R语言文本挖掘
文本挖掘深度学习之word2vec的R语言实现_光环大数据培训机构

文本挖掘深度学习之word2vec的R语言实现_光环大数据培训机构一、word2vec词向量由来在word2vec产生前,还有一些语言模型,在自然语言处理 NLP模型中,到达word2vec历经了一些步骤。
但是对于NLP模型中,起到确定性作用的是词向量(Distributed Representation/word Embedding)的提出,在这之前有一些基础性的模型如统计语言模型、神经网络概率语言模型。
几个基于统计的传统语言模型与word2vec这种直接预测的方法的比较(图片摘自Stanford CS244)【5】:1、统计语言模型统计语言模型的一般形式直观、准确,n元模型中假设在不改变词语在上下文中的顺序前提下,距离相近的词语关系越近,距离较远的关联度越远,当距离足够远时,词语之间则没有关联度。
但该模型没有完全利用语料的信息:1) 没有考虑距离更远的词语与当前词的关系,即超出范围n的词被忽略了,而这两者很可能有关系的。
例如,“华盛顿是美国的首都”是当前语句,隔了大于n个词的地方又出现了“北京是中国的首都”,在n元模型中“华盛顿”和“北京”是没有关系的,然而这两个句子却隐含了语法及语义关系,即”华盛顿“和“北京”都是名词,并且分别是美国和中国的首都。
2) 忽略了词语之间的相似性,即上述模型无法考虑词语的语法关系。
样的句子,因为两个句子中“鱼”和“马”、“水”和“草原”、“游”和“跑”、“中”和“上”具有相同的语法特性。
而在神经网络概率语言模型中,这两种信息将充分利用到。
2、神经网络概率语言模型神经网络概率语言模型是一种新兴的自然语言处理算法,该模型通过学习训练语料获取词向量和概率密度函数,词向量是多维实数向量,向量中包含了自然语言中的语义和语法关系,词向量之间余弦距离的大小代表了词语之间关系的远近,词向量的加减运算则是计算机在”遣词造句”。
如今在架构方面有比NNLM更简单的CBOW模型、Skip-gram模型;其次在训练方面,出现了Hierarchical Softmax算法、负采样算法(Negative Sampling),以及为了减小频繁词对结果准确性和训练速度的影响而引入的欠采样(Subsumpling)技术。
王贺—网络舆情监测-基于R语言的网络文本挖掘与数据可视化

第六届中国R语言会议(北京会场)
R 基 于
语言的网络文本挖掘与数据可视化
中国人民大学 统计学院 王贺
精选PPT
互联网
NEWS
LDA
TEXT MINING
主题模型
电商 REVIEWS 热点话题
评论 INTERNET
文本挖掘
WEB
ONLINE SHOPPING
微博 关键词
R 新闻 TOPIC
install.packages("tm")
> doc <- c("Line one.", "Line two.") > Corpus(VectorSource(doc))
> Corpus(VectorSource("doc.txt"))
> Corpus(DirSource("c:/users/…")) # W> Cinodropwus(DirSource("/Volumes/HD/…")) # Mac
——刘思喆 2012/3/16
精选PPT
31
确定主题
主题模 型
精选PPT
32
确定主题
精选PPT
33
精选PPT
34
精选PPT
35
精选PPT
36
主题模 型
精选PPT
37
谢谢!
中国人民大学统计学院 2010级本科 王贺 新浪微博:@王贺_RUC 电子邮箱: wang_12010305@
• I can see at least three problems here, not necessarily mutually exclusive:
R语言-文本挖掘主题模型文本分类

R语⾔-⽂本挖掘主题模型⽂本分类####需要先安装⼏个R包,如果有这些包,可省略安装包的步骤。
#install.packages("Rwordseg")#install.packages("tm");#install.packages("wordcloud");#install.packages("topicmodels")例⼦中所⽤数据数据来源于sougou实验室数据。
数据⽹址:/dl/sogoulabdown/SogouC.mini.20061102.tar.gz⽂件结构└─Sample├─C000007 汽车├─C000008 财经├─C000010 IT├─C000013 健康├─C000014 体育├─C000016 旅游├─C000020 教育├─C000022 招聘├─C000023└─C000024 军事采⽤Python对数据进⾏预处理为train.csv⽂件,并把每个⽂件⽂本数据处理为1⾏。
预处理python脚本<ignore_js_op> (720 Bytes, 下载次数: 96)所需数据<ignore_js_op> (130.2 KB, 下载次数: 164)⼤家也可以⽤R直接将原始数据转变成train.csv中的数据⽂章所需stopwords<ignore_js_op> (2.96 KB, 下载次数: 114)1. 读取资料库1. csv <- read.csv("d://wb//train.csv",header=T, stringsAsFactors=F)2. mystopwords<- unlist (read.table("d://wb//StopWords.txt",stringsAsFactors=F))复制代码2.数据预处理(中⽂分词、stopwords处理)1.2. library(tm);3.4. #移除数字5. removeNumbers = function(x) { ret = gsub("[0-90123456789]","",x) }6. sample.words <- lapply(csvtext, removeNumbers)复制代码1.2. #处理中⽂分词,此处⽤到Rwordseg包3.4. wordsegment<- function(x) {5. library(Rwordseg)6. segmentCN(x)7. }8.9. sample.words <- lapply(sample.words, wordsegment)复制代码1.2. ###stopwords处理3. ###先处理中⽂分词,再处理stopwords,防⽌全局替换丢失信息4.5. removeStopWords = function(x,words) {6. ret = character(0)7. index <- 18. it_max <- length(x)9. while (index <= it_max) {10. if (length(words[words==x[index]]) <1) ret <- c(ret,x[index])11. index <- index +112. }13. ret14. }15.16.17. sample.words <- lapply(sample.words, removeStopWords, mystopwords)复制代码3. wordcloud展⽰1. #构建语料库2. corpus = Corpus(VectorSource(sample.words))3. meta(corpus,"cluster") <- csvtype4. unique_type <- unique(csvtype)5. #建⽴⽂档-词条矩阵6. (sample.dtm <- DocumentTermMatrix(corpus, control = list(wordLengths = c(2, Inf))))复制代码1.2. #install.packages("wordcloud"); ##需要wordcloud包的⽀持3. library(wordcloud);4. #不同⽂档wordcloud对⽐图5. sample.tdm <- TermDocumentMatrix(corpus, control = list(wordLengths = c(2, Inf)));6.7. tdm_matrix <- as.matrix(sample.tdm);8.9. png(paste("d://wb//sample_comparison",".png", sep = ""), width = 1500, height = 1500 );10. comparison.cloud(tdm_matrix,colors=rainbow(ncol(tdm_matrix)));####由于颜⾊问题,稍作修改11. title(main = "sample comparision");12. dev.off();13.复制代码1.2. #按分类汇总wordcloud对⽐图3. n <- nrow(csv)4. zz1 = 1:n5. cluster_matrix<-sapply(unique_type,function(type){apply(tdm_matrix[,zz1[csvtype==type]],1,sum)})6. png(paste("d://wb//sample_ cluster_comparison",".png", sep = ""), width = 800, height = 800 )7. comparison.cloud(cluster_matrix,colors=brewer.pal(ncol(cluster_matrix),"Paired")) ##由于颜⾊分类过少,此处稍作修改8. title(main = "sample cluster comparision")9. dev.off()10.复制代码<ignore_js_op>可以看出数据分布不均匀,culture、auto等数据很少。
【原创】R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究分析案例报告(附代码数据)

务(附代码数据),咨询QQ:3025393450有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablogR语言挖掘公告板数据文本挖掘研究分析## Registered S3 methods overwritten by 'ggplot2':## method from## [.quosures rlang## c.quosures rlang## print.quosures rlang我们对1993年发送到20个Usenet公告板的20,000条消息进行从头到尾的分析。
此数据集中的Usenet公告板包括新闻组用于政治,宗教,汽车,体育和密码学等主题,并提供由许多用户编写的丰富文本。
该数据集可在/~jason/20Newsgroups/(该20news-bydate.tar.gz文件)上公开获取,并已成为文本分析和机器学习练习的热门。
1预处理我们首先阅读20news-bydate文件夹中的所有消息,这些消息组织在子文件夹中,每个消息都有一个文件。
我们可以看到在这样的文件用的组合read_lines(),map()和unnest()。
请注意,此步骤可能需要几分钟才能读取所有文档。
library(dplyr)library(tidyr)library(purrr)务(附代码数据),咨询QQ:3025393450有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/databloglibrary(readr)training_folder <- "data/20news-bydate/20news-bydate-train/"# Define a function to read all files from a folder into a data frameread_folder <-function(infolder) {tibble(file =dir(infolder, s =TRUE)) %>%mutate(text =map(file, read_lines)) %>%transmute(id =basename(file), text) %>%unnest(text)}# Use unnest() and map() to apply read_folder to each subfolderraw_text <-tibble(folder =dir(training_folder, s =TRUE)) %>%unnest(map(folder, read_folder)) %>%transmute(newsgroup =basename(folder), id, text)raw_text## # A tibble: 511,655 x 3## newsgroup id text## <chr> <chr> <chr>## 1 alt.atheism 49960 From: mathew <mathew@>## 2 alt.atheism 49960 Subject: Alt.Atheism FAQ: Atheist Resources## 3 alt.atheism 49960 Summary: Books, addresses, music -- anything related to atheism## 4 alt.atheism 49960 Keywords: FAQ, atheism, books, music, fiction, addresses, contacts## 5 alt.atheism 49960 Expires: Thu, 29 Apr 1993 11:57:19 GMT## 6 alt.atheism 49960 Distribution: world## 7 alt.atheism 49960 Organization: Mantis Consultants, Cambridge. UK.## 8 alt.atheism 49960 Supersedes: <19930301143317@>## 9 alt.atheism 49960 Lines: 290## 10 alt.atheism 49960 ""## # … with 511,645 more rows请注意该newsgroup列描述了每条消息来自哪20个新闻组,以及id列,用于标识该新闻组中的唯一消息。
R语言数据分析与挖掘 第3章 R语言数据读写

是否转化字符串为因子
verbose
是否交互和报告运行时间
skip
跳过读取的行数,为1则从第二行开始读取
select
需要保留的列名或者列号,剔除剩余列
drop
需要剔除的列名或者列号,读取剩余列
colClasses
指定数据类型
integer64
读如64位的整型数
s
参数
描述
file
要读取的数据文件名称,数据文件如果不在当前路径下,需添加绝对路径
col_names
逻辑值或列名的特征向量。如果TRUE,输入第一行将作用作列名,如果FALSE,列名将自动生成X1,X2,X3,……,如是字符向量,向量值将作为列名称
col_types
指定列的数据类型,为NULL时会自动识别
设置如何引用字符型变量。默认情况下,字符串可以被引号”或’括起,如果没有设定分割字符,引号前面加\,即quote=”\”
dec
设置用来表示小数点的字符,默认为.
s
读入数据的行名,默认为1,2,3,……
s
读入数据的列名,如header设置为FALSE时,默认为V1,V2,V3,……
TRUE会显示脚本进程
data.table
如果TRUE返回data.table,如果FALSE返回data.frame
*
《R语言数据分析与挖掘(微课版)》
Excel文件读写
*
02
PAGE
*
xlsx包
xlsx扩展包的安装需要依赖rJava扩展包,rJava能否成功安装的前提条件是需要本机预先安装好java,且R语言须与jre的版本位数一致。 丰富的函数,能对Excel文件进行灵活读写。主要函数如下:
R语言环境下的文本挖掘tm包_光环大数据培训机构

R语言环境下的文本挖掘tm包_光环大数据培训机构文本挖掘被描述为“自动化或半自动规划处理文本的过程”,包含了文档聚类、文档分类、自然语言处理、文体变化分析及网络万巨额等领域内容。
对于文本处理过程首先要拥有分析的语料(text corpus),比如报告、信函、出版物等而后根据这些语料建立半结构化的文本库(text database)。
而后生成包含词频的结构化的词条-文档矩阵(term-document matrix)这个一般性数据结构会被用于后续的分析,比如:1)文本分类,比如根据现有的文本分类情况,对未知文本进行归类:2)语法分析;3) 信息提取和修复4) 文档信息汇总,比如提取相关有代表性的关键词、句子等。
文本挖掘相关的R程序包:tm、lsa、RTextTools、textcat、corpora、zipfRmaxent、TextRegression、wordcloud词干化(stemming):比如我们要识别cat这个字符,但还可能有catlike、catty、cats等词,需要进行词干化记号化(Tockenization):将一段文本分割成叫做token(象征)过程,token 可能是单词、短语、符号或其他有意义的元素。
library(Snowball)> SnowballStemmer(c(‘functions’, ‘stemming’, ‘liked’, ‘doing’))[1] “function”“stem”“like”“do”> NGramTokenizerlibrary(Rwordseg)segmentCN(‘花儿为什么这样红’)[1] “花儿”“为什么”“这样”“红”1、tm包1)数据读入:在tm 中主要的管理文件的结构被称为语料库(Corpus),代表了一系列的文档集合。
语料库是一个概要性的概念,在这里分为动态语料库(Volatile Corpus,作为R 对象保存在内存中)和静态语料库(Permanent Corpus,R 外部保存)。
【原创附代码】R语言用之进行文本挖掘与分析
论文题目:R语言用之进行文本挖掘与分析摘要:要分析文本内容,最常见的分析方法是提取文本中的词语,并统计频率。
频率能反映词语在文本中的重要性,一般越重要的词语,在文本中出现的次数就会越多。
词语提取后,还可以做成词云,让词语的频率属性可视化,更加直观清晰。
本文利用R语言对2016年政府工作报告进行文本挖掘与分析并使用词云是该报告可视化,统计词频,用图片方式短时间看透文章的重点。
关键词:文本挖掘;R语言;2016政府工作报告;词云;可视化Abstract:To analyze text content, the most common method of analysis is to extract the words in the text and to count the frequency. After extraction, can also be made word cloud, so that the frequency of the word attribute visualization, more intuitive and clear. This paper uses the R language to carry on the text mining and analysis to the government work report in 2016 and use the word cloud to visualize the report, to count word frequency, and to see the focus of the article in a short time.Key words:Text mining; R language; 2016 government work report; word cloud; visualization引言我们从新华网上可以找到2016年的政府工作报告(附录1),将其整理下来,并转换为TXT格式,去掉空格与分段,最后变为TXT格式的文件,可见附件1(2016政府工作报告)。
R语言做文本挖掘Part5情感分析
R语⾔做⽂本挖掘Part5情感分析Part5情感分析这是本系列的最后⼀篇⽂章,该。
事实上这种单⼀⽂本挖掘的每⼀个部分进⾏全部值获取⽔落⽯出细致的研究,0基础研究阶段。
⽤R⾥⾯现成的算法,来实现⾃⼰的需求,当然还參考了众多⽹友的智慧结晶,所以也想把我的收获总结出来分享给⼤家,希望也能像我⼀样在看⼤家的分享时得到⾃⼰的启⽰。
⽹上翻了下中⽂⽂本情感分析的⼀些⽂章,再回忆了⼀下我⾃⼰做情感分析的⽅法,认为我的想法真的是简单粗暴直接。
这是⼀篇介绍中⽂⽂本情感分析倾向的论⽂。
,中间讲到做情感分析眼下主要有三种⽅法。
第⼀种由已有的电⼦词典或词语知识库扩展⽣成情感倾向词典;另外⼀种,⽆监督机器学习的⽅法。
第三种基于⼈⼯标注语料库的学习⽅法。
上⾯三种⽅法不细致⼀⼀说明了,它们都有⼀个共同的特点,须要⼀个情感倾向的语料库。
我在R中的实现⽅案与第⼀种⽅法类似。
整理⼀个褒义词词库⼀个贬义词词库(这个万能的互联⽹上有⾃⼰稍加整理就OK)。
给⽂本做分词,并提取出中间的情感词。
给每条⽂本定情感倾向评分初始值为1。
跟褒义贬义词词库做匹配,褒义词+1。
贬义词-1,计算出每条⽂本的终于情感倾向评分,为正值则是正⾯评价,为负值则是负⾯评价。
⽅法能够基本实现情感倾向推断。
但还能够改进。
像前⾯參考论⽂中讲到的,还能够依据词语的词性强弱来评定感情的强,不仅仅是+1和-1之分;还有考虑⼀些词语在不同语境下情感倾向可能会不同,⽐⽅论⽂中讲到的“骄傲”,这个我在想可能须要整理出有这样特殊情况的词语;还有负负得正的情况,⽐⽅“不喜欢是不可能的事情!”,照我的评分标准它的结果就是负⾯评价了;反问的情况。
“哪⾥廉价了?”,评出来结果变成了正。
“廉价”这个词我把它放在褒义词表下,事实上细致考虑假设是说“廉价实惠”肯定是褒义。
假设说“廉价没好货”,也会是褒义,这就不正确了,还是第⼆个问题不同语境下情感倾向会不同。
R中的实现过程:1. 数据输⼊处理数据还是某品牌官微,取它微博中的1376条评论,情感褒义词库和贬义词库。
数据分析-基于R语言课件第十八章 文本挖掘
R语言商业数据分析
9.2英文词频与词云图
步骤一:取得文档 安装及加载分析所需的R包并从计算机C根目录读取18S.txt,程序如下:
data(stop_words)#载入停用词 text_df <- text_df %>% unnest_tokens(word, text) text_df <- text_df %>% anti_join(stop_words)#去掉停用词 text_df %>% count(word, sort = TRUE)#排序最常用分词
运行结果如下:
Joining, by = "word" > text_df # A tibble:16 x 2
line word <int> <chr> 1 1 april 2 1 hath 3 1 spirit 4 1 youth 5 2 optimist 6 2 human 7 2 personification 8 2 spring 9 3 spring 10 3 feel 11 3 whistling 12 3 shoe 13 3 slush 14 4 spring 15 4 life's 16 4 alive
R语言商业数据分析
9.1 R语言文本挖掘简介
步骤一:取得文档 这四首和春天相关的英文诗句是我们取得的文本档,接下来我们尝试一 下进行简单的词频分析。透过R语言进行词频分析,必须先下载以及加载 以下安装包,程序如下:
install.packages("dplyr") install.packages("tidytext") library(dplyr) library(tidytext)
R七种武器之文本挖掘包tm 01
中文分词
– Rwordseg包
DATAGURU专业数据分析社区
R七种武器之文本挖掘包tm
讲师 黄志洪 何翠仪
tm包
下载tm包
相关包介绍
/web/views/NaturalLanguageProcessing.html
DATAGURUபைடு நூலகம்业数据分析社区
讲师 黄志洪 何翠仪
低成本获取高端知识 技术成就梦想
炼数成金
DATAGURU专业数据分析社区
R七种武器之文本挖掘包tm
讲师 黄志洪 何翠仪
FAQ时间
DATAGURU专业数据分析网站
tm_map(reuters, stemDocument)
DATAGURU专业数据分析社区
R七种武器之文本挖掘包tm
讲师 黄志洪 何翠仪
tm包常用操作介绍
reduce操作,将多个转换函数的输出合并成一个
tm_reduce(x, tmFuns, ...)
DATAGURU专业数据分析社区
R七种武器之文本挖掘包tm
R七种武器之文本挖掘包tm
讲师 黄志洪 何翠仪
用于文本挖掘与NLP的软件
商业数据分析软件大多有文本分析模块: SAS Text Mining,SPSS Text Mining等
R具有很多涉及文本挖掘的扩展包,例如tm
KNIME (Konstanz Information Miner) RapidMiner文本挖掘
R七种武器之文本挖掘包tm
讲师 黄志洪 何翠仪
文本挖掘处理流程
DATAGURU专业数据分析社区
R七种武器之文本挖掘包tm
讲师 黄志洪 何翠仪
相应R包简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中文及英文的文本挖掘——R语言所需要的包tm(text mining) rJava,Snowball,zoo,XML,slam,Rz, RWeka,matlab1文本挖掘概要文本挖掘是从大量的文本数据中抽取隐含的,求和的,可能有用的信息。
通过文本挖掘实现•Associate:关联分析,根据同时出现的频率找出关联规则•Cluster:将相似的文档(词条)进行聚类•Categorize:将文本划分到预先定义的类别里•文档自动摘要:利用计算机自动地从原始文档中提取全面准确地反映该文档中心内容的简单连贯描述性短文。
文本挖掘的运用主要有如下几方面●智能信息检索同义词,简称词,异形词,同音字、赘字移除●网络内容安全内容监控内容过滤●内容管理自动分类检测和追踪●市场监测口碑监测竞争情报系统市场分析2英文文本挖掘实例实现多个英文文档的聚类分析2.1文本预处理2.1.1读取文本内容#取得tm内部文件texts/crude/下的文件目录。
>library("tm",lib.loc="d:/ProgramFiles/R/R-3.0.3/library")> vignette("tm")#获取相关帮助文档的内容,pdf格式reut<-system.file("texts","crude",package='tm')# 用Corpus命令读取文本并生成语料库文件由于要读取的是xml文件,所以需要xml包reuters <- Corpus(DirSource(reut), readerControl = list(reader =readReut21578XML))# DirSource指示的是文件夹路径,如果是单个向量要设为语料库则VectorSource(向量名) readerControl不用设置查看前两个语料变量内容另外可以从本地文件中读取用户txt文件> inputtest<-read.csv(file.choose())2.1.2文本清理对于xml格式的文档用tm_map命令对语料库文件进行预处理,将其转为纯文本并去除多余空格,转换小写,去除常用词汇、合并异形同意词汇,如此才能得到类似txt文件的效果需要用到的包SnowballCreuters <- tm_map(reuters, PlainTextDocument)#去除标签reuters <- tm_map(reuters, stripWhitespace)#去多余空白reuters <- tm_map(reuters, tolower)#转换小写reuters <- tm_map(reuters, removeWords, stopwords("english"))tm_map(reuters, stemDocument)2.1.3查找含有特定语句的文档例如找出文档编号为237而且包含句子INDONESIA SEEN AT CROSSROADS OVER ECONOMIC CHANGE 的文档。
> query <- "id == '237' & heading == 'INDONESIA SEEN AT CROSSROADS OVER ECONOMIC CHANGE'"> tm_filter(reuters, FUN = sFilter, query)找到由于语料库已经将大小写转换以及将介词类删除所以对应的语句只是特有单词的组合。
2.1.4生成词频矩阵并查看内容dtm <- DocumentTermMatrix(reuters)查看某部分的词频内容个数,其中dtm行提示哪个文件,列表示词语。
> inspect(dtm[10:15,110:120])A document-term matrix (6 documents, 11 terms)Non-/sparse entries: 6/60Sparsity : 91%Maximal term length: 9Weighting : term frequency (tf)TermsDocs activity. add added added. address addressed adherence adhering advantage advisers agency [1,] 0 0 0 0 0 0 1 1 0 0 2[2,] 0 0 0 0 0 0 0 0 0 0 0[3,] 0 0 0 0 0 0 0 0 0 0 1[4,] 0 0 0 0 0 0 0 1 0 0 2[5,] 0 0 0 0 0 0 0 0 0 0 0[6,] 0 0 0 0 0 0 0 0 0 0 02.1.5查看含有特定词的文档若要考察多个文档特定词汇的出现频率或以手工生成字典,并将其作为生成阵的参数> inspect(tdm[c("price", "texas"),c("127","144","191","194")])A term-document matrix (2 terms, 4 documents)Non-/sparse entries: 6/2Sparsity : 25%Maximal term length: 5Weighting : term frequency (tf)DocsTerms 127 144 191 194price 2 1 2 2texas 1 0 0 2> inspect(DocumentTermMatrix(reuters,+ list(dictionary = c("prices", "crude", "oil"))))A document-term matrix (20 documents, 3 terms)Non-/sparse entries: 41/19Sparsity : 32%Maximal term length: 6Weighting : term frequency (tf)TermsDocs crude oil prices127 3 5 4144 0 11 4191 3 2 0194 4 1 0211 0 2 0236 1 7 2237 0 3 02.1.6元数据操作(词元素)2.1.6.1查看词条出现次数大于某个具体值的词findFreqTerms(dtm,5)#查看出现频大于等于5的词2.1.6.2查看与某一词相关度大于0.8的词条> findAssocs(dtm,'opec',0.8)opecmeeting 0.8815.8 0.85oil 0.85emergency 0.83analysts 0.82buyers 0.802.1.7处理词频矩阵> dtm2<-removeSparseTerms(dtm,sparse=0.95) //parse值越少,最后保留的term数量就越少0.95是指如果某一词出现在文档的概率少于(1-0.95)则不再保留到词频矩阵。
即删除权重少的元素。
2.1.8转换为标准阵temp=as.data.frame(inspect(dtm2))> temptoscale<-scale(temp)2.2文本挖掘——聚类分析> d <- dist(temptoscale, method = "euclidean") > fit <- hclust(d, method="ward")> plot(fit)2.3分析结果从聚类图可以看出,文档16和17是比较接近的。
而3,4,1,19可以聚成一类,1,6,11,10,13也可分别聚为一类3中文文本挖掘实例3.1前期准备3.1.1Mmseg4j分词使用中文分词法,由于词之间无有像英文一样的空隔,好在有Java已经解决了这样的问题,我们只需要在R-console里加载rJava与rmmseg4j两个工具包即可。
如>mmseg4j("中国人民从此站起来了")[1] 中国人民从此站起来但事实上其技术是好几代之前的了,目前很少有人还在使用,并且其精度不高,用户自定义词典在R测试并无效。
> teststring<-c('我要学习r语言,兴趣小组,学无止尽')> mmseg4j(teststring)[1] "我要学习 r 语言兴趣小组学无止尽"尽管在D:\Program Files\R\R-3.0.3\library\rmmseg4j\userDic中将自定义的词典r语言写入,但似乎并没有被识别到。
3.1.2Rwordseg介绍所需要的中文分词包Rwordseg,rjava包Rwordseg 是一个R环境下的中文分词工具,使用rJava调用Java分词工具Ansj。
Ansj 也是一个开源的 Java 中文分词工具,基于中科院的 ictclas 中文分词算法,采用隐马尔科夫模型(Hidden Markov Model,HMM)。
作者孙健重写了一个Java版本,并且全部开源,使得 Ansi可用于人名识别、地名识别、组织机构名识别、多级词性标注、关键词提取、指纹提取等领域,支持行业词典、用户自定义词典。
3.1.2.1分词segmentCN(strwords,analyzer = get("Analyzer", envir = .RwordsegEnv),nature = FALSE, nosymbol = TRUE,returnType = c("vector", "tm"), isfast = FALSE,outfile = "", blocklines = 1000)nature用于设置是否输出词性,默认不用。
> segmentCN(teststring)[1] "我" "要" "学习" "r语言" "兴趣" "小组" "学" "无" "止" "尽"加入用户自定义词典并进行测试3.1.2.2自定义词典> insertWords(c("我要"))> segmentCN(teststring)[1] "我要" "学习" "r语言" "兴趣" "小组" "学" "无" "止" "尽"3.1.2.3安装新的词典installDict("E:/default.dic")3.1.2.4人名识别设置> getOption("isNameRecognition")[1] FALSEsegment.options(isNameRecognition = TRUE)用于设置是否进行人名识别segment.options(isNameRecognition = TRUE)3.1.3读取网站内容> library("XML", lib.loc="d:/Program Files/R/R-3.0.3/library")> x <- htmlParse("/cn/")> iconv(xmlValue(getNodeSet(x, "//a[@href]")[[1]]), 'UTF-8', '')#转换编码[1] "COS论坛 | 统计之都"tables=readHTMLTable(x)#读取内容> tables$`NULL`NULL$latest帖子—发表新帖子 <U+00BB> 回复作者最后回复最近更新1 COS论坛说明(新手必读) - 23…474849 979 谢益辉 cassiusoat2 周3.1.4Tm中文常识在tm 中主要的管理文件的结构被称为语料库(Corpus),代表了一系列的文档集合。