直流电机工作原理及调速
直流电动机调速原理

直流电动机调速原理直流电动机是一种常见的电动机类型,它在工业生产中有着广泛的应用。
而电动机的调速则是其在实际应用中非常重要的一个方面。
本文将介绍直流电动机调速的原理和方法。
首先,我们来了解一下直流电动机的工作原理。
直流电动机通过直流电源提供电能,将电能转换为机械能,驱动负载进行工作。
在电动机内部,有一个旋转部件称为转子,和一个固定部件称为定子。
在电动机中,通过电流在磁场中产生力矩,从而驱动转子旋转。
而电动机的转速与电压成正比,转矩与电流成正比。
在实际应用中,我们经常需要对电动机的转速进行调节,以满足不同工况下的需求。
直流电动机调速的原理主要有以下几种:1. 电压调速。
电压调速是通过改变电动机的输入电压来实现调速的方法。
当电压增大时,电动机的转速也会增加;反之,当电压减小时,电动机的转速会降低。
这种方法简单易行,但是需要考虑电动机的额定电压和最大电压之间的关系,以及对电动机的影响。
2. 串联电阻调速。
串联电阻调速是通过改变电动机的电流来实现调速的方法。
在电动机的串联电路中加入电阻,可以降低电动机的起动电流,从而实现调速的目的。
但是这种方法会导致电动机的效率降低,且需要考虑电阻的功率损耗和散热问题。
3. 电枢调速。
电枢调速是通过改变电动机的电枢电流来实现调速的方法。
通过改变电枢电流的大小,可以改变电动机的转速。
这种方法可以实现较大范围的调速,但是需要考虑电枢电流对电动机的影响和电动机的稳定性。
4. 外加磁场调速。
外加磁场调速是通过改变电动机的外加磁场来实现调速的方法。
通过改变外加磁场的大小,可以改变电动机的转速。
这种方法可以实现较大范围的调速,但是需要考虑外加磁场对电动机的影响和电动机的稳定性。
总的来说,直流电动机调速的原理主要是通过改变电动机的电压、电流、电枢电流和外加磁场来实现的。
不同的调速方法有着各自的特点和适用范围,需要根据具体的工况和要求来选择合适的调速方法。
除了以上介绍的调速原理外,还有一些先进的调速技术,如PWM调速、矢量控制调速等,这些调速技术能够更精确地控制电动机的转速和转矩,提高电动机的效率和性能。
直流电机调速原理

直流电机调速原理
直流电机调速原理是通过改变电机供电电压或改变电机的励磁,来调节电机的转速。
直流电机调速的主要原理有以下几种:
1. 电压调速:改变电机的供电电压,可以改变电机的转矩和转速。
降低电机的供电电压,可以降低电机的转速,增加电机的供电电压,可以提高电机的转速。
2. 电阻调速:在电机的励磁回路中串联一个可变电阻,通过改变电阻的阻值,可以改变电机的励磁电流和转速。
增加电阻的阻值,可以降低电机的励磁电流和转速,减小电阻的阻值,可以增加电机的励磁电流和转速。
3. 分栅调速:在电机的励磁回路中增加一个分栅电阻,并通过短路或开路分栅电阻来改变电机的转矩和转速。
短路分栅电阻,可以使电机的转矩和转速增大,开路分栅电阻,则可以使电机的转矩和转速减小。
4. 变极调速:改变电机的励磁磁场的极数,可以改变电机的转速。
增加励磁磁场的极数,可以提高电机的转速,减少励磁磁场的极数,则可以降低电机的转速。
5. 变频调速:通过改变电机供电的频率,可以改变电机的转速。
增加供电频率,可以提高电机的转速,减小供电频率,则可以降低电机的转速。
通过上述原理的组合和调节,可以实现直流电机的调速控制,满足不同工况下的需要。
直流电机的调速方法

直流电机的调速方法一、前言直流电机是工业生产中常用的驱动设备,它具有调速范围广、转矩平稳等优点。
在实际应用中,为了满足不同的工艺要求,需要对直流电机进行调速。
本文将介绍直流电机的调速方法。
二、基本原理直流电机的调速原理是通过改变电源电压和/或改变电枢回路中的电阻来改变电机的转速。
当电压增大或者回路阻值减小时,会使得转矩增大,从而使得转速提高;反之亦然。
三、调速方式1. 串联型调速串联型调速是通过改变外接串联在直流电机上的可变阻值来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器串联在直流电机中;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
2. 并联型调速并联型调速是通过改变外接并联在直流电机上的可变阻值来改变电枢回路的总电阻,从而达到提高转矩和加快转速的目的。
具体步骤如下:(1)将可变阻器并联在直流电机中;(2)当可变阻器阻值增加时,电枢回路总电阻增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
3. 电枢调速电枢调速是通过改变直流电机中的电枢回路中的电阻来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器连接在直流电机的电枢回路上;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
4. 磁通调速磁通调速是通过改变直流电机中励磁回路中串联在励磁线圈上的可变抵抗来改变磁通量大小,从而达到改变转速和转矩的目的。
具体步骤如下:(1)将可变抵抗串联在励磁线圈上;(2)当可变抵抗阻值增加时,回路总阻值增加,从而使得磁通量减小,输出功率减小;反之亦然;(3)通过逐渐增加或减小可变抵抗的阻值来实现调节。
四、注意事项1. 在进行调速时,应根据直流电机的额定参数和工作要求进行合理选择。
直流电机开环调速系统工作原理

直流电机开环调速系统工作原理1. 什么是直流电机?直流电机,顾名思义,就是那种靠直流电供电的电机。
就像我们日常生活中常见的玩具车、电风扇一样,这些电机在我们生活中可谓是随处可见。
它们能把电能转化为机械能,帮我们完成各种各样的工作。
而开环调速系统,听上去很高大上,但其实就是一种简单的控制方式。
它不像闭环控制那样复杂,所以咱们今天就来聊聊这个“简单明了”的开环调速系统到底是怎么工作的。
2. 开环调速系统的基本原理2.1 电机与电源的关系直流电机的运行离不开电源。
就像人需要吃饭才能有力气一样,电机也需要电源才能转动。
开环调速系统主要是通过调节电机供电电压来实现转速的变化。
简单来说,就是你把电压调高,电机转得快;调低,转得慢。
这个过程就像是给一辆车加油,油加得多,车跑得快,油加得少,车就慢吞吞的。
2.2 转速的变化转速变化的原理其实很简单。
当你给电机输入不同的电压时,电流也会随之改变。
电流越大,产生的磁场越强,电机转动得也就越快。
就像小朋友们在游乐场上玩秋千,推得越用力,秋千摆得越高,乐趣也就越多。
而电机转速的变化也能影响到它的输出功率,就像我们跑步的速度不同,消耗的体力也不一样。
3. 开环调速系统的优势与局限3.1 优势开环调速系统的最大好处就是简单易用,成本低。
对于一些不需要精确控制转速的场合,比如说风扇、玩具车,开环系统就像一位好管家,负责把电源和电机的关系打理得妥妥当当,省去不少麻烦。
而且,系统的设计也比较简单,不需要太多复杂的传感器和控制器,这样可以大大降低维护成本,简直就是一劳永逸。
3.2 局限不过,开环调速系统也有它的不足之处。
最大的局限在于它缺乏反馈机制。
想象一下,如果你的车子没有速度表,你怎么知道自己开得快还是慢?开环系统在负载变化时,无法实时调整电机的转速,可能导致转速不稳定,尤其是在负载变化较大的情况下,电机可能会出现过载或运行不平稳的情况。
这就像一场马拉松,选手们虽然都拼劲十足,但如果没有教练的实时指导,很可能会出现偏离轨道的情况。
直流电机的调速方法

电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。 但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎 没什么调速作用;还会在调速电阻上消耗大量电能。
二、直流电动机调速的种类与方法
直流电机调速的种类分别有: 1.调节电枢供电电压U
改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定 转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑 调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速 响应,但是需要大容量可调直流电源。 2.改变电动机主磁通
1.ቤተ መጻሕፍቲ ባይዱ节电枢供电电压U
三、直流电动机调速方法的特点
直流电动机三种调速方法的特点: 不同的需要,采用不同的调速方式 1.调电枢电压,适合应用在0~基速以下范围内调速。不能达
到电动机的最高转速。 2.在电枢全电压状态,调激磁电压,适合应用在基速以上,
弱磁升速。 不能得到电动机的较低转速。 3.在全磁场状态,调电枢电压,电枢全电压之后,弱磁升速。
适合应用在调速范围大的情况。这是直流电动机最完善的 调速方式,但设备复杂,造价高。
直流电机的调速方法
• 一组:韩爽 刘磊 刘畅 韩玉迪
目录
一、直流电动机调速的定义与工作原理 二、直流电动机调速的种类与方法 三、直流电动机调速方法的特点
一、直流电动机调速的定义与工作原理
• 定义:直流电机调速器就是调节直流电动机速度 的设备。
• 工作原理:是通过改变输出方波的占空比使负载上 的平均电流功率从0-100%变化、从而改变负载、 灯光亮度/电机速度。利用脉宽调制(PWM)方式、 实现调光/调速、它的优点是电源的能量功率、能 得到充分利用、电路的效率高。
直流电机弱磁调速原理

直流电机弱磁调速原理
直流电机的弱磁调速原理是通过改变电枢绕组的磁通量,从而调节电机的速度。
弱磁调速主要是通过调节电机励磁电流来实现的。
直流电机的转速与电枢磁场的磁通量成正比,因此改变电枢磁通量可以改变电机的转速。
在弱磁调速中,通过减小电枢励磁电流,降低电枢磁场的磁通量,从而使电机转速降低。
具体来说,弱磁调速的原理如下:
1. 电枢回路:电枢绕组通过外电源供电,形成电枢回路。
2. 电枢电流:通过调节电枢回路中的电枢电流,改变电枢绕组的励磁电流大小。
3. 磁通量变化:电枢电流的变化会影响电枢绕组产生的磁场的强度,从而改变电机的磁通量。
4. 转速变化:由于直流电机转速与磁通量成正比,因此降低电机的磁通量会导致电机转速下降。
5. 调节电流:通过控制电枢回路中的电枢电流大小,可以实现对电机速度的调节。
通过调节电枢励磁电流来实现弱磁调速可以有效地控制直流电机的速度,适用于需要广范围调速的应用。
需要注意的是,在实际应用中,弱磁调速可能会导致电机的转矩降低,因此在选择调速方式时需要综合考虑转速要求和负载特性。
简述直流电动机的调速方法。
简述直流电动机的调速方法。
直流电动机是一种无刷直流电机,其工作原理基于电枢的旋转,其调速方法
主要有以下几种:
1. 电阻调速:将直流电动机接入电阻器中,通过改变电阻的大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是调速效率低,而且电阻器易损坏。
2. 电容调速:在直流电动机的转轴上加装电容,通过改变电容的大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容,而且容易引起电动机故障。
3. 串激调速:在直流电动机的转轴上串联一个电阻和一个电感,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是需要复杂的电路,而且容易引起电动机故障。
4. 反相调速:在直流电动机的转轴上加装一个电容器和一个电阻,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容器,而且容易引起电动机故障。
除了以上几种调速方法外,还有一些其他的方法,例如脉冲调速、积分调速等。
这些方法在实际应用中要根据具体情况选择使用。
直流电动机的调速方法的选择应该考虑到调速范围、调速效率、电动机的性能和稳定性等因素。
在实际应用中,需要根据具体的情况和要求选择合适的调速方法。
直流电机调速原理
直流电机调速原理
直流电机调速原理主要是通过控制电机的电压和电流来改变电机的转速。
直流电机调速可以分为电压调速和电流调速两种方法。
1. 电压调速:
电压调速是通过改变直流电机的供电电压来实现的。
当电机的电压降低时,电机的转速会相应降低;当电压增加时,电机的转速也会增加。
这是因为电机内部的电流与电压成正比关系,而电机的转速又与电机内部的电流成正比关系。
2. 电流调速:
电流调速是通过改变直流电机的电流来实现的。
电机的转速与电机的电流成正比关系,在一定电压的情况下,增大电机的电流可以提高电机的转速。
通过改变电机的电流大小,可以实现直流电机的调速。
在实际应用中,调速控制器会根据需要调整电机供电的电压或电流,以达到期望的转速。
常见的调速方法包括电压调制调速、PWM调速和编码器反馈调速等。
需要注意的是,直流电机调速原理中还涉及到调速控制系统中的反馈机制和控制算法。
例如,通过编码器等传感器对电机的转速进行实时测量,并将测量值与期望值进行比较,并根据比较结果进行调速控制。
通过不断调整电机供电的电压和电流,使电机的实际转速逐渐接近期望转速,从而实现直流电机的精确调速。
直流有刷电机调速原理
直流有刷电机调速原理一、引言直流有刷电机是一种常见的电动机类型,广泛应用于工业生产和家用电器等领域。
调速是电机运行过程中非常重要的功能之一,本文将介绍直流有刷电机的调速原理。
二、直流有刷电机的结构和工作原理直流有刷电机主要由定子、转子、电刷和换向器等组成。
定子是不可移动的部分,上面绕有线圈,称为定子线圈。
转子是电机的旋转部分,由磁铁或电磁铁组成。
电刷则负责与转子上的换向器接触,以便改变电流的方向。
当直流电流通过定子线圈时,会在定子上产生一个磁场。
根据洛伦兹力的作用原理,当转子上的磁场与定子上的磁场相互作用时,会产生一个力矩,使转子开始旋转。
此时,电刷通过换向器将电流反向,并继续流过定子线圈,使转子保持旋转。
三、直流有刷电机的调速方法直流有刷电机的调速方法主要有电压调速和电流调速两种。
1. 电压调速电压调速是通过改变电源的电压来控制电机的转速。
当电机负载增加时,转子的转速会下降。
此时,通过增加电源电压,可以使电机继续保持额定转速。
相反,当负载减少时,可以降低电源电压,以避免电机过速运行。
电压调速简单易行,但是对电机的负载变化响应较慢,无法实现精确的调速。
2. 电流调速电流调速是通过改变电机的电流来控制转速。
在电机运行过程中,通过控制电流的大小,可以实现对转速的精确调节。
当电机负载增加时,电流会增加,从而提供更大的转矩以应对负载变化。
当负载减少时,电流会减小,以避免电机过速运行。
电流调速具有响应速度快、调速范围广的优点,但需要较为复杂的电路和控制系统。
四、直流有刷电机调速原理直流有刷电机的调速原理是通过改变电机的电源电压或电流,来控制电机的转速。
1. 电压调速原理在电压调速中,通过改变电源电压来调节电机的转速。
当降低电源电压时,电机的转速会下降;当增加电源电压时,电机的转速会提高。
这是因为电机的转矩与电源电压成正比,在电源电压降低时,转矩也相应减小,导致转速下降。
2. 电流调速原理在电流调速中,通过改变电机的电流来调节转速。
直流电机pwm调速原理
直流电机pwm调速原理直流电机PWM调速原理是通过改变电源给电机的电压和电流,从而控制电机转速的一种方法。
PWM,即脉冲宽度调制,是一种用来调节电平电路中电平的技术,利用脉冲信号的占空比(高电平与周期时间之比)来控制电平的平均值。
在直流电机PWM调速中,首先需要了解电机的电刷子与换向器的工作原理。
电刷子负责切换电极的极性,而换向器则根据电刷子的位置将电流传送到正确的电极上。
当电流在电机的绕组中流动时,会形成磁场,这个磁场会与永磁体产生相互作用,从而产生电机的转动力。
为了控制电机的转速,可以通过改变供电电压的幅值和频率来实现。
在PWM调速中,电源输出的电压信号被分解为一系列的脉冲信号。
脉冲信号的占空比根据所需的电机转速来确定,占空比越大,电机转速越快。
在每个脉冲周期中,脉冲信号的高电平部分代表电源给电机供电的时间,而低电平部分则代表停止供电的时间。
通过改变脉冲信号的占空比,可以控制电机的平均电压和平均电流。
当占空比增大时,电机平均得到更多的能量供应,转速也会相应增加。
反之,当占空比减小时,电机平均得到更少的能量供应,转速会减慢。
这样,通过不断调整脉冲信号的占空比,就可以实现对直流电机的精准调速。
需要注意的是,在PWM调速中,电机的换向也需要考虑进去。
换向器需要根据电机的转向来控制电刷子的位置,使电流能够按正确的路径流动。
这样能够保证电机的正常运转,并提供足够的转矩和稳定性。
综上所述,直流电机PWM调速是通过改变电源给电机的电压和电流的脉冲信号的占空比来实现的。
通过调节脉冲信号的占空比,可以控制电机的平均电压和电流,从而实现对电机转速的精确控制。
同时,需考虑电机的换向,以保证电机能够正常运转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流电机的基本工作原理
直流励磁的磁路在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。
在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。
此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。
直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。
在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。
虽然直流发电机和直流电动机的用途各不同,但是它们的结构基本上一样,都是利用电和磁的相互作用来实现机械能与电能的相互转换。
直流电机的最大弱点就是有电流的换向问题,消耗有色金属较多,成本高,运行中的维护检修也比较麻烦。
因此,电机制造业中正在努力改善交流电动机的调速性能,并且大量代替直流电动机。
不过,近年来在利用可控硅整流装置代替直流发电机方面,已经取得了很大进展。
包括直流电机在内的一切旋转电机,实际上都是依据我们所知道的两条基本原则制造的。
一条是:导线切割磁通产生感应电动势;另一条是:载流导体在磁场中受到电磁力的作用。
因此,从结构上来看,任何电机都包括磁场部分和电路部分。
从上述原理可见,任何电机都体现着电和磁的相互作用,是电、磁这两个矛盾着的对立面的统一。
我们在这一章里讨论直流电机的结构和工作原理,就是讨论直流电机中的“磁”和“电”如何相互作用,相互制约,以及体现两者之间相互关系的物理量和现象(电枢电动势、电磁转矩、电磁功率、电枢反应等)。
一、直流发电机的基本工作原理
直流发电机和直流电动机具有相同的结构,只是直流发电机是由原动机(一般是交流电动机)拖动旋转而发电。
可见,它是把机械能变为电能的设备。
直流电动机则接在直流电源上,拖动各种工作机械(机床、泵、电车、电缆设备等)工作,它是把电能变为机械能的设备。
但是,当前已经有可控硅整流装置替代了直流发电机,为了能使大家更好的理解直流电动机,有必要同时讲述一下直流发电机的原理。
我们首先来观察直流发电机是怎样工作的。
如图1所示,电刷A、B分别与两个半园环接触,这时A、B两电刷之间输出的是直流电。
我们再来看看这时线圈在磁极之间运动的情况。
从图1(a)可以看出,当线圈的ab边在N 极范围内按逆时针方向运动时,应用发电机右手定则,这时所产生的电动势是从b指向a。
这时线圈的cd边则是在S极范围内按逆时针方向运动,依据发电机右手定则可以判断,cd 边中的感应电动势方向是从d指向c。
从整个线圈来看,感应电动势的方向是d-c-b-a。
因此,和线圈a端连接的铜片1和电刷A是处于正电位;而和线圈的d端连接的铜片2和电刷B是处于负电位。
如果接通外电路,那么电流就从电刷A经负载流入电刷B,与线圈一起构成闭合的电流通路。
当线圈的ab边转到S极范围内时,cd边就转到N极范围内(图1,b),用右手定则判断可以知道,这时线圈cd边中产生的电动势方向是从c到d,而ab边转到了S极范围内,其中电动势的方向则是有a到b。
由于电刷在空间是不动的,因此和线圈d端连接的铜片2和电刷A接触,它的电位仍然是正。
而与线圈a端连接的铜片1则和电刷B接触,它的电位仍然是负。
接通外电路时,电流仍然是从电刷A经负载流入电刷B,与线圈一起构成闭合的电流通路。
不过,要注意到这时线圈内的电流已经反向了。
由此可知,当线圈不停地旋转时,虽然与两个电刷接触的线圈边不停的变化,但是,电刷A 始终是正电位,电刷B始终是负电位。
因此,有两电刷引出的是具有恒定方向的电动势,负载上得到的是恒定方向的电压和电流。
也就是说,尽管线圈abcd中感应电动势的方向不断交变,但是电刷A总是和处在N极范围内的线圈边接触,电刷B总是和处在S极范围内的线圈边相接触,它们的极性始终不变。
于是,线圈中的交流电经过铜片和电刷整流后,便成为外电路中的直流电了。
这两个半圆形的铜片就叫做换向片,它们合在一起叫做换向器。
二、直流电动机的基本工作原理
上面已经讨论了直流发电机的工作原理,现在再来讨论直流电动机是怎样工作的。
如果直流电机的转子不用原动机拖动,而把它的电刷A、B接在电压为U的直流电源上(如图2所示),那么会发生什么样的情况呢?从图上可以看出,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd中的电流是从c流向d。
前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力Fde的作用。
根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。
由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。
这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。
当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。
线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到S极范围内,cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a。
因此,电磁力Fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。
可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工作机械。
从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。
换向器和电刷就是完成这个任务的装置。
在直流发电机中,换向器和电刷的任务是把线圈中的交流电变为直流电向外输出;而在直流电动机中,则用换向器和电刷把输入的直流电变为线圈中的交流电。
可见,换向器和电刷是直流电机中不可缺少的关键性部件。
当然,在实际的直流电动机中,也不只有一个线圈,而是有许多个线圈牢固地嵌在转子铁芯槽中,当导体中通过电流、在磁场中因受力而转动,就带动整个转子旋转。
这就是直流电动机的基本工作原理。
比较直流发电机和直流电动机的工作原理可以看出,它们的输入和输出的能量形式不同的。
正如前面已经说过,直流发电机由原动机拖动,输入的是机械能,输出的是电能;直流电动机则是由直流电源供电,输入的是电能,输出的是机械能。
参考资料:/Html/tech/152253957.htm
直流电机调速器的工作原理
作者:本站来源:本站原创发布时间:2008-3-20 13:11:22 [收藏] [评论]
一、什么是直流调速器?
直流调速器就是调节直流电动机速度的设备, 由于直流电动机具有低转速大力矩的特点,是交流电动机无法取代的, 因此调节直流电动机速度的设备—直流调速器,具有广阔的应用天地。
二、什么场合下要选择使用直流调速器?
下列场合需要使用直流调速器:
1.需要较宽的调速范围。
2. 需要较快的动态响应过程。
3. 加、减速时需要自动平滑的过渡过程。
4. 需要低速运转时力矩大。
5. 需要较好的挖土机特性,能将过载电流自动限止在设定电流上。
以上五点也是直流调速器的应用特点。
三、直流调速器应用:
直流调速器在数控机床、造纸印刷、纺织印染、光缆线缆设备、包装机械、电工机械、食品加工机械、橡胶机械、生物设备、印制电路板设备、实验设备、焊接切割、轻工机械、物流输送设备、机车车辆、医设备、通讯设备、雷达设备、卫星地面接受系统等行业广泛应用。
四、直流调速器工作原理简单介绍:
直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。
同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。
五、直流电机的调速方案一般有下列3种方式:1、改变电枢电压;2、改变激磁绕组电压;3、改变电枢
回路电阻。
最常用的是调压调速系统,即1(改变电枢电压).
六、一种模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。
该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可
具有调速器所应有的一切功能。
/bls168_Product_5662985.html。