ1a1++λm a m=0,λ1b1++λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0?λ1=-2λ2,λ1b1+λ2b2 =0?λ1=-(3/4)λ2,λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3, b3=a3+a4, b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.证明由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ? ? ?, b r =a 1+a 2+ ? ? ? +a r , 且向量组a 1, a 2, ? ? ? , a r 线性无关, 证明向量组b 1, b 2, ? ? ? , b r 线性无关. 证明已知的r 个等式可以写成=100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ? ? ? , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解由-????? ??--????? ??----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7).。

线性代数第4章习题答案(48p)

k 1 k 1 −1 = k 2 − 3k − 4 = (k − 4)(k + 1) ≠ 0 1
由于 D = 1
2 −1
⇒ k ≠ 4且k ≠ −1. 故应选 (C) .
(2) 线性方程组 Am×n X = b 有唯一解的条件是 B ). 有唯一解的条件是( (B) R(A) = R(A b) = n ; (A) m = n ; ) 都不对. 都不对 (C) Ax = θ 只有零解 只有零解; (D) (A),(B),(C)都不对 解: 线性方程组 Am×n X = b 有唯一解的充要条件是其 系数矩阵的秩与增广矩阵的秩相等且为n 选项(A)只 系数矩阵的秩与增广矩阵的秩相等且为 . 选项 只 表明方程组中方程的个数与未知量个数相同, 表明方程组中方程的个数与未知量个数相同 此时系 数矩阵的秩与增广矩阵的秩未必相等且为n 数矩阵的秩与增广矩阵的秩未必相等且为 , 故选项 (A)不正确 选项 成立的条件是系数矩阵的秩为 , 不正确. 选项(C)成立的条件是系数矩阵的秩为 成立的条件是系数矩阵的秩为n 不正确 也不正确. 但此时增广矩阵的秩未必为n, 故选项(C)也不正确 但此时增广矩阵的秩未必为 故选项 也不正确 由排除法知选项(B)正确 因此应选(B). 由排除法知选项 正确, 因此应选 正确
四. 求方程组
x1 + 2 x2 + 3 x3 + 4 x4 = 5 的特解. x1 − x2 + x3 + x4 = 1 的特解
解: B = 1 2 3 4 5 → 1 2 3 4 5 1 −1 1 1 1 0 −3 −2 −3 −4
∴ R( A) = R( B) = 2 < 4 = n.
α 4. 设Ax = b为四元齐次线性方程组,R(A)=3,1 , α 2 , α 3 为四元齐次线性方程组, 为四元齐次线性方程组 ,

线性代数第四章答案

第四章 向量组的线性相关性1设v 1(1 1 0)T v 2(0 1 1)T v 3(3 4 0)T 求v 1v 2及3v 12v 2v 3解 v 1v 2(1 1 0)T (0 11)T(10 11 01)T(1 01)T3v 12v 2v 33(1 1 0)T 2(0 1 1)T (34 0)T(31203 31214 30210)T (0 1 2)T2 设3(a 1a )2(a 2a )5(a 3a ) 求a 其中a 1(2 5 13)Ta 2(10 1 5 10)Ta 3(41 1 1)T解 由3(a 1a )2(a 2a )5(a 3a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61TT T --+=(1 2 3 4)T3 已知向量组 A a 1(0 1 2 3)T a 2(3 0 1 2)T a 3(2 30 1)TBb 1(2 112)T b 2(02 1 1)T b 3(4 4 13)T证明B 组能由A 组线性表示 但A 组不能由B 组线性表示证明 由⎪⎪⎪⎭⎫ ⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫ ⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )R (A B )3 所以B 组能由A 组线性表示由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )2 因为R (B )R (B A ) 所以A 组不能由B 组线性表示4 已知向量组 A a 1(0 1 1)T a 2(1 10)TBb 1(10 1)T b 2(1 2 1)T b 3(3 2 1)T证明A 组与B 组等价 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B知R (B )R (B A )2 显然在A 中有二阶非零子式 故R (A )2 又R (A )R (BA )2 所以R (A )2 从而R (A )R (B )R (A B ) 因此A 组与B 组等价5 已知R (a 1 a 2 a 3)2 R (a 2 a3 a 4)3 证明(1) a 1能由a 2 a 3线性表示 (2) a 4不能由a 1 a 2 a 3线性表示 证明 (1)由R (a 2 a 3 a 4)3知a 2 a 3 a 4线性无关 故a 2 a 3也线性无关 又由R (a 1 a 2 a 3)2知a 1 a 2 a 3线性相关 故a 1能由a 2 a 3线性表示(2)假如a 4能由a 1 a 2 a 3线性表示 则因为a 1能由a 2 a 3线性表示 故a 4能由a 2 a 3线性表示 从而a 2 a 3 a 4线性相关 矛盾 因此a 4不能由a 1 a 2 a 3线性表示6 判定下列向量组是线性相关还是线性无关 (1) (1 3 1)T (2 1 0)T (1 4 1)T (2) (23 0)T (14 0)T (00 2)T解 (1)以所给向量为列向量的矩阵记为A 因为⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A所以R (A )2小于向量的个数 从而所给向量组线性相关(2)以所给向量为列向量的矩阵记为B 因为22200043012||≠=-=B所以R (B )3等于向量的个数 从而所给向量组线性相无关7 问a 取什么值时下列向量组线性相关? a 1(a 1 1)T a 2(1a 1)T a 3(11 a )T解 以所给向量为列向量的矩阵记为A 由aa aA 111111||--=如能使行列式等于0,则此时向量组线性相关(具体看书后相应答案)8 设a 1 a 2线性无关 a 1b a 2b 线性相关 求向量b 用a 1 a 2线性表示的表示式解 因为a 1b a 2b 线性相关 故存在不全为零的数12使1(a 1b )2(a 2b )0由此得2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=设211λλλ+-=c 则b c a 1(1c )a 2 c R9 设a 1 a 2线性相关 b 1 b 2也线性相关 问a 1b 1 a 2b 2是否一定线性相关?试举例说明之 (也可看书后答案) 解 不一定例如 当a 1(1 2)T , a 2(2 4)T , b 1(1 1)T , b 2(0 0)T 时 有 a 1b 1(1 2)T b 1(0 1)T , a 2b 2(2 4)T (0 0)T (2 4)T而a 1b 1 a 2b 2的对应分量不成比例 是线性无关的10 举例说明下列各命题是错误的 (1)若向量组a 1 a 2a m 是线性相关的则a 1可由a 2a m 线性表示解设a1e1(1000)a2a3a m0则a1 a2a m线性相关但a1不能由a2a m线性表示(2)若有不全为0的数12m使a1m a m1b1m b m01成立则a1a2a m线性相关, b1b2b m亦线性相关解有不全为零的数12m使a1m a m1b1m b m01原式可化为(a1b1)m(a m b m)01取a1e1b1a2e2b2a m e m b m其中e1e2e m为单位坐标向量则上式成立而a1a2a m和b1b2b m均线性无关(3)若只有当12m全为0时等式a1m a m1b1m b m01才能成立则a1a2a m线性无关, b1b2b m亦线性无关解由于只有当12m全为0时等式由1a1m a m1b1m b m0成立所以只有当12m全为0时等式(a1b1)2(a2b2)m(a m b m)01成立因此a1b1a2b2a m b m线性无关取a1a2a m0取b1b m为线性无关组则它们满足以上条件但a1a2a m线性相关(4)若a1a2a m线性相关, b1b2b m亦线性相关则有不全为0的数12m使a1m a m01b1m b m01同时成立解a1(1 0)T a2(2 0)T b1(0 3)T b2(0 4)Ta12a2 01221b12b2 01(3/4)210与题设矛盾1211设b1a1a2b2a2a3 b3a3a4 b4a4a1证明向量组b1b2 b3b4线性相关证明 由已知条件得a 1b 1a 2 a 2b 2a 3 a 3b 3a 4 a 4b 4a 1于是 a 1 b 1b 2a 3 b 1b 2b 3a 4b 1b 2b 3b 4a 1从而 b 1b 2b 3b 40这说明向量组b 1 b 2 b 3 b 4线性相关12 设b 1a 1 b 2a 1a 2b ra 1a 2a r 且向量组a 1 a 2a r 线性无关 证明向量组b 1 b 2b r 线性无关证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b上式记为B AK 因为|K |10 K 可逆 所以R (B )R (A )r 从而向量组b 1 b 2b r 线性无关13 求下列向量组的秩, 并求一个最大无关组(1)a 1(1 2 1 4)T a 2(9 100 10 4)T a 3(2 4 2 8)T解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a知R (a 1 a 2 a 3)2 因为向量a 1与a 2的分量不成比例 故a 1 a 2线性无关 所以a 1 a 2是一个最大无关组(2)a 1T (1 2 1 3)a 2T (41 5 6)a 3T (134 7)解 由⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a知R (a 1T a 2T a 3T )R (a 1 a 2 a 3)2 因为向量a 1T 与a 2T 的分量不成比例 故a 1Ta 2T 线性无关 所以a 1T a 2T 是一个最大无关组14 利用初等行变换求下列矩阵的列向量组的一个最大无关组(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211解 因为⎪⎪⎪⎭⎫ ⎝⎛---141131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211所以第1、2、3列构成一个最大无关组(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15 设向量组(a3 1)T (2 b 3)T (1 2 1)T (2 31)T的秩为2 求a b解 设a 1(a 3 1)T a 2(2 b 3)T a 3(12 1)T a 4(23 1)T因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a而R (a 1 a 2 a 3 a 4)2 所以a 2 b 516设a1a2a n是一组n维向量已知n维单位坐标向量e1e2e n能由它们线性表示证明a1a2a n线性无关证法一记A(a1a2a n)E(e1e2e n)由已知条件知存在矩阵K使E AK两边取行列式得|E||A||K|可见|A|0所以R(A)n从而a1a2a n线性无关证法二因为e1e2e n能由a1a2a n线性表示所以R(e1e2e n)R(a1a2a n)而R(e1e2e n)n R(a1a2a n)n所以R(a1a2a n)n从而a1a2a n线性无关17设a1a2a n是一组n维向量, 证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示证明必要性设a为任一n维向量因为a1a2a n线性无关而a1a2a n a是n1个n维向量是线性相关的所以a能由a1a2a n线性表示且表示式是唯一的充分性已知任一n维向量都可由a1a2a n线性表示故单位坐标向量组e1e2e n能由a1a2a n线性表示于是有n R(e1e2e n)R(a1a2a n)n即R(a1a2a n)n所以a1a2a n线性无关18设向量组a1a2a m线性相关且a10证明存在某个向量a k (2k m)使a k能由a1a2a k1线性表示证明因为a1a2a m线性相关所以存在不全为零的数12使ma12a2m a m01而且23m不全为零这是因为如若不然则1a10由a10知10矛盾因此存在k(2k m)使0k1k2m0k于是a12a2k a k01a k(1/k)(1a12a2k1a k1)即a k 能由a 1 a 2 a k 1线性表示19 设向量组B b 1 b r 能由向量组A a 1a s 线性表示为(b 1b r )(a 1a s )K 其中K 为s r 矩阵 且A 组线性无关 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K )r 证明 令B (b 1b r ) A (a 1a s ) 则有B AK必要性 设向量组B 线性无关 由向量组B 线性无关及矩阵秩的性质 有 r R (B )R (AK )min{R (A ) R (K )}R (K )及 R (K )min{r s }r因此R (K )r充分性 因为R (K )r 所以存在可逆矩阵C 使⎪⎭⎫ ⎝⎛=O E KC r 为K 的标准形 于是(b 1b r )C ( a 1a s )KC(a 1 a r )因为C 可逆 所以R (b 1b r )R (a 1a r )r 从而b 1b r 线性无关20 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n n nααααβαααβαααβ证明向量组12n 与向量组12n 等价证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ将上式记为B AK 因为0)1()1(0111101111011110||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n所以K 可逆 故有A BK 1由B AK 和A BK 1可知向量组12n与向量组12n 可相互线性表示 因此向量组12n 与向量组12n 等价21 已知3阶矩阵A 与3维列向量x 满足A 3x 3A x A 2x 且向量组x A x A 2x 线性无关(1)记P (x A x A 2x ) 求3阶矩阵B 使AP PB解 因为AP A (x A x A 2x ) (A x A 2x A 3x )(A x A 2x 3A x A 2x )⎪⎪⎭⎫⎝⎛-=110301000) , ,(2x x x A A所以⎪⎪⎭⎫ ⎝⎛-=110301000B(2)求|A |解 由A 3x 3A x A 2x 得A (3x A x A 2x )0 因为x A x A 2x 线性无关 故3x A x A 2x 0 即方程A x 0有非零解 所以R (A )3 |A |0(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11. 已知向量组 β 1 = ( 0,1,−1) , β 2 = ( a ,2,1) , β 3 = ( b,1,0) 与向量组
T T T
α 1 = (1,2,−3)T , α 2 = ( 3,0,1) T , α 3 = (9,6,−7) T 具有相同的秩,且 β 3 可由向量组
α 1 , α 2 , α 3 线性表示,求 a , b 的值.
故线性表示为 v2 = 3a1 − 3a2 − 2a3 15. 求下面齐次线性方程组的基础解系与通解.
⎧ x1 − 8 x 2 + 10 x 3 + 2 x 4 = 0 ⎪ ⎨ 2 x1 + 4 x 2 + 5 x 3 − x 4 = 0 ⎪3 x + 8 x + 6 x − 2 x = 0 2 3 4 ⎩ 1
代入(1),得(k 1 + kl 1 )α 1 + L + (k m + kl m )α m + kβ 2 = 0
6. 当 λ 为何值时,向量组 α 1 = ( 3,2,0,1) ,α 2 = ( −1,−2,−4,−1) ,α 3 = ( 3,0, λ ,0)
T T



T
线性相关. 解 由
⎛ 3 −1 3⎞ ⎛1 −1 ⎜ ⎟ ⎜ ⎜2 − 2 0⎟ ⎜0 2 T T T A = (α 1 , α 2 ,α 3 ) = ⎜ ~ 0 − 4 λ ⎟ ⎜0 − 4 ⎜ ⎟ ⎜ ⎜1 −1 0⎟ ⎜0 0 ⎝ ⎠ ⎝
解 因为 α1 ,α 2 线性无关,而 α 3 = 3α1 + 2α 2 ,所以 α1 ,α 2 ,α 3 线性相关,且向量组 α1 ,α 2 ,α 3 的秩为 2,所以向量组 β1 , β 2 , β 3 的秩也为 2.由于 β 3 可由 α1 ,α 2 ,α 3 线性表示,故 β 3 可由
→ → →
a1 = (1, 1, 0, 0 ) , a 2 = (1, 0, 1, 1)
T → T →

T
所生成的向量空间记作
T
V1 ,由 b1 = (2,
− 1, 3, 3 ) , b2 = (0, 1, − 1, − 1) 所生成的向量空间
记作 V2 ,试证: V1 = V2 . 证明 设 V1 = x = k1a1 + k 2 a 2 k1 , k1 ∈ R , 任取 V1 中一向量,可写成 k1a1 + k 2 a2 , 要证 k1a1 + k 2 a 2 ∈ V2 ,从而得 V1 ⊆ V2 由 k1a1 + k 2 a2 = λ1 β1 + λ2 β 2 得
⎧ x1 + x4 = 0 ⎪ x + x2 = 0 ⎪ (2) 若 a1 , a2 , a3 , a4 线性无关, 则 ⎨ 1 x + x3 = 0 ⎪ 2 ⎪ ⎩ x3 + x 4 = 0
⎛1 ⎜ 1 ⇒⎜ ⎜0 ⎜0 ⎝
0 1 1 0
0 0 1 1
1 ⎞⎛ x1 ⎞ ⎟⎜ ⎟ 0 ⎟⎜ x 2 ⎟ =0 0 ⎟⎜ x3 ⎟ ⎜ ⎟ 1⎟ ⎠⎝ x 4 ⎠




α1 ,α 2 线性表示,即 α 1 ,α 2 , β 3 线性相关.
0 a b 1 3 b 于是有 1 2 1 = 0 ,解得 a = 3b ,另外 2 0 1 = 0 ,解得 b = 5 . −1 1 0 −3 1 0

a = 15 , b = 5 .
41
班级
姓名

学号
12.
DC
13. 由
T T
a3 = (4,1,−1,1)T ,求 a .
解 由 3(a1 − a) + 2(a2 + a) = 5(a3 + a) 整理得
a=
1 1 (3a1 + 2a2 − 5a3 ) = [3(2,5,1,3)T + 2(10,1,5,10)T − 5(4,1,−1,1)T ] 6 6
= (1,2,3,4)T
1 1 由 0 0
综合得证.
0 1 1 0
0 0 1 1
1 0 =0 0 1
知此齐次方程存在非零解. 则 b1 , b2 , b3 , b4 线性相关.
4. 设 b1 = a1 , b2 = a1 + a2 , L , br = a1 + a2 + L + ar ,且向量组 a1 , a2 ,L, ar 线性无关,证 明向量组 b1 , b2 , L , br 线性无关. 证明 设 k1b1 + k 2b2 + L + k r br = 0 则
属于最大无关组的列向量用最大无关组线性表示.

31 94 94 32
17 53 54 20
⎛ ⎜1 ⎜ ⎜0 ⎜0 ⎜ ⎜0 ⎝
43 ⎞ ⎟ r − 3r1 132 ⎟ 2 ~ 134 ⎟ r3 − 3r1 48 ⎟ ⎠ r4 − r1
8 ⎞ ⎟ 5 ⎟ 1 0 − 1⎟ 0 1 2 ⎟ ⎟ 0 0 0 ⎟ ⎠ 0 0
{
}
V2 = {x = λ1 β1 + λ2 β 2 λ1 , λ1 ∈ R}
⎧k1 + k 2 = 2λ1 ⎪k1 = λ2 − λ1 ⎧2λ1 = k1 + k 2 ⎨k = 3λ − λ ⇔ ⎨− λ + λ = k 1 2 2 1 ⎩ 1 ⎪ 2 k 3 λ λ = − 1 2 ⎩ 2
上式中,把 k1 , k 2 看成已知数,把 λ1 , λ2 看成未知数
3. 设 b1 = a1 + a2 , b2 = a2 + a3 , b3 = a3 + a4 , b4 = a4 + a1 ,证明向量组 b1 , b2 , b3 , b4 线性相 关. 证明 设有 x1 , x2 , x3 , x4 使得
x1b1 + x2b2 + x3b3 + x4b4 = 0 则 x1 (a1 + a2 ) + x2 (a2 + a3 ) + x3 (a3 + a4 ) + x4 (a4 + a1 ) = 0 ( x1 + x4 )a1 + ( x1 + x2 )a2 + ( x2 + x3 )a3 + ( x3 + x4 )a4 = 0
31 1 1 1
17 2 3 3
43 ⎞ ⎟ r −r 3⎟ 4 3 ~ 5 ⎟r −r 3 2 5⎟ ⎠
⎛ 25 ⎜ ⎜0 ⎜0 ⎜0 ⎝
31 1 0 0
17 2 1 0
43 ⎞ ⎟ 3⎟ 3⎟ 0⎟ ⎠
~
所以第 1、2、3 列构成一个最大无关组, a 4 =
→ →
8 a 1 − a 2 + 2a 3 。 5
班级
姓名
学号
第四章
T
向量组的线性相关性
T T
1.设 v1 = (1, 1, 0) , v2 = (0, 1, 1) , v3 = (3, 4, 0) , 求 v1 − v2 及 3v1 + 2v2 − v3 . 解
v1 − v2 = (1, 1, 0)T − (0, 1, 1)T = (1 − 0, 1 − 1, 0 − 1)T = (1, 0, − 1)T
(1) 若 a1 , a2 , a3 , a4 线性相关,则存在不全为零的数 k1 , k 2 , k3 , k 4 ,
k1 = x1 + x4 ;
k 2 = x1 + x2 ;
k3 = x2 + x3 ;
k 4 = x3 + x4 ;
38
班级
姓名
学号
由 k1 , k 2 , k3 , k 4 不全为零,知 x1 , x2 , x3 , x4 不全为零,即 b1 , b2 , b3 , b4 线性相关.
β 2 必线性无关.

设k 1α 1 + L + k m α m + k (lβ 1 + β 2 ) = 0
(1)
又β 1 可由α 1 , L , α m 线性表示 , β 1 = l 1α 1 + L + l m α m Q β 2 不能由A表示 ∴ k = 0 ∴ k i + kl i = 0 ⇒ k i = 0, i = 1,2, L , m ∴ α 1 , L , α m , lβ 1 + β 2 线性无关 .
D1 =
∴V1 ⊆ V2
2 0 =2≠0 −1 1
⇒ λ1 , λ2 有唯一解
同理可证: V2 ⊆ V1 (Q D2 = 14. 验 证 α 1
→ T →
1 1 ≠0) 1 0
故 V1 = V2
T → T
= (1, − 1, 0 ) , α 2 = (2, 1, 3 ) , α 3 = (3, 1, 2 ) 为 R 3
⎧k1 + 2k 2 + 3k 3 = 5 ⎪ ⎨− k1 + k 2 + k 3 = 0 ⎪ ⎩3k 2 + 2k 3 = 7
故 v1 = 2a1 + 3a2 − a3 设 v2 = λ1a1 + λ2 a2 + λ3 a3 ,则
⎧k1 = 2 ⎪ ⇒ ⎨k 2 = 3 ⎪ ⎩k 3 = −1
⎧λ1 + 2λ2 + 3λ3 = −9 ⎧k1 = 3 ⎪ ⎪ ⎨− λ1 + λ2 + λ3 = −8 ⇒ ⎨k 2 = −3 ⎪ ⎪ ⎩k3 = −2 ⎩3λ2 + 2λ3 = −13
则 k1 = k 2 = L = k r = 0 . 所以 b1 , b2 , L , br 线性无关 5. 设向量组 A : α 1 , α 2 , L , α m 线性无关, 向量 β 1 可由向量组 A 线性表示, 而向量 β 2
相关文档
最新文档