2011届强化训练(14)向量
2011届高考数学二轮复习考点突破课件:第13讲 空间向量与立体几何

即 B1D⊥EG,B1D⊥EF,因此 B1D⊥平面 EGF. 结合(1)可知平面 EGF∥平面 ABD.
题型二
利用空间向量求线线角、线面角
【例 2】(2010· 课标全国)如图,已知四棱椎 P-ABCD 的底 面为等腰梯形,AB∥CD,AC⊥BD,垂足为 H,PH 是四棱锥的高,E 为 AD 中点. (1)证明:PE⊥BC; (2)若∠APB=∠ADB=60° ,求直线 PA 与平面 PEH 所成角的正弦值. 解:以 H 为原点,HA,HB,HP 分别为 x,y,z 轴, 线段 HA 的长为单位长,建立空间直角坐标系如图, 则 A(1,0,0)B(0,1,0). (1)证明:设 C(m,0,0), P(0,0,n)(m<0,n>0),
3.模、夹角和距离公式 (1)设 a=(a1,a2,a3),b=(b1,b2,b3), 则|a|= a· a= a2+a2+a2, 1 2 3 a1b1+a2b2+a3b3 a· b cos 〈a,b〉= = 2 . 2 |a||b| a1+a2+a2· b2+b2+b2 3 1 2 3 (2)距离公式 设 A(x1,y1,z1),B(x2,y2,z2), 则 dAB= x1-x22+y1-y22+z1-z22. (3)平面的法向量 如果表示向量 a 的有向线段所在直线垂直于平面 α,则称这个 向量垂直于平面 α,记作 a⊥α. 如果 a⊥α,那么向量 a 叫做平面 α 的法向量.
(2)在棱 C1D1 上存在点 F,使 B1F∥平面 A1BE. 事实上,如图(b)所示,分别取 C1D1 和 CD 的中点 F,G,连结 EG,BG,CD1,FG.因 A1D1∥B1C1∥BC,且 A1D1=BC,所以 四边形 A1BCD1 是平行四边形,因此 D1C∥A1B.又 E,G 分别为 D1D,CD 的中点,所以 EG∥D1C,从而 EG∥A1B.这说明 A1,B, G,E 共面.所以 BG⊂平面 A1BE. 因四边形 C1CDD1 与 B1BCC1 皆为正方形,F,G 分别为 C1D1 和 CD 的中点,所以 FG∥C1C∥B1B,且 FG=C1C=B1B,因此四边 形 B1BGF 是平行四边形,所以 B1F∥BG.而 B1F⊄平面 A1BE,BG⊂ 平面 A1BE,故 B1F∥平面 A1BE.
2011届高考数学平面向量综合复习题

∴a=(-1,1)或(-3,1). 15.(2009· 朝阳 4 月)在△ABC 中,角 A、B、C 所对的边分别为 a、b、c.若∠B=45° ,b= 2,a=1, 则∠C 等于________度. 答案:105 asinB 1 解析:由正弦定理得 sinA= = ,A=30° 或 150° (舍去),则∠C=105° ,故填 105. b 2 16.已知△ABC 中,角 A、B、C 所对的边分别为 a、b、c.若 a=1,∠B=45° ,△ABC 的面积 S=2, 那么△ABC 的外接圆的直径等于__________. 答案:5 2
1 1 解析:∵S= acsinB=2,∴ ×1×c×sin45° =2, 2 2 ∴c=4 2, ∴b2=a2+c2-2accosB=1+32-2×1×4 2×cos45° , ∴b2=25,b=5. b 所以△ABC 的外接圆的直径等于 =5 2. sinB 三、解答题(本大题共 6 小题,共 70 分,解答应写出文字说明、演算步骤或证明过程。) 17.(本小题满分 10 分)已知|a|=1,|b|= 2. (1)若 a∥b,求 a· b; (2)若 a,b 的夹角为 135° ,求|a+b|. 解析:(1)∵a∥b, ∴若 a,b 同向,则 a· b=|a||b|= 2; 若 a,b 反向,则 a· b=-|a||b|=- 2. (2)∵a,b 的夹角为 135° , ∴a· b=|a||b|cos135° =-1, ∴|a+b|2=(a+b)2=a2+b2+2a· b=1+2-2=1, ∴|a+b|=1. 18. (2009· 江苏, 15)(本小题满分 12 分)设向量 a=(4cosα, sinα), b=(sinβ, 4cosβ), c=(cosβ, -4sinβ). (1)若 a 与 b-2c 垂直,求 tan(α+β)的值; (2)求|b+c|的最大值; (3)若 tanαtanβ=16.求证 a∥b. 解析:(1)由 a 与 b-2c 垂直 则 a· (b-2c)=a· b-2a· c=0, 即 4sin(α+β)=8cos(α+β),tan(α+β)=2. (2)∵b+c=(sinβ+cosβ,4cosβ-4sinβ), 则|b+c|2=sin2β+2sinβcosβ+cos2β+16cos2β-32cosβsinβ+16sin2β=17-30sinβcosβ=17-15sin2β, 最 大值为 32,所以|b+c|的最大值为 4 2. (3)由 tanαtanβ=16,得 sinαsinβ=16cosαcosβ, 即 4cosα· 4cosβ-sinαsinβ=0,故 a∥b. 19.(2009· 四川,17)(本小题满分 12 分)在△ABC 中,A、B 为锐角,角 A、B、C 所对的边分别为 a、 3 10 b、c,且 cos2A= ,sinB= . 5 10 (1)求 A+B 的值; (2)若 a-b= 2-1,求 a、b、c 的值. 命题意图:本小题主要考查同角三角函数间的关系、两角和差的三角函数、二倍角公式、正弦定理等 基础知识及基本运算能力. 10 解析:(1)∵A、B 为锐角,sinB= , 10 3 10 ∴cosB= 1-sin2B= . 10 3 又 cos2A=1-2sin2A= , 5 5 2 5 ∴sinA= ,cosA= 1-sin2A= . 5 5 ∴cos(A+B)=cosAcosB-sinAsinB=
新高考数学二轮专题复习高频考点强化训练14(附解析)

强化训练14立体几何——大题备考第二次作业1.[2022·广东深圳二模]如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面P AD是正三角形,M是侧棱PD的中点,且AM⊥平面PC D.(1)求证:平面P AD⊥平面ABCD;(2)求AM与平面PBC所成角的正弦值.2.[2022·河北唐山二模]如图,△ABC是边长为43的等边三角形,E,F分别为AB,AC的中点,G是△ABC的中心,以EF为折痕把△AEF折起,使点A到达点P的位置,且PG⊥平面AB C.(1)证明:PB⊥AC;(2)求平面PEF与平面PBF所成二面角的正弦值.3.[2022·山东淄博三模]已知如图,在多面体ABCEF 中,AC =BC =2,∠ACB =120°,D 为AB 的中点,EF ∥CD ,EF =1,BF ⊥平面AEF .(1)证明:四边形EFDC 为矩形; (2)当三棱锥A - BEF 体积最大时,求平面AEF 与平面ABE 夹角的余弦值.4.[2022·山东德州二模]《九章算术》是中国古代张苍,耿寿昌所撰写的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右,是当时世界上最简练有效的应用数学专著,它的出现标志着中国古代数学形成了完整的体系.在《九章算术·商功》篇中提到“阳马”这一几何体,是指底面为矩形,有一条侧棱垂直于底面的四棱锥,现有“阳马”P - ABCD ,底面为边长为2的正方形,侧棱P A ⊥平面ABCD ,P A =2,E 、F 为边BC 、CD 上的点,CE → =λCB → ,CF → =λCD →,点M 为AD 的中点.(1)若λ=12,证明:平面PBM ⊥平面P AF ;(2)是否存在实数λ,使二面角P - EF - A 的大小为45°?如果不存在,请说明理由;如果存在,求此时直线BM 与平面PEF 所成角的正弦值.强化训练15 统计、统计案例与概率——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东潍坊三模]某省新高考改革方案推行“3+1+2”模式,要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门.某学生各门功课均比较优异,因此决定按方案要求任意选择,则该生选考物理、生物和政治这3门科目的概率为( )A .12B .13C .16D .1122.[2022·山东威海三模]甲、乙两人相约在某健身房锻炼身体,他们分别在两个网站查看这家健身房的评价.甲在网站A 查到共有840人参与评价,其中好评率为95%,乙在网站B 查到共有1 260人参与评价,其中好评率为85%.综合考虑这两个网站的信息,则这家健身房的总好评率为( )A .88%B .89%C .91%D .92% 3.[2022·辽宁葫芦岛一模]有一组样本数据x 1,x 2,…,x n ,由这组数据得到新样本数据,y 1,y 2,…,y n ,其中y i =x i +c (i =1,2,…,n )c 为非零常数,则( )A .两组样本数据的样本方差相同B .两组样本数据的样本众数相同C .两组样本数据的样本平均数相同D .两组样本数据的样本中位数相同 4.[2022·辽宁辽阳二模]为了解某地高三学生的期末语文考试成绩,研究人员随机抽取了100名学生对其进行调查,根据所得数据制成如图所示的频率分布直方图,已知不低于90分为及格,则这100名学生期末语文成绩的及格率为( )A .40%B .50%C .60%D .65% 5.[2022·河北保定二模]某研究机构为了了解初中生语文成绩的平均分y (单位:分)与每周课外阅读时间x (单位:分钟)是否存在线性关系,搜集了100组数据(∑i =1100x i =3 000,∑i =1100y i =7 900),并据此求得y 关于x 的回归直线方程为y =0.3x +a.若一位初中生的每周课外阅读时间为2个小时,则可估计她的语文成绩的平均分为()A .70.6B .100C .106D .110 6.[2022·山东青岛一模]甲乙两选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为( )A .0.36B .0.352C .0.288D .0.648 7.[2022·湖北武汉模拟]通过随机询问某中学110名中学生是否爱好跳绳,得到如下列联表:已知χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),则以下结论正确的是(A .根据小概率值α=0.001的独立性检验,爱好跳绳与性别无关B .根据小概率值α=0.001的独立性检验,爱好跳绳与性别无关,这个结论犯错误的概率不超过0.001C .根据小概率值α=0.01的独立性检验,有99%以上的把握认为“爱好跳绳与性别无关”D .根据小概率值α=0.01的独立性检验,在犯错误的概率不超过1%的前提下,认为“爱好跳绳与性别无关”8.[2022·湖南长沙模拟]第24届冬季奥林匹克运动会于2022年2月4日至20日在北京和张家口举行.某特许产品100件,其中一等品98件,二等品2件,从中不放回的依次抽取10件产品(每次抽取1件).甲表示事件“第一次取出的是一等品”,乙表示事件“第二次取出的是二等品”,记取出的二等品件数为X ,则下列结论正确的是( )A .甲与乙相互独立B .甲与乙互斥C .X ~B(10,0.02)D .E(X)=0.2二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·辽宁大连二模]为评估一种农作物的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg )互不相等,且从小到大分别为x 1,x 2,…,x 10,则下列说法正确的有( )A .x 1,x 2,…,x 10的平均数可以用来评估这种农作物亩产量稳定程度B .x 1,x 2,…,x 10的标准差可以用来评估这种农作物亩产量稳定程度C .x 10-x 1可以用来评估这种农作物亩产量稳定程度D .x 1,x 2,…,x 10的中位数为x 5 10.[2022·山东枣庄三模]下列结论正确的有( ) A .若随机变量ξ,η满足η=2ξ+1,则D(η)=2D(ξ)+1B .若随机变量ξ~N(3,σ2),且P(ξ<6)=0.84,则P(3<ξ<6)=0.34C .若样本数据(x i ,y i )(i =1,2,3,…,n)线性相关,则用最小二乘估计得到的回归直线经过该组数据的中心点(x - ,y -)D .根据分类变量X 与Y 的成对样本数据,计算得到χ2=4.712.依据α=0.05的独立性检验(x 0.05=3.841),可判断X 与Y 有关且犯错误的概率不超过0.0511.[2022·福建福州三模]某质量指标的测量结果服从正态分布N(80,σ2),则在一次测量中( )A .该质量指标大于80的概率为0.5B .σ越大,该质量指标落在(70,90)的概率越大C .该质量指标小于60与大于100的概率相等D .该质量指标落在(75,90)与落在(80,95)的概率相等 12.[2022·山东淄博三模]甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以A 1,A 2和A 3表示由甲箱取出的球是红球、白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则下列结论正确的是( )A .事件B 与事件A i (i =1,2,3)相互独立B .P(A 1B)=522C .P(B)=25D .P(A 2|B)=845三、填空题(本题共4小题,每小题5分,共20分) 13.[2022·河北石家庄二模]某中学高一、高二、高三年级的学生人数分别为1 200、1 000、800,为迎接春季运动会的到来,根据要求,按照年级人数进行分层抽样,抽选出30名志愿者,则高一年级应抽选的人数为________.14.[2022·全国乙卷]从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.15.[2022·山东济南二模]2022年4月24日是第七个“中国航天日”,今年的主题是“航天点亮梦想”.某校组织学生参与航天知识竞答活动,某班8位同学成绩如下:7,6,8,9,8,7,10,m.若去掉m ,该组数据的第25百分位数保持不变,则整数强化训练14 立体几何1.解析:(1)证明:因为AM ⊥平面PCD , 所以AM ⊥CD ,又底面ABCD 为正方形,所以AD ⊥CD ,又AD∩AM =A ,所以CD ⊥平面PAD ,又CD ⊂平面ABCD , 所以平面PAD ⊥平面ABCD ;(2)取AD 的中点O ,连接PO ,则PO ⊥平面ABCD , 则以O 为原点,建立如图所示空间直角坐标系:设AB =2,则A (1,0,0),B (1,2,0),C (-1,2,0),P (0,0,3 ),D (-1,0,0),M (-12) ,0,32 ),所以AM→ =(-32 ,0,32 ),PB → =(1,2,- 3 ),PC → =(-1,2,-3 ),设平面PBC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧PB →·n =0PC →·n =0 ,即⎩⎨⎧x +2y -3z =0-x +2y -3z =0 ,令z = 3 ,则y =32 ,x =0,则n =(0,32 ,3 ), 设AM 与平面PBC 所成角为θ,所以sin θ=|cos 〈AM →,n 〉|=|AM →·n||AM →|·|n| =323·212=77 .2.解析:(1)证明:连接BF ,由△ABC 为等边三角形,F 为AC 的中点,所以BF ⊥AC ,由PG ⊥平面ABC ,AC ⊂平面ABC ,所以PG ⊥AC ,又PG∩BF =G ,PG ,BF ⊂平面PBF ,所以AC ⊥平面PBF , 又PB ⊂平面PBF ,所以PB ⊥AC ;(2)依题意PF =2 3 ,GF =2,在Rt △PFG 中,PG =22 , 以F 为坐标原点,以FB→ 为x 轴的正方向,如图建立空间直角坐标系,则A (0,-2 3 ,0),C (0,2 3 ,0),B (6,0,0),E (3,- 3 ,0),P (2,0,2 2 )FP→ =(2,0,2 2 ),FE → =(3,- 3 ,0),由(1)可知,AC → =(0,4 3 ,0)是平面PBF 的一个法向量,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n·FP →=2x +22z =0n·FE →=3x -3y =0 ,令x =2 ,则n =( 2 , 6 ,-1),所以cos 〈AC → ,n 〉=AC →·n |AC →|·|n | =63 ,所以sin 〈AC→ ,n 〉=1-cos2〈AC→,n 〉 =33,所以平面PEF 与平面PBF 所成二面角的正弦值为33 .3.解析:(1)证明:因为∠ACB =120°,AC =BC =2,D 为AB 的中点, 所以CD ⊥AB ,且CD =BC sin30°=1,又因为EF =1,所以CD =EF ,因为EF ∥CD , 所以四边形EFDC 为平行四边形,因为BF ⊥平面AEF ,EF ⊂平面AEF ,所以BF ⊥EF ,所以CD ⊥BF ,因为BF∩AB =B ,BF ,AB ⊂平面ABF ,所以CD ⊥平面ABF, DF ⊂平面ABF , 所以CD ⊥DF ,所以四边形EFDC 为矩形.(2)由(1)可知,EF ⊥平面ABF ,BF ⊥平面AEF ,AF ⊂平面AEF ,所以BF ⊥AF ,AB =2BC2 - CD2 =2 3 ,所以三棱锥A - BEF 的体积V =13 S △ABF·EF =16 AF·BF≤112 (AF2+BF2)=112 AB2=1, 当且仅当AF =BF 时等号成立,此时FD ⊥AB ,据(1),以D 为坐标原点,分别以DA ,CD ,DF 所在的直线为x ,y ,z 轴建立空间直角坐标系D - xyz 如图所示.由已知可得下列点的坐标:A ( 3 ,0,0),B (- 3 ,0,0),F (0,0,3 ),E (0,-1, 3 ),所以AB→ =(-2 3 ,0,0),AE → =(- 3 ,-1, 3 ), 设平面ABE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m·AE →=0m·AB →=0 ,即⎩⎨⎧-3x -y +3z =0-23x =0,取y = 3 ,则x =0,z =1, 所以平面ABE 的一个法向量为m =(0, 3 ,1), 因为BF→ =( 3 ,0, 3 )是平面AEF 的法向量, 设平面AEF 与平面ABE 夹角为θ,则cos θ=|m·BF →||m|·|BF →| =32·6 =24 ,故平面AEF 与平面ABE 夹角的余弦值为24 .4.解析:(1)证明:λ=12 时,点E 、F 为BC 及CD 的中点. 连接AF 与BM 交于点G ,在△ABM 和△DAF 中,AB =AD ,AM =DF ,∠BAM =∠ADF =90°, 所以△ABM ≌△DAF ,于是∠ABM =∠FAD. 而∠FAD +∠BAF =90°, 所以∠ABM +∠BAF =90°,故∠AGB =90°,即BM ⊥AF.又PA ⊥平面ABCD ,BM ⊂平面ABCD , 所以PA ⊥BM.因为BM ⊥PA ,BM ⊥AF ,PA ⊂平面PAF ,AF ⊂平面PAF ,PA∩AF =A , 所以BM ⊥平面PAF.又因为BM ⊂平面PBM ,所以平面PBM ⊥平面PAF.(2)连接AC ,交EF 于点Q ,连接PQ ,记BD 与AC 交于点O ,如图:因为CE→ =λCB → ,CF → =λCD → , 所以EF ∥BD , 因为AC ⊥BD ,所以AC ⊥EF ,从而PQ ⊥EF , 所以∠AQP 为二面角P - EF - A 的一个平面角.由题意,∠AQP =45°,从而AQ =PA =2, 所以CQ =2 2 -2,于是λ=CE CB =CQ CO =22-22 =2- 2 ,所以CF =CE =4-2 2 ,BE =DF =2 2 -2.如图,以AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴建立空间直角坐标系,于是P (0,0,2),E (2,2 2 -2,0),F (2 2 -2,2,0),B (2,0,0),M (0,1,0)BM → =(-2,1,0),PE → =( 2 ,2 2 -2,-2),PF →=(2 2 -2,2,-2),设平面PEF 的一个法向量是n =(x ,y ,z ),由⎩⎪⎨⎪⎧n·PE →=2x +(22-2)y -2z =0n·PF →=(22-2)x +2y -2z =0 ,得:⎩⎨⎧x =y z =2x ,取x =1,则y =1,z = 2 ,则n =(1,1, 2 ). 所以直线BM 与平面PEF 所成角为θ,则sin θ=|cos 〈n ,BM → 〉|=|n·BM →||n|·|BM →| =⎪⎪⎪⎪⎪⎪-2+14×5 =510 .。
2011年高考数学总复习 提能拔高限时训练:空间向量及其运算(练习 详细解析)大纲人教版

提能拔高限时训练42 空间向量及其运算(B )一、选择题1.平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 和BD 的交点,若11B A =a ,11D A =b ,AA 1=c,则下列式子中与MB 1B 1M 相等的是( )A.-21a +21b +cB.21a +21b +c C.21a -21b +c D.- 21a-21b+c 解析:M B 1=BB 1+BM=B B 1+21(BA +BC)=AA 1-2111B A +2111D A=c-21a+21b.故选A. 答案:A2.以下命题中正确的是( ) A.若OP=21OA +31OB,则P 、A 、B 三点共线B.若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底C.|(a ·b )·c |=|a |·|b |·|c |D.△ABC 为直角三角形的充要条件是AB ·AC=0解析:根据“若OD =m OA +n OB 且m+n=1,则P 、A 、B 三点共线”可知A 错误;若{a 、b 、c }为空间的一个基底,则a 、b 、c 为不共线向量.假设a +b 与b +c 共面,则存在实数λ,使a +b =λ(b +c ),即a =(λ-1)b +c .∴a 与b 、c 共面.∴假设不成立,即a +b 、b +c 不共面.可知B 正确;根据向量数量积的定义,易知C 不正确;△ABC 为直角三角形的充要条件是△ABC 三个内角∠A 、∠B 、∠C 中有一个是直角. 答案:B3.P 为正六边形ABCDEF 外一点,O 为正六边形ABCDEF 的中心,则PA +PB +PC +PE +PF +PD 等于( )A.POB.3POC.6POD.0解析:如图,PA +PD =2PO ,同理PB +PE =PC +PF =2PO ,∴原式=6PO.答案:C4.若a ,b 为非零向量,则a ·b =|a |·|b |是a 与b 平行的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解析:因为a ,b 为非零向量,又a ·b =|a ||b |cos 〈a ,b 〉=|a ||b |, 所以cos 〈a ,b 〉=1.所以〈a ,b 〉=0,即a 与b 平行;反之,若a 与b 平行,当〈a ,b 〉=π时, a ·b =-|a |·|b |≠|a |·|b |, 由此知应选A. 答案:A5.若a=(2,2,0),b=(1,3,z),〈a ,b 〉=60°,则z 等于( )A.22B.-22C.±22D.±22解析:∵a ·b =8,|a |·|b |=2)10(22z ,cos 〈a ,b 〉=21)10(228||||2=+=•z b a b a ,∴z=±22.答案:C6.已知a =(2,-1,3),b =(-4,2,x),c =(1,-x,2),若(a +b )⊥c ,则x 等于( ) A.4 B.-4 C.21D.-6 解析:a +b =(-2,1,x+3),∵(a +b )⊥c , ∴(a +b )·c =0,即-2×1+1×(-x)+(x+3)×2=0. 解得x=-4. 答案:B7.已知a =(1-t,1-t,t),b =(2,t,t),则|b -a |的最小值为( ) A.55B.555C.553 D.511解析:∵b -a =(1+t,2t-1,0),∴|b -a |2=(b -a )2=(1+t)2+(2t-1)2+0=5t 2-2t+2. 当t=51时,|b -a |min 2=59, ∴|b -a |的最小值是553. 答案:C8.在正方体ABCD —A 1B 1C 1D 1中,棱长为a,M 、N 分别为A 1B 和AC 上的点,A 1M=AN=32a,则MN 与平面BB 1C 1C 的位置关系是( )A.相交B.平行C.垂直D.不能确定 解析:如图,建立空间直角坐标系B 1—xyz,则 M(0,32a,3a )、N(3a ,32a,a),∴MN =(3a ,0,32a).∴MN ∥平面BB 1C 1C.答案:B9.如图所示,ABCD —EFGH 是棱长为1的正方体,P 在正方体的内部且AP=43AB+21AD+32AE,则P 点到直线AB 的距离为( )A.65 B.12181 C.630 D.65 解析:建系如题图,则A(0,0,0)、B(1,0,0)、D(0,1,0)、E(0,0,1). ∴AP=43AB+21AD+32AE=(43,0,0)+(0,21,0)+(0,0,32) =(43,21,32). 又AB 为单位向量, ∴AP 在AB 上的射影为AP ·AB=43. 又|AP|=12181)32()21()43(222=++, ∴P 到AB 的距离d=65||||22=•-AB AP AP .答案:A10.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角为( )A.arccos23 B.arccos 1010 C.arccos53 D.arccos 52 解析:如图建立空间直角坐标系,把D 点视作原点O ,分别沿DA 、DC 、1DD 方向为x 轴、y 轴、z 轴的正方向,则A (1,0,0),M (1,21,1),C (0,1,0),N (1,1,21),∴AM=(1,21,1)-(1,0,0)=(0,21,1), CN=(1,1,21)-(0,1,0)=(1,0,21). 故AM ·CN =0×1+21×0+1×21=21.又|AM|=251)21(0222=++, |CN|=25)21(01222=++, 设α为直线AM 与CN 所成的角,∴cosα=52252521||||=•=CN AM CNAM . ∴α=arccos 52. 答案:D 二、填空题11.已知空间四边形ABCD ,则AB ·CD +BC ·AD +CA ·BD =_______.解析:AB ·CD +BC ·AD +CA ·BD=AB ·CD +BC ·(AB +BD )+CA ·BD =AB ·CD +BC ·AB +BC ·BD +CA ·BD=AB ·(BC +CD )+BD ·(CA +BC )=AB ·BD +BD ·BA =AB ·BD -BD ·AB=0. 答案:012.在平行六面体ABCD —A 1B 1C 1D 1中,M 为B 1C 1的中点,设AB=a ,AD=b ,1AA =c ,用a ,b ,c 表示下列向量: (1)1AC =____________________________________;(2)DM=________________________________________.解析:(1)1AC =AB +1BB +11C B =a +c +b ;(2)DM =1DC +2111B C =DC +1CC +2111B C =a +c -21b . 答案:(1)a +b +c (2)a -21b +c 13.已知A (1,0,1),B (4,4,6),C (2,2,3),D (10,14,17),则这四个点是否共面:__________________(填“共面”或“不共面”). 解析:∵AB=(3,4,5),AC=(1,2,2),AD=(9,14,16),∴AD =2AB +3AC.∴A、B 、C 、D 四点共面. 答案:共面14.已知点A(1,2,1),B(-1,3,4)、D(1,1,1),若AP =2PB ,则|PD |的值是_____________. 解析:设点P(x,y,z),则由AP =2PB,得(x-1,y-2,z-1)=2(-1-x,3-y,4-z),即⎪⎩⎪⎨⎧-=---=---=-,281,262,221z z y y x x 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=.3,38,31z y x则|PD |=222)13()138()131(-+-+-- =377. 答案:377 三、解答题15.四棱锥S —ABCD 中,底面ABCD 为平行四边形,侧面SBC⊥底面ABCD. 已知∠ABC=45°,AB=2,BC=22,SA=SB=3.(1)证明SA⊥BC;(2)求直线SD 与平面SAB 所成角的大小. 解法一:(1)证明:作SO⊥BC,垂足为O,连结AO, 由侧面SBC⊥底面ABCD,得SO⊥底面ABCD. 因为SA=SB,所以AO=BO.又∠ABC=45°,故△AOB 为等腰直角三角形,AO⊥BO. 由三垂线定理,得SA⊥BC.(2)由(1)知SA⊥BC,依题设AD∥BC,故SA⊥AD.由AD=BC=22,SA=3,AO=2,得SO=1,SD=11.所以△SAB 的面积S 1=21AB·2)21(22=-AB SA . 连结DB,得△DAB 的面积S 2=21AB·ADsin135°=2. 设D 到平面SAB 的距离为h, 由V D —SAB =V S —ABD ,得31h·S 1=31SO·S 2, 解得h=2.设SD 与平面SAB 所成角为α,则sinα=1122112==SD h . 所以直线SD 与平面SAB 所成的角为arcsin1122. 解法二:(1)证明:作SO⊥BC,垂足为O,连结AO, 由侧面SBC⊥底面ABCD,得SO⊥平面ABCD. 因为SA=SB, 所以AO=BO.又∠ABC=45°,所以△AOB 为等腰直角三角形,AO⊥OB.如图,以O 为坐标原点,OA 为x 轴正向,建立空间直角坐标系O —xyz,则A(2,0,0),B(0,2,0),C(0,-2,0),S(0,0,1),SA=(2,0,-1),CB=(0,22,0),SA ·CB=0,所以SA⊥BC. (2)取AB 的中点E,E(22,22,0).连结SE,取SE 的中点G,连结OG,则 G(42,42,21),OG=(42,42,21), SE=(22,22,-1),AB=(-2,2,0).SE ·OG =0, AB ·OG =0,OG 与平面SAB 内两条相交直线SE 、AB 垂直,所以OG⊥平面SAB.OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D(2,-22,0),DS =(-2,22,1),cosα=1122||||=•DS OG DS OG ,sinβ=1122, 所以直线SD 与平面SAB 所成的角为arcsin1122. 16.如图,四边形PCBM 是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM 与直线PC 所成的角为60°.(1)求证:平面PAC⊥平面ABC; (2)求二面角M —AC —B 的大小; (3)求三棱锥P —MAC 的体积.解法一:(1)证明:∵PC⊥AB,PC⊥BC,AB∩BC=B, ∴PC⊥平面ABC. 又∵PC ⊂平面PAC, ∴平面PAC⊥平面ABC.(2)取BC 的中点N,则CN=1,连结AN 、MN,∵PM CN,∴MNPC.从而MN⊥平面ABC.作N H⊥AC,交AC 的延长线于H,连结MH,则由三垂线定理,知AC⊥NH, 从而∠MHN 为二面角MACB 的平面角, 直线AM 与直线PC 所成的角为60°, ∴∠AMN=60°.在△ACN 中,由余弦定理,得AN=3120cos 222=••-+ CN AC CN AC ,在Rt△AMN 中,MN=AN ·cot ∠AMN =3×33=1, 在Rt△CNH 中,NH=CN ·sin ∠NCH =1×23=23, 在Rt△MNH 中,tan ∠MHN=332231==NH MN . 故二面角M —AC —B 的平面角大小为arctan 332. (3)由(2),知四边形PCNM 为正方形, ∴V P —MAC =V A —PCM =V A —MNC =V M —ACN =31×21AC ·CN ·sin120°·MN=123. 解法二:(1)同解法一(1).(2)在平面ABC 内,过C 作CD⊥CB,交AB 于D,建立空间直角坐标系C —xyz(如图).由题意有A(23,-21,0),设P(0,0,z 0)(z 0>0), 则M(0,1,z 0), AM =(-23,23,z 0), CP =(0,0,z 0), 由直线AM 与直线PC 所成的角为60°,得 AM ·CP=|AM ||CP |cos60°,即z 02=32120+z ·z 0, 解得z 0=1. ∴CM =(0,1,1), CA CA=(23,-21,0). 设平面MAC 的一个法向量为n =(x 1,y 1,z 1), 则⎪⎩⎪⎨⎧=-=+,02123,01111y x z y 取x 1=1,得n =(1,3,-3).平面ABC 的法向量取为m =(0,0,1),设m 与n 所成角为θ,则cosθ=73||||-=•n m n m , 显然,二面角M —AC —B 的平面角为锐角.故二面角M —AC —B 的大小为arccos 721. (3)取平面PCM 的法向量为n 1=(1,0,0),则点A 到平面PCM 的距离 h=23||||11=•n n CA . ∵|PC |=1,|PM |=1,∴V P —MAC =V A —PCM =31×21|PC |·|PM |·h=61×1×1×23=123. 教学参考例题 志鸿优化系列丛书【例1】已知A(3,2,1)、B(1,0,4),求:(1)线段AB 的中点坐标和长度;(2)到A 、B 两点距离相等的点P(x,y,z)的坐标满足的条件.解:(1)设P(x,y,z)是AB 的中点,则OP =21(OA +OB )=21[(3,2,1)+(1,0,4)]=(2,1,25), ∴点P 的坐标是(2,1,25),d AB =2221)-(42)-(03)-(1++=17. (2)设点P(x,y,z)到A 、B 的距离相等,则2221)-(z 2)-(y 3)-(x ++=2224)-(z y 1)-(x ++.化简得4x+4y-6z+3=0,即为P 坐标应满足的条件.【例2】 棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D⊥面PAC ?解:以D 为坐标原点建立如图所示的空间直角坐标系,设存在点P(0,0,z),AP =(-a,0,z),AC =(-a,a,0),1DB =(a,a,a). ∵B 1D⊥面PAC,∴1DB ·AP =0,1DB ·AC =0.∴-a 2+az=0.∴z=a,即点P 与D 1重合.∴点P 与D 1重合时,DB 1⊥面PAC.【例3】如图,在三棱锥A —BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD=3,BD=CD=1.另一个侧面ABC 是正三角形.(1)求证:AD⊥BC;(2)求二面角B —AC —D 的大小;(3)在线段AC 上是否存在一点E,使ED 与面BCD 成30°角?若存在,确定点E 的位置;若不存在,请说明理由.(1)证明:作AH⊥面BCD 于点H,连结BH 、CH 、DH,则四边形BHCD 是正方形,且AH=1. 以D 为原点,以DB 为x 轴,DC 为y 轴建立空间直角坐标系如下图,则B(1,0,0),C(0,1,0),A(1,1,1).BC =(-1,1,0),DA =(1,1,1), ∴BC ·DA =0,则BC⊥AD.(2)解:设平面ABC 的法向量为n 1=(x,y,z),则由n 1⊥BC ,知n 1·BC =-x+y=0; 同理由n 1⊥CA ,知n 1·CA =x+z=0.可取n 1=(1,1,-1).同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1).由图可以看出,二面角BACD 的大小应等于〈n 1,n 2〉,则cos 〈n 1,n 2〉=3623101||||2121=•++=•n n n n ,即所求二面角的大小是arccos 36. (3)解:设E(x,y,z)是线段AC 上一点, 则x=z >0,y=1,平面BCD 的一个法向量为n =(0,0,1),DE=(x,1,x),要使ED 与面BCD 成30°角,由图可知DE 与n 的夹角为60°, ∴cos〈DE ,n 〉=221||||x xn DE n DE +=• =cos60°=21.则2x=22x 1+,解得x=22,则CE=2x=1.故线段AC 上存在E 点,且CE=1时,ED 与平面BCD 成30°角.。
宁南中学2011届高考数学复习—小题训练13 平面向量(一)

训练13 平面向量(一)一、选择题(方法:直接选择法、特殊化法、估算选择法、特征选择法、数形结合法、结论选择法)1.(2010安徽文)(3)设向量()1,0a =, 11,22b ⎛⎫= ⎪⎝⎭ ,则下列结论中正确的是( )(A) a b =(B)a b ⋅=(C) //a b (D) a b - 与b垂直2.(2010湖南理)4、在Rt ABC ∆中,C ∠=90°,AC=4,则AB AC ⋅uu u r uu u r等于( )A 、-16B 、-8C 、8D 、163.(2010重庆文)(3)若向量()3,a m = ,()2,1b =-,0a b ⋅= ,则实数m 的值为( )(A )32-(B )32(C )2 (D )64.(2010重庆理)(2) 已知向量,a b满足0,1,2a b a b ⋅=== ,则2a b -= ( )A. 0B.D. 85.(2009重庆卷理)已知()1,6,2a b a b a ==⋅-=,则向量a 与向量b 的夹角是( )A .6π B .4π C .3π D .2π 6.(2010四川理)(5)设点M 是线段BC 的中点,点A 在直线BC 外,216,B C A B A C A B A C =∣+∣=∣-, 则AM ∣∣= ( )(A )8 (B )4 (C ) 2 (D )17.(2010辽宁理)(8)平面上O,A,B 三点不共线,设,OA a OB b ==,则△OAB 的面积等于( )(A)8.(2010湖北文)8.已知ABC ∆和点M 满足0MA MB MC ++=.若存在实m 使得AB AC m AM += 成立,则m =( )A.2B.3C.4D.59.(2010全国卷2理)(8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若CB a = ,CA b =,1a = ,2b =,则CD =u u u r ( )(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b +10.(2010山东文)(12)定义平面向量之间的一种运算“ ”如下:对任意的(),a m n =,(),b p q = ,令a b mq np =-,下面说法错误的是( )(A)若a 与b 共线,则0a b =(B) a b b a =(C)对任意的R λ∈,有()()a b a b λλ=(D) ()()2222a b a ba b +⋅=11.(2007湖北)设()4,3a = ,a 在b b在x 轴上的投影为2,且14b ≤ ,则b为( )A .(214),B .227⎛⎫-⎪⎝⎭, C .227⎛⎫- ⎪⎝⎭,D .(28),12.(2010全国卷1文)(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为( )(A) 4- (B)3-(C) 4-+(D)3-+二、填空题(策略:快--运算要快;稳--变形要稳;全--答案要全;细--审题要细。
2011年高考数学试题汇编4——平面向量

2011年高考数学试题汇编4——平面向量(北京4)已知O 是A B C △所在平面内一点,D 为B C 边中点,且2OA OB OC ++=0,那么( A ) A.AO O D = B.2AO OD =C.3AO OD =D.2AO OD =(辽宁3)若向量a 与b 不共线,0≠ a b ,且⎛⎫ ⎪⎝⎭a ac =a -b a b,则向量a 与c 的夹角为( D )A .0B .π6C .π3D .π2(辽宁6)若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--,B .(12)-,C .(12)-,D .(12),(宁夏,海南4)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( D )A.(21)--, B.(21)-,C.(10)-,D.(12),(福建4)对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0 a b ,则0a =或0b =B .若λ0a =,则0λ=或=0aC .若22=a b ,则=a b 或-a =bD .若 a b =a c ,则b =c(湖北2)将π2cos 36x y ⎛⎫=+⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为(A )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=--⎪⎝⎭D.π2cos 2312x y ⎛⎫=++⎪⎝⎭(湖北文9)设(43)=,a ,a 在b 上的投影为522,b 在x 轴上的投影为2,且||14≤b ,则b 为( B )A .(214),B .227⎛⎫-⎪⎝⎭, C .227⎛⎫- ⎪⎝⎭,D .(28), (湖南4)设,a b 是非零向量,若函数()()()f x x x =+- a b a b 的图象是一条直线,则必有( A ) A .⊥a bB .∥a bC .||||=a bD .||||≠a b (湖南文2)若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+B .EF OF OE =-C .EF OF OE =-+D .EF OF OE =--(四川7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为 ( A ) (A)354=-b a(B)345=-b a (C)1454=+b a(D)1445=+b a(天津10)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是( A )A.[-6,1] B.[48],C.(-6,1] D.[-1,6](浙江7)若非零向量,a b 满足+=a b b ,则( C ) A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b(浙江文9)若非零向量a 、b 满足|a 一b |=|b|,则(A) (A) |2b |>|a 一2b | (B) |2b |<|a 一2b|(C) |2a |>|2a 一b | (D) |2a |<|2a 一b|(山东11)在直角A B C ∆中,C D 是斜边A B 上的高,则下列等式不成立的是( C ) (A )2AC AC AB =⋅(B ) 2BCBA BC =⋅(C )2ABAC CD =⋅(D ) 22()()AC AB BA BC C DAB⋅⨯⋅= (山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( C ) A .1B .2C .2D .4(重庆5)在A B C △中,3AB =,45A = ,75C = ,则B C =( A )A.33-B.2 C.2 D.33+(重庆10)如题(10)图,在四边形A B C D 中,4AB BD D C ++=,4AB BD BD D C +=,0AB BD BD DC == ,则()A B D C A C +的值为( C )A.2 B.22 C.4 D.42(上海14)直角坐标系x O y 中,i j,分别是与x y ,轴正方向同向的单位向量.在直角三角形A B C 中,若j k i AC j i AB+=+=3,2,则k 的可能值个数是( B )A.1 B.2 C.3 D.4 (全国Ⅰ3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( A ) A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向(全国Ⅱ5)在A B C △中,已知D 是A B 边上一点,若123A D DBCD C A C B λ==+,,则λ=( A ) DCA B 题(10)图A .23B .13C .13-D .23-二、填空题 (安徽13)在四面体O A B C -中,OA OB OC D === ,,,a b c 为B C 的中点,E 为A D 的中点,则O E =111244++a b c(用,,a b c 表示).(北京11.)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是3-(北京12.)在A B C △中,若1tan 3A =,150C = ,1BC =,则A B =102(广东10. )若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= 21. (湖南12.)在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b =7,3c =,则B = 5π6 .(湖南文12.)在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,3c =,π3C =,则A = π6 .(江西15.)如图,在A B C △中,点O 是B C 的中点,过点O 的直线分别交直线A B ,A C 于不同的两点M N ,,若A B mA M = ,AC n AN =,则m n +的值为2 .(江西文13.)在平面直角坐标系中,正方形O A B C 的对角线O B 的两端点分别为(00)O ,,(11)B ,,则AB AC =1.(陕西15. )如图,平面内有三个向量OA 、OB 、OC ,其中与OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=32,若OC =λOA +μOB (λ,μ∈R ),则λ+μ的值为 6 . (天津15.)如图,在A B C △中,12021B A C A B A C ∠===,,°,D 是边B C 上一点,2D C B D =,则A D B C =·83- .(天津文15)在A B C △中,2A B =,3A C =,D 是边B C 的中点,则AD BC =52.(重庆文(13))在△ABC 中,AB =1,B C =2,B =60°,则AC = 3。
2011年高考数学试题分类汇编(必修Ⅳ——向量)

2011年高考数学试题分类汇编(必修Ⅳ——向量)(一)选择题1、【08安徽理3】在平行四边形ABCD 中,AC 为一条对角线,若(2,4)A B =,(1,3)AC =,则AB =( B ) A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)2、【08安徽文2】若(2,4)A B = ,(1,3)AC =, 则BC = ( B ) A . (1,1)B .(-1,-1)C .(3,7)D .(-3,-7)3、【08广东文3】已知平面向量(1,2)a = ,(2,)b m =-,且a //b ,则23a b + =( B )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)--4、【08湖北文1】设(1,2),(3,4),(3,2),(2)a b c a b c =-=-=+= 则(C )A.(15,12)-B.0C.-3D.-115、【08湖南理7】设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,D C BD = 2,C E E A =2,AF FB =则AD BE CF ++ 与BC (A )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直6、【08辽宁理5】已知,,O A B 是平面上的三个点,直线A B 上有一点C ,满足2AC CB +=0 ,则O C等于(A ) A.2OA OB - B.2OA OB -+ C.2133O A O B - D.1233O A O B -+7、【08宁夏理8】平面向量a ,b 共线的充要条件是( D )A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .λ∈R ∃,λ=b aD .存在不全为零的实数1λ,2λ,12λλ+=0a b8、【08宁夏文5】已知平面向量(13)=-,a ,(42)=-,b ,λ+a b 与a 垂直, 则λ=( A ) A .1- B .1C .2-D .29、【08全国Ⅰ理3】在A B C △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( A ) A .2133+b cB .5233-c b C .2133-b c D .1233+b c10、【08全国Ⅰ文5】在A B C △中,AB c = ,AC b = .若点D 满足2BD DC = ,则AD=( A )A .2133b c +B .5233c b -C .2133b c -D .1233b c +11、【08浙江理9】已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()0--= a c b c ,则c 的最大值是( C ) A .1B .2C .2D .22(二)填空题12、【08江苏5】b a ,的夹角为 120,1,3a b == ,则5a b -= 713、【08江西理13】直角坐标平面内三点()()()1,23,29,7A B C -、、,若E F 、为线段B C 的三等分点,则AE ·AF= 22 .14、【08江西文16】如图,正六边形A B C D E F 中,有下列四个命题:A .2AC AF BC +=B .22AD AB AF =+C .AC AD AD AB ⋅=⋅D .()()AD AF EF AD AF EF ⋅=⋅其中真命题的代号是 A,B,D (写出所有真命题的代号)15、【08北京文11】已知向量a 与b 的夹角为120 ,且4==a b ,那么 a b 的值为 -8 16、【08宁夏理13】已知向量(011)=-,,a ,(410)=,,b ,29λ+=a b 且0λ>,则λ= 3 .17、【08全国Ⅱ理13】设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 2 . 18、【08陕西理15】关于平面向量,,a b c .有下列三个命题:①若 a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-.③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60.其中真命题的序号为 ② .(写出所有真命题的序号)19、【08上海理5】若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3,则|→a +→b |= 720、【08天津文14】已知平面向量(24)=,a ,(12)=-,b ,若()=- c a a b b ,则=c 82 .21、【08浙江理11】已知0a >,若平面内三点23(1)(2)(3)A a B a C a -,,,,,共线,则a = 12+22、【08浙江文16】已知a 是平面内的单位向量,若向量b 满足()0b a b -=,则||b 的取值范围是 [0,1] 。
线面角、面面角强化训练(含答案)

线面角、面面角强化训练一.解答题(共24小题)1.(2012•浙江)如图,在侧棱垂直底面的四棱柱ABCD﹣A1B1C1D1中,AD∥BC,AD⊥AB,AB=.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:(i)EF∥A1D1;(ii)BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成的角的正弦值.2.(2010•湖南)如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.3.(2009•湖南)如图,在正三棱柱ABC﹣A1B1C1中,AB=4,AA1=,点D是BC的中点,点E在AC上,且DE⊥A1E.(1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值.4.(2008•上海)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E是BC1的中点.求直线DE与平面ABCD所成角的大小(结果用反三角函数值表示).5.(2005•黑龙江)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E,F分别为CD,PB的中点.(1)求证:EF⊥面PAB;(2)若,求AC与面AEF所成的角.6.如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.7.(2011•北京)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.8.(2008•安徽)如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.9.(2005•北京)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点.(Ⅰ)求证AC⊥BC1;(Ⅱ)求证AC1∥平面CDB1;(Ⅲ)求异面直线AC1与B1C所成角的余弦值.10.(2009•江西)在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以AC的中点O为球心、AC为直径的球面交PD于点M,交PC于点N(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成的角的大小;(3)求点N到平面ACM的距离.11.(2008•海南)如图,已知点P在正方体ABCD﹣A′B′C′D′的对角线BD′上,∠PDA=60°.(Ⅰ)求DP与CC′所成角的大小;(Ⅱ)求DP与平面AA′D′D所成角的大小.12.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.13.(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(Ⅰ)求异面直线CC1和AB的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣B1的平面角的余弦值.14.(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.15.(2012•浙江)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.16.(2012•四川)如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,点P在平面ABC内的射影O在AB上.(Ⅰ)求直线PC与平面ABC所成的角的大小;(Ⅱ)求二面角B﹣AP﹣C的大小.17.(2012•山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F﹣BD﹣C的余弦值.18.(2011•辽宁)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:平面PQC⊥平面DCQ(II)求二面角Q﹣BP﹣C的余弦值.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.20.如图,已知正三棱柱ABC﹣A1B1C1的,底面边长是侧棱长2倍,D、E分别是AC、A1C1的中点;(Ⅰ)求证:直线AE∥平面BDC1;(Ⅱ)求证:直线A1D⊥平面BDC1;(Ⅲ)求直线A1C1与平面BDC1所成的角.21.已知斜三棱柱ABC﹣A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1.(Ⅰ)求证:AC1⊥平面A1BC;(Ⅱ)求C1到平面A1AB的距离;(Ⅲ)求二面角A﹣A1B﹣C的余弦值.22.已知在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD 的中点.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求PC与平面ABCD所成角的大小;(Ⅲ)求二面角P一EC一D的大小.23.如图,ABCD﹣A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.(1)求证:A1F⊥C1E;(2)当A1、E、F、C1共面时,求:①D1到直线C1E的距离;②面A1DE与面C1DF所成二面角的余弦值.24.如图,在直三棱柱ABC﹣A1B1C1中,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.(Ⅰ)求证:AC1∥平面CDB1;(Ⅱ)求点B到平面CDB1的距离;(Ⅲ)求二面角B﹣B1C﹣D的大小.线面角、面面角强化训练参考答案与试题解析一.解答题(共24小题)1.(2012•浙江)如图,在侧棱垂直底面的四棱柱ABCD﹣A1B1C1D1中,AD∥BC,AD⊥AB,AB=.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:(i)EF∥A1D1;(ii)BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成的角的正弦值.B=B=,即∠,BH=,H=,2.(2010•湖南)如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.BE=中,所成的角的正弦值为3.(2009•湖南)如图,在正三棱柱ABC﹣A1B1C1中,AB=4,AA1=,点D是BC的中点,点E在AC上,且DE⊥A1E.(1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值.),,﹣,,﹣所成角的正弦值为4.(2008•上海)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E是BC1的中点.求直线DE与平面ABCD所成角的大小(结果用反三角函数值表示).EF=(5.(2005•黑龙江)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E,F分别为CD,PB的中点.(1)求证:EF⊥面PAB;(2)若,求AC与面AEF所成的角.EF DGa所成角的正弦值为所成角为,∴)解:由,得,∴所成的角为所成的角为.6.如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.的法向量为锐角时,所求的角即为它的余角;当=MD=SM=(,y==,,>==,>arcsin7.(2011•北京)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.,则,代入公式可求的法向量的法向量,,﹣,,,=|)知,设的法向量令的法向量所以的法向量=0t=PA=8.(2008•安徽)如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.ADC=DP=利用勾股定理求得等于,,的坐标表示.设平面的法向量为,,表示出和在向量的距离为,∴,所成角的大小为.的距离为.,,•=0•=0•(,﹣,.在向量=)上的投影的绝对值,的距离为9.(2005•北京)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点.(Ⅰ)求证AC⊥BC1;(Ⅱ)求证AC1∥平面CDB1;(Ⅲ)求异面直线AC1与B1C所成角的余弦值.=λ,与AC,AB=,CE=CBCED==所成角的余弦值((Ⅰ)∵=0⊥,,=∥(Ⅲ)∵=,>所成角的余弦值为10.(2009•江西)在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以AC的中点O为球心、AC为直径的球面交PD于点M,交PC于点N(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成的角的大小;(3)求点N到平面ACM的距离.距离的的一个法向量,结合然后求出距离的,再利用向量的射影公式直接求点的中点可得即,则,,由PN=(.)可知所求距离为.的一个法向量,由可得:,所以所求角的大小为,所以,则距离的,设点.11.(2008•海南)如图,已知点P在正方体ABCD﹣A′B′C′D′的对角线BD′上,∠PDA=60°.(Ⅰ)求DP与CC′所成角的大小;(Ⅱ)求DP与平面AA′D′D所成角的大小.(Ⅰ)利用,求出.即可..通过,得到.求出,,由已知,.解得,所以(Ⅰ)因为.即.,所以..则,)则,则,由已知,,解得,∴(Ⅰ)因为,.即.,所以12.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.,(2),﹣=,()•==0•=0),(的法向量为,则,=,则,﹣),∴•﹣,(﹣,﹣,>==13.(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(Ⅰ)求异面直线CC1和AB的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣B1的平面角的余弦值.=.=,得D=,D=2=.=,﹣得=0,2,)=,=,则⊥,⊥取=(=,则⊥,,即取得,>==.14.(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.=,从而D=.所以=,,,从而,,﹣,故,2,,=,则有⊥,⊥•且•,即,取=,=,则⊥,⊥,即且=0,>=,所以二面角的平面角的余弦值15.(2012•浙江)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.的法向量,AQ=2AC=AB=中,(﹣,(),的平面角的余弦值为BD=AM=PB=AE=AQ=2BPC=MQ=.QE=,∴AEQ=的平面角的余弦值为16.(2012•四川)如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,点P在平面ABC内的射影O在AB上.(Ⅰ)求直线PC与平面ABC所成的角的大小;(Ⅱ)求二面角B﹣AP﹣C的大小.OP=与平面OP=,,OC====.为原点,建立空间直角坐标系.则)=2=,则由得出,取﹣,所以(﹣===.OP=,,,所以=2 =)为平面==arcsin(Ⅱ)由(Ⅰ)知,,,=,则由得出,,则,所以=,的一个法向量为==arccos17.(2012•山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F﹣BD﹣C的余弦值.,﹣,,因此(,﹣==,则•,•y=z,则==,>=,所以二面角CB=CGFGC=的余弦值为18.(2011•辽宁)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:平面PQC⊥平面DCQ(II)求二面角Q﹣BP﹣C的余弦值.求出则、、由向量积的运算易得•,•、、的坐标,的法向量法向量,==••=即因此可取,=,>﹣的余弦值为﹣19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.的坐标,求出向量,和平面BD=,,,,=的法向量为,则因此可取(,=,==﹣的余弦值为:﹣20.如图,已知正三棱柱ABC﹣A1B1C1的,底面边长是侧棱长2倍,D、E分别是AC、A1C1的中点;(Ⅰ)求证:直线AE∥平面BDC1;(Ⅱ)求证:直线A1D⊥平面BDC1;(Ⅲ)求直线A1C1与平面BDC1所成的角.D=21.已知斜三棱柱ABC﹣A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1.(Ⅰ)求证:AC1⊥平面A1BC;(Ⅱ)求C1到平面A1AB的距离;(Ⅲ)求二面角A﹣A1B﹣C的余弦值.,求,))=的法向量=,则,)∴的距离为的法向量(,的法向量,的余弦值为22.已知在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD 的中点.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求PC与平面ABCD所成角的大小;(Ⅲ)求二面角P一EC一D的大小.FO=中,中,所成的角大小为,可得的大小为23.如图,ABCD﹣A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.(1)求证:A1F⊥C1E;(2)当A1、E、F、C1共面时,求:①D1到直线C1E的距离;②面A1DE与面C1DF所成二面角的余弦值.坐标,代入向量数量积公式,易得满足,的一个法向量为,的一个法向量为24.如图,在直三棱柱ABC﹣A1B1C1中,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.(Ⅰ)求证:AC1∥平面CDB1;(Ⅱ)求点B到平面CDB1的距离;(Ⅲ)求二面角B﹣B1C﹣D的大小.(Ⅰ)求出通过,相关向量,计算,求二面角,∴,的距离是,.的大小是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011届高三数学(文)强化训练(14)
11、 12、 13、 14、 _____ 一、选择题
1、若命题甲:“AB DC =”,命题乙:“ABCD 是平行四边形”。
则甲是乙的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件
2、下列命题中正确的是( )
A 、若||||a b =,则a b =
B 、若a b =,则//a b
C 、若||||a b >,则a b >
D 、若||1a =,则1a =± 3、向量(3,4),(1,)a b y ==,如果a b ,则y =( ) A 、
43 B 、34 C 、2 D 、3
4
- 4、与向量(12,5)a =平行的单位向量为( )
A 、125(,)1313-
B 、125
(,)1313-- C 、125125(,)(,)13131313--或 D 、512512(,)(,)13131313
--或
5、、在
ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222a c b +-=,
则角B 的值是( ) A 、
6π B 、3
π
C 、566ππ或
D 、233ππ或
6、已知(1,2)a =,(2,4)b =--,||5c = 若5
().2
a b c +=
,则a c 与的夹角
为( )
A 、0
30 B 、0
60 C 、0
120 D 0
150 7、下列向量组中,能够作为平面中的一组基底是( ) A 、1(0,0)e = 2(1,2)e =- B 、1(1,2)e =- 2(5,7)e = C 、1(3,5)e = 2(6,10)e = D 、1(2,3)e =- 213(,)24
e =-
8、(1,1)a =且2a b a +与同向,则a .b 的取值范围是( ) A 、(1,)-+∞ B 、(0,)+∞ C 、(1,)+∞ D 、1(,)2
+∞
9已知向量,2,56,72a b AB a b BC a b CD a b =+=-+=-,,则一定共线的三点是( )
(A)、B ,C ,D (B)、A ,B ,C (C)、A ,C ,D (D)、A ,B ,D 10、在
ABC 中,若cos 2sin sin 1C A B =-,则ABC 的形状
一定是( )
A 、等腰三角形 `
B 、直角三角形
C 、等腰直角三角形
D 、等边三角形 二、填空题
11、在
ABC 中,,B=60
,那么角A= ____
12、已知平面向量(1,3),(4,2)a b =-=-,a b a λ+与垂直,则实数λ的值为_____
13、若四边形ABCD 是正方形,E 是CD 边的中点,且,AB a CD b ==,则用向量
,a b 表示向量BE =_______________
14、三角形ABC 中5
,,.0,,||1,4
ABC
AB a AC b a b S
a ==<=
= ||5b a b =,则 与 的夹角度数为。