东 南 大 学 高等数学下期末考试( A 卷)
东南大学高等数学(A)期末03-13试卷

f ( z) =
1 z ! 4z + 3
2
1< z < 3
Laurent
(cos x + 2 xy + 1)dx + ( x 2 ! y 2 + 3)dy
.
+! 0
"
1 dx 1 + x4
v( x, y, z) = { y3 ! z 3 , z 3 ! x3 , 2 z 3}
z = 1 + 1 ! x2 ! y 2
2
1< z ! 2 < 3
2 ydx + ( y 2 ! 6x)dy = 0
2 8 9
y!! + 4 y = 8 x " 4sin 2 x
y(0) = 0, y!(0) = 5
!
I = ## x2 dy " dz + y 2 dz " dx + ( z 3 + x)dx " dy
!
z = x2 + y 2 (0 ! z ! 1)
! n
!
"a x
k k =1
k +1
[0,1]
f ( x)
(f$ % &n'
n =1
!
"1#
2005
1+ 1! x2 x
A
"
1
0
dx "
f ( x, y)dy =
e z + z + xy = 3
M (2,1, 0) (2,1,1)
divA =
A = 3x 2 yz 2i + 4 xy 2 z 2 j + 2 xyz 3k
第二学期高数下期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1一、 填空题(每空 3 分,共 15 分) 1.设()=⎰22t xFx e dt ,则()F x '=-22x xe.2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:=(),-⎰⎰2302xxdx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰ÑD LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5.级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1.当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0;B. 等于13;C. 等于14; D. 不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA.e ;B. ()+e dx dy ;C. ()-+1edx dy ; D. ()+x e dx dy .4.若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定.5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3xae ; B.()+3x ax b e ;C. ()+3x xax b e ; D. ()+23x x ax b e .三.(8分)设一平面通过点(),,-312,而且通过直线-+==43521x y z,求该平面方程. 解:()(),,,,,--312430QA B(),,∴=-142u u u rAB 平行该平面∴该平面的法向量()()(),,,,,,=⨯-=--5211428922rn∴所求的平面方程为:()()()----+=83912220x y z即:---=8922590x y z四.(8分)设(),=yz fxy e ,其中(),f u v 具有二阶连续偏导数,试求∂∂z x 和∂∂∂2zx y. 解:令=u xy ,=y v e五.(8分)计算对弧长的曲线积分⎰L其中L 是圆周+=222xy R 与直线,==00x y在第一象限所围区域的边界.解:=++123L L L L其中: 1L :(),+=≥≥22200xy R x y2L :()=≤≤00x y R3L :()=≤≤00y x R而Re ==⎰⎰1202RR L e Rdt ππ故:()Re =+-⎰212R R Le π六、(8分)计算对面积的曲面积分∑⎛⎫++ ⎪⎝⎭⎰⎰423z x y dS ,其中∑为平面++=1234x y z在第一卦限中的部分. 解:Q xy D :≤≤⎧⎪⎨≤≤-⎪⎩023032x y x=3-==⎰⎰323200x dx七.(8分)将函数()=++2143f x x x ,展开成x 的幂级数.解:()⎛⎫=-=⋅-⋅ ⎪+++⎝⎭+111111121321613Q f x xx x x , 而 ()∞=⋅=-+∑01111212n nn x x , (),-11 ()∞=-⋅=+∑01116313nn n n x x , (),-33 ()()∞+=⎛⎫∴=-+ ⎪⎝⎭∑10111123nnn n f x x , (),-11八.(8分)求微分方程:()()+-+-+=42322253330xxy y dx x y xy y dy 的通解.解:∂∂==-∂∂263Q P Qxy y y x,∴原方程为:通解为:++-=532231332x y x y y x C九.幂级数:()()!!!!=++++⋅⋅⋅++⋅⋅⋅246212462nx x x x y x n1.试写出()()'+y x y x 的和函数;(4分)2.利用第1问的结果求幂级数()!∞=∑202nn x n 的和函数.(8分)解:1、()()!!!-'=+++⋅⋅⋅++⋅⋅⋅-35213521n x x x y x x n (),-∞∞于是()()!!'+=++++⋅⋅⋅=23123x x x y x y x x e (),-∞∞ 2、令:()()!∞==∑202nn x S x n由1知:()()'+=x S x S x e 且满足:()=01S通解:()()--=+=+⎰12x x x xx Sx e C e e dx Ce e 由()=01S ,得:=12C ;故:()()-=+12xx S x e e十.设函数()f t 在(),+∞0上连续,且满足条件其中Ωt 是由曲线⎧=⎨=⎩2z ty x ,绕z 轴旋转一周而成的曲面与平面=zt (参数>0t )所围成的空间区域。
东 南 大 学 高等数学下期末考试( A 卷)

共 5 页 第 1 页东 南 大 学 考 试 卷( A 卷)一. 填空题1.设一平面过原点及点()6,3,2-,且与平面428x y z -+=垂直,则此平面的方程是 .2. 幂级数()()1112ln 1nn nn x n ∞=-+∑的收敛域为 . 3. 交换积分次序:()()122001d ,d d ,d y yy f x y x y f x y x -+=⎰⎰⎰⎰.4. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-=⎰ .二. 单项选择题1.曲面24e 3zxy z +-=在点()1,2,0处的法线与直线12112x y z --==-的夹角为 [ ] (A) 4π (B) 3π (C) 2π(D) 0 2.设区域D 由直线,y x y x ==-和1x =围成,1D 是D 位于第一象限的部分,则[ ] (A )()()1sin d d 2d d DD xy y xy x y xy x y +=⎰⎰⎰⎰(B )()()()1sin d d 2sin d d DD xy y xy x y y xy x y +=⎰⎰⎰⎰(C )()()()()1sin d d 2sin d d DD xy y xy x y xy y xy x y +=+⎰⎰⎰⎰(D )()()sin d d 0Dxy y xy x y +=⎰⎰3.设∑为上半球面z =,则曲面积分∑的值为 [ ](A )4π (B )165π (C )163π (D )83π共 5 页 第 2 页4.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ ] (A ) 充分而非必要条件 (B )必要而非充分条件 (C )充分必要条件 (D )既非充分也非必要条件 三. (本题共5小题,每小题7分,满分3 5分)1.设(),z z x y =是由方程()2223x z f y z -=-所确定的隐函数,其中f 可微,求23z zyx x y∂∂+∂∂ .2.将函数()()2ln 2f x x x =+-展成2x -的幂级数。
高等数学A(下册)期末考试试题

高等数学A(下册)期末考试试题大题 一 二 三 四 五 六 七 小题1 234 5得分一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a r 、b r满足0a b +=r r r ,2a =r ,2b =r ,则a b ⋅=r r .2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 .4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 .5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分) 抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.(本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.四、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.五、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx zdxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.六、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]t F t z f xy z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求 3()lim t F t t +→.-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
高等数学(A)下期末试卷及答案(优选.)

南京邮电大学2010/2011学年第二学期《高等数学A 》(下)期末试卷A 答案及评分标准 一、选择题(本大题分5小题,每题3分,共15分)1、交换二次积分⎰⎰x e dy y x f dx ln 01),(的积分次序为(c )(A ) ⎰⎰x e dx y x f dy ln 01),( (B )⎰⎰1),(dx y x f dy e e y(C )⎰⎰eeydx y x f dy ),(10(D )⎰⎰ex dx y x f dy 1ln 0),(2、锥面22y x z +=在柱面x y x 222≤+内的那部分面积为 (D )(A )⎰⎰-θππρρθcos 2022d d (B )⎰⎰-θππρρθcos 20222d d(C )⎰⎰-θππρρθcos 202222d d (D )⎰⎰-θππρρθcos 20222d d3、若级数∑∞=-1)2(n nn x a 在2-=x 处收敛,则级数∑∞=--11)2(n n n x na 在5=x (B ) (A ) 条件收敛 (B ) 绝对收敛 (C ) 发散(D ) 收敛性不确定 4、下列级数中收敛的级数为 (A )(A ) ∑∞=-1)13(n nn n (B )∑∞=+121n n n (C ) ∑∞=+111sin n n (D )∑∞=13!n n n 5、若函数)()2()(2222x axy y i xy y x z f -+++-=在复平面上处处解析,则实常数a 的值 为 (c )(A ) 0 (B ) 1 (C ) 2 (D ) -2二、填空题(本大题分5小题,每题4分,共20分)1、曲面122-+=y x z 在点)4,1,2(处的切平面方程为624=-+z y x2、已知)0(:222>=+a a y x L ,则=-+⎰Lds xy y x )]sin([22 32 a π 3、Ω是由曲面22y x z +=及平面)0(>=R R z 所围成的闭区域,在柱面坐标下化三重积分⎰⎰⎰+Ωdxdydz y x f )(22为三次积分为⎰⎰⎰RR dz f d d ρπρρρθ)(20204、函数x x f =)()0(π≤≤x 展开成以2π为周期的正弦级数为nx nx n n sin )1(211+∞=-=∑,收敛区间为π<≤x 05、=+-)1(i Ln2,1,0),243(2ln ±±=++k k i ππ=-]0,[Re 2zz e s z1-三、(本题8分)设),()(22xy y xg y x f z ++=,其中函数)(t f 二阶可导,),(v u g 具有二阶连续偏导数,求y x z x z ∂∂∂∂∂2,解:2112yg g y f x x z ++'=∂∂ … 3分=∂∂∂yx z2f xy ''4113122221g y x g y xyg g --++ 5分四、(本题8分)在已知的椭球面134222=++z y x 内一切内接的长方体(各边分别平行坐标轴)中,求最大的内接长方体体积。
高等数学期末考试试卷(含答案)完整版本

高等数学期末考试试卷(含答案)完整版本一、高等数学选择题
1.点是函数的极值点.
A、正确
B、不正确
【答案】B
2.不定积分.
A、
B、
C、
D、
【答案】A
3.微分方程的通解是().
A、
B、
C、
D、
【答案】B
4.设函数,则.
A、正确
B、不正确
【答案】A
5.不定积分,其中为任意常数.
A、正确
B、不正确
【答案】B
6..
A、正确
B、不正确
【答案】A
7.函数的图形如图示,则函数的单调减少区间为
( ).
A、
B、
C、
D、
【答案】D
8.设函数,则().A、
B、
C、
D、
【答案】A
9.极限.
A、正确
B、不正确
【答案】A
10.设函数,则().A、
B、
C、
D、
【答案】A
11. ( ).
A、
B、
C、
D、
【答案】B
12.不定积分( ).
A、
B、
C、
D、
【答案】B
13.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
14.是偶函数.
A、正确
B、不正确
【答案】A
15.函数在点处连续.
A、正确
B、不正确
【答案】A。
大一下学期高等数学期末考试试题及答案

高等数学A (下册)期末考试试题【A 卷】院(系)别 班级学号姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a r 、b r满足0a b +=r r r ,2a =r ,2b =r ,则a b ⋅=r r.2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为.4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数在3x =处收敛于 ,在x π=处收敛于.5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程.2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂.5、计算曲面积分,dSz∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求3()lim t F t t +→. -------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交;不得带走试卷。
高数a2下期末考试题及答案

高数a2下期末考试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在区间(a, b)上可导,则下列说法正确的是:A. f(x)在(a, b)上一定连续B. f(x)在(a, b)上一定单调C. f(x)在(a, b)上一定有极值D. f(x)在(a, b)上一定有最大值和最小值答案:A2. 若函数f(x)=x^3+3x^2+3x+1,则f'(x)为:A. 3x^2+6x+3B. x^3+3x^2+3C. 3x^2+6xD. 3x^2+6x+3x+1答案:A3. 设函数f(x)=ln(x+√(1+x^2)),则f'(x)为:A. 1/(1+x^2)B. 1/(1+x+√(1+x^2))C. 1/(1+√(1+x^2))D. 1/(1+x+√(1+x^2))^2答案:B4. 若函数f(x)=x^2-4x+c,且f(1)=-3,则c的值为:A. 0B. 1C. -2D. 2答案:B二、填空题(每题5分,共20分)1. 若函数f(x)=x^3-3x+2,则f''(x)=_________。
答案:6x-32. 设函数f(x)=e^x+ln(x+1),则f'(x)=_________。
答案:e^x/(x+1)3. 若函数f(x)=x^2-6x+10,则f(x)的最小值为_________。
答案:-24. 设函数f(x)=x^3-3x^2+2x-1,则f(0)=_________。
答案:-1三、计算题(每题10分,共30分)1. 求函数f(x)=x^3-3x+2的一阶导数和二阶导数。
答案:f'(x)=3x^2-3,f''(x)=6x-32. 求函数f(x)=e^x*sin(x)的导数。
答案:f'(x)=e^x*sin(x)+e^x*cos(x)3. 求函数f(x)=ln(x+√(1+x^2))的导数。
答案:f'(x)=1/(1+x+√(1+x^2))四、解答题(每题15分,共15分)1. 已知函数f(x)=x^3-6x^2+11x-6,求其在x=1处的切线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共 5 页 第 1 页
东 南 大 学 考 试 卷( A 卷)
一. 填空题
1.设一平面过原点及点()6,3,2-,且与平面428x y z -+=垂直,则此平面的方程是 .
2. 幂级数()
()
1
1
12ln 1n
n n
n x n ∞
=-+∑的收敛域为 .
3. 交换积分次序:()()12
20
01
d ,d d ,d y y
y f x y x y f x y x -+=⎰⎰⎰
⎰
.
4. 设曲线C 为圆周2
2
1x y +=,则曲线积分()2
23d C
x
y x s +-=⎰ .
二. 单项选择题
1.曲面24e 3z
xy z +-=在点()1,2,0处的法线与直线
12
112
x y z --==
-的夹角为 [ ] (A)
4π (B) 3π (C) 2
π
(D) 0 2.设区域D 由直线,y x y x ==-和1x =围成,1D 是D 位于第一象限的部分,则[ ] (A )()()1
sin d d 2d d D
D xy y xy x y xy x y +=⎰⎰⎰⎰
(B )()()()1
sin d d 2sin d d D
D xy y xy x y y xy x y +=⎰⎰⎰⎰
(C )()()()()1
sin d d 2sin d d D
D xy y xy x y xy y xy x y +=+⎰⎰⎰⎰
(D )
()()sin d d 0D
xy y xy x y +=⎰⎰
3.设∑
为上半球面z =
,则曲面积分
∑
的值为 [ ]
(A )4π (B )
165π (C )16
3
π (D )83π
共 5 页 第 2 页
4.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ ] (A ) 充分而非必要条件 (B )必要而非充分条件 (C )充分必要条件 (D )既非充分也非必要条件 三. (本题共5小题,每小题7分,满分3 5分)
1.设(),z z x y =是由方程()
2223x z f y z -=-所确定的隐函数,其中f 可微,求
23z z
y
x x y
∂∂+∂∂ .
2.将函数()()
2ln 2f x x x =+-展成2x -的幂级数。
共 5 页 第 3 页
3.
计算二重积分
d D
x y ,其中D 是由0x =
与()0x a =>所围
成的区域.
4.确定λ的值,使曲线积分
()()2
124d 62d C
x
xy x x y y y λλ-++-⎰在XoY 平面上与路径
无关。
当起点为()0,0,终点为()3,1时,求此曲线积分的值。
5.设点()000,,P x y z 是球面2
2
2
:1x y z ∑++=上的一点,n 为∑在点P 的外側法向量,
求函数u x y z =++在点P 处沿方向n 的方向导数;
共 5 页 第 4 页
四.(本题满分8分) 计算曲线积分()()22
d d C
y x x y x y I x y ++-=
+⎰
,其中C 是自点
()2,1A -沿曲线cos
2
y x π
=-到点()2,1B 的曲线段。
五.(本题满分8分) 计算曲面积分
()()281d d 4d d 2d d I x z y z yz z x y z x y ∑
=+∧-∧+-∧⎰⎰,
其中∑是曲面22
1z x y =++被平面3z =所截下的部分,取下側。
共 5 页 第 5 页
六.(本题满分7分) 设立体Ω
由锥面z =
及半球面1z =已知Ω上任一点(),,x y z 处的密度与该点到x y o 平面的距离成正比(比例系数为0K >),试求立体Ω的质量。
七.(本题满分6分) 证明不等式
22
sin d cos d 2
C
y x x x y y π
≤
-+≤
⎰,其中C 是圆周22
0x y x y +++=,取逆时针方向。