大连理工大学大学物理作业6(静电场六)及答案详解

合集下载

大学物理课后习题答案第六章

大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41cos R x xdqdE dE x +==πεθR Oλ1λ2lxy z式中:θ为dq 到场点的连线与x 轴负向的夹角。

⎰+=23220)(4dq R x xE x πε232210)(24R x Rx+⋅=πλπε232201)(2R x xR +=ελ下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ 方向沿x 轴正方向。

大学物理第6章真空中的静电场课后习题与答案

大学物理第6章真空中的静电场课后习题与答案

第6章真空中的静电场习题及答案1.电荷为q 和2q 的两个点电荷分别置于x1m 和x1m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 位于点电荷 0q 的右侧,它受到的合力才可能为0,所以2qqqq00224(x 1)4(x1) ππ 00故x3222.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放 一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都 为零)?(2)这种平衡与三角形的边长有无关系?解:(1)以A 处点电荷为研究对象,由力平衡知,q 为负电荷,所以2 4 1 π 0 q a 22 cos304 1 π 0 ( q 33qa 2 )3故qq3(2)与三角形边长无关。

3.如图所示,半径为R 、电荷线密度为1的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dqdl 1,dq 在带电圆环轴 线上x 处产生的场强大小为 dE 4 dq20(xRy2 )根据电荷分布的对称性知,yE0E zdEdEcos x41xdq 1R 3 22 2O(xR) 02xl式中:为dq 到场点的连线与x 轴负向的夹角。

E x4x 220(xR) 3 2dqzx21R R 1 x4x 2R2()3 2 2xR 2( 02 )3 2下面求直线段受到的电场力。

在直线段上取dqdx2,dq受到的电场力大小为Rx12dFxdxEdq32222(xR)0方向沿x轴正方向。

直线段受到的电场力大小为Rlx12FdxdF3202220xR)(11R1121/22R22lR方向沿x轴正方向。

4.一个半径为R的均匀带电半圆环,电荷线密度为。

求:(1)圆心处O点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O点场强。

关于大学物理课后习题答案第六章

关于大学物理课后习题答案第六章

关于大学物理课后习题答案第六章文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε 根据电荷分布的对称性知,0==z y E E式中:θ为dq 到场点的连线与x 轴负向的夹角。

下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为 方向沿x 轴正方向。

直线段受到的电场力大小为 方向沿x 轴正方向。

4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。

求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。

解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y E 故 RE E x 0π2ελ==,方向沿x 轴正向。

中国大学mooc《大学物理—相对论、电磁学(大连理工大学) 》满分章节测试答案

中国大学mooc《大学物理—相对论、电磁学(大连理工大学) 》满分章节测试答案

title大学物理—相对论、电磁学(大连理工大学) 中国大学mooc答案100分最新版content第二周相对论基础(2)相对论单元测验1、地面观察者测得地面上事件A和B同时发生,并分别处于x轴上x1和x2两点(x1< x2),则沿x 轴负向高速运动的飞船上的观察者测得此两事件中答案: B晚发生2、 p 介子静止时平均寿命为t. 用高能加速器把p 介子加速到u ,则在实验室中观测,p 介子平均一生最长行程为。

答案:3、若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,则宇宙飞船相对该惯性系的速度为()。

答案:4、 K系与K¢系是坐标轴相互平行的两个惯性系,K¢系相对K系沿ox轴正方向以接近光速的速度匀速运动。

一根刚性尺静止在K¢系中,与o¢x¢轴成60°角,则在K系中观察该尺与ox轴的夹角q ,有()。

答案: q >60º5、两枚静止长度为20m 的火箭A、B,它们均以 0.9 c 的速度相对地面背向飞行。

在火箭 A上测量火箭B 的速度为()。

答案: 0.994 c6、一个静止质量是m0的粒子,以接近光速的速度v相对地面作匀速直线运动,则地面上的观测者测量其动能为( ).答案:7、由狭义相对论原理可知,相对于某些惯性系,运动物体的速度是可以达到真空中的光速的.答案: 错误8、在一惯性系中发生于同一时刻、不同地点的两个事件,在其他相对此惯性系运动的任何惯性系中一定不是同时发生的.答案: 错误9、在一惯性系中发生于同一时刻、不同地点的两个事件,在其他相对此惯性系运动的任何惯性系中可能不是同时发生的.答案: 正确10、由洛伦兹变换可得出下面的结论:有因果关系的两个事件发生的时间顺序在两个不同的惯性系中观察,有可能是颠倒的。

答案: 错误11、广义相对论的等效原理指出加速度和引力场等效.答案: 正确12、由狭义相对论原理可知:在任何一个惯性系中做光学实验都用来确定本参考系的运动速度。

大学物理作业及答案详解1-22

大学物理作业及答案详解1-22

大连理工大学大学物理作业及答案详解作业1 (静电场一)1.关于电场强度定义式,下列说法中哪个是正确的?[ ] A .场强E 的大小与试探电荷0q 的大小成反比。

B .对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。

C .试探电荷受力F 的方向就是场强E 的方向。

D .若场中某点不放试探电荷0q ,则0F =,从而0E =。

答案: 【B 】[解]定义。

场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。

2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。

存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。

3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E = ,场强最大值的位置在y = 。

答案:y a qy23220)(2+=πε,2/a y ±= [解]21E E += )(422021y a qE E +==πε关于y 轴对称:θcos 2,01E E E y x ==j y a qyj E E y 2322)(2+==∴πεy y a y y a dy dE 2)(23)(2522222⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。

大学物理第6章静电场中的导体和电介质解答(精)

大学物理第6章静电场中的导体和电介质解答(精)

第六章静电场中的导体和电介质解答一、选择题1.D 2.C 3.B 4.D 5.D 6.B 7.D 8.B 二、填空题1.-q; -q 2.3.r1r22322U04. 45. 6.7.Qd2ε0S;Qdε0SλQ04πε0εrr12λ2πr;;2πε0εrrQ04πr12Q04πr22;;Q04πεr202Q1+Q22s2s8.εr; 1;εr;εr;Q1-Q2; -Q1-Q22s;Q1+Q22s三、计算题1.解:电荷重新分布后,设c板左侧面带电荷为-q1,右侧面带电荷+q2,但电荷总和不变,即 q=-q1+q2 (1)此时(可用髙斯定理证明),a板上带电荷为+q1,b板上带电荷为-q2 设c板电势为Uc,则a、c板之间电势差为U-Uc=E1d2a、c板之间电场强度大小为E1=q1ε0S⎛q1所以 U-Uc= εS⎝0⎫d⎪⎪2⎭由此得 q1=同理可得c、b板之间电势差为2ε0Sd(U-Uc) (2)Uc⎛q2= εS⎝0⎫d⎪⎪2⎭由此得 q2=2ε0Sd将(2)、(3)代入(1)化简得c板之电势为Uc=Uc (3)⎫1⎛dU+⎪ q⎪2 2εS0⎝⎭2.解:设两平行长直导线A、B,单位长度上分别带电量+λ 和 - λ ,如图所示,离Ox轴原点为x 处一点P的电场强度为λλE= +2πε0x2πε0(d-x)则两导线之间电势差为UA-UB=⎰d-aaE⋅dl=⎰d-aa[λ2πε0xa+λ2πε0(d-x)=]dxA≈=λ2πε[lnx-ln(d-x)]d-aλπεlnd-aaλπεlnda(d >>a)所以两导线单位长度的电容为 C=λUA-UB=πεlnda3. 解:(1)点电荷+q使导体球产生感应电荷±q'在球表面上。

球心O处的电场强度为±q'的电场强度E'以及点电荷+q的场强E得叠加。

即EO=E+E'由静电平衡,EO=0,若取球心O为坐标原点,则E'=-E=q4πε0rˆrˆ是从O指(r向电荷+q的单位矢量)。

大学物理第六章静电场习题答案

大学物理第六章静电场习题答案

第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。

6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。

设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。

解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。

(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。

试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。

解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。

大学物理第六章静电场习题答案

大学物理第六章静电场习题答案

大学物理第六章静电场习题答案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第六章静电场习题6-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F=++=合y轴方向有()()21322232cos242433304q qQF F Fa aqq Qaθπεπεπε=+=+=+=合得33Q q=-(2)这种平衡与三角形的边长无关。

6-2 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。

设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。

解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===22)sin2(π41sincosθεθθlqFTmgTe解得θπεθtan4sin2mglq=6-3 在氯化铯晶体中,一价氯离子Cl-与其最邻近的八个一价铯离子Cs+构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。

(1)由对称性可知F1= 0(2)2912222001.9210N43q q eFr aπεπε-===⨯方向如图所示6-4 长l= cm的直导线AB上均匀地分布着线密度95.010C mλ-=⨯的正电荷。

试求:(1)在导线的延长线上与导线B端相距15.0cma=处P点的场强;(2)在导线的垂直平分线上与导线中点相距25.0d cm=处Q点的场强。

解:(1)如图所示,在带电直线上取线元x d,其上电量q d在P点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l Qx E 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

它们的静电能之间的关系是[ ]。

.A 球体的静电能等于球面的静电能
.B 球体的静电能大于球面的静电能
.C 球体的静电能小于面的静电能
.D 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能 答案:【B 】
解:设带电量为Q 、半径为R ,球体的电荷体密度为ρ。

由高斯定理,可以求得两种电荷分布的电场强度分布
0022επQ E r S d E S ==⋅⎰⎰ ,2002r Q E επ=
对于球体电荷分布:
03223402031>==ερεπρπr r r E ,(R r <);2022r
Q E επ=,(R r >)。

对于球壳电荷分布:
0/1=E ,(R r <);20/22r Q
E επ=,(R r >)。

可见,球外:两种电荷分布下,电场强度相等;球内:球体电荷分布,有电场,球壳电荷分布无电场。

静电场能量密度202
1E εω= 两球外面的场强相同,分布区域相同,故外面静电能相同;而球体(并不是导体)内部也有电荷分布,也是场分布,故也有静电能。

所以球体电荷分布时,球内的静电场能量,大于球面电荷分布时,球内的静电场能量;球体电荷分布时,球外的静电场能量,等于球面电荷分布时,球外的静电场能量。

2.1C 和2C 两空气电容器串联起来接上电源充电,然后将
电源断开,再把一电介质板插入1C 中,如图6-1所示,则
[ ]。

.A 1C 两端电势差减少,2C 两端电势差增大
.B 1C 两端电势差减少,2C 两端电势差不变
.C 1C 两端电势差增大,2C 两端电势差减小
.D 1C 两端电势差增大,2C 两端电势差不变
答案:【B 】
解:电源接通时,给两个串联的电容器充电。

充电量是相同的,是为Q 。

则两个电容器的电压分别为
11C Q U =,2
2C Q U = 电源断开后,1C 插入电介质,两个电容器的电量不变,仍然都是Q 。

但1C 的电容增大,因此1C 两端的电压降低;而2C 不变,因此,2C 两端的电压不变。

3.一平行板电容器,板间相距d ,两板间电势差为U ,一个质量为m ,电荷为e -的电子,从负极板由静止开始向正极板运动,它所需的时间为[ ]。

.A 2md eU .B 2md eU .C 22md eU .D 答案:【D 】 解:两极间的电场d U E = ,电子受力d
eU m F a d eU eE F 2==∴-=-= 由eU
md t at d 2
2221=∴= 4.将半径为10cm 的金属球接上电源充电到3000V ,则电场能量W = 。

答案:)(1055J -⨯
解:孤立导体球的电容为:R C 04πε=,所以,充电到V U 3000=时,
)(10530001.01085.814.3242
1215212202J RU CU W --⨯=⨯⨯⨯⨯⨯=⨯==πε 5.A 、B 为两个电容值都等于C 的电容器,已知A 带电量为Q ,B 带电量为2Q ,现将A 、B 关联在一起后,则系统的能量变化W ∆= 。

答案:C
Q 42
- 解:未并联前,两电容器储存的总能量为:C
Q C Q C Q W 252)2(22
22=+= 当并联后,总电容为:C C C C 2/=+=,总电量不变:Q Q Q Q 32/=+=, 则并联后,总电压为:C Q C
Q U 23///== 并联后,储存的总能量为:C
Q C Q C U C W 49)23(221212
22///=⋅⋅== 系统的能量变化为:C
Q C Q C Q W W W 425492
22/-=-=-=∆ 6.一平行板电容器电容为0C ,将其两板与一电源两极相连,电源电动势为ε,则每一极板上带电量为 。

若在不切断电源的情况下将两极板距离拉至原来的两倍,则电容器内电场能量改变为 。

答案:ε0C ,204
1εC - 解:(1)ε00C U C Q == 。

电容器储存的静电场能量为20202121εC U C W ==
(2)当增大两极板的距离时,平行板电容器电容为0/21C C =。

因为电源未切断,故电容两端电压ε==U U /不变,则电容器储存的静电场能量为
202///4
121εC U C W == 电容器储存的静电场能量的变化为:20/4
1εC W W W -=-=∆ 7.两层相对介电常数分别为1r ε和2r ε的介质,充满圆柱形电容器之间,如图6-2示。

内外圆筒(电容器的两极)单位长度带电量分别为λ和λ-,求:()1两层介质中的场强和电位移矢量;()2此电容器单位长度的电容。

答案:同作业5中第7题的计算。

8.充满均匀电介质的平行板电容器,充电到板间电压1000U V =时断开电源。

若把电介质从两板间抽出,测得板间电压03000U V =,求:()1电介质的相对介电系数r ε;()2若有介质时的电容31 2.010C F μ-=⨯,抽出介质后的电容0C 为多少?()3抽出电介质时外力所做的功。

解:(1)有电介质和无电介质时,电容器的电容间的关系:0C C r ε=,切断电源,电容器带电量不变,00000 U C U C U C CU r ==∴ε, ,3U U 0r ==
∴ε (2) F 106.7C C 4-r 0με⨯==
(3) J 101213-2⨯==CU W ,J 1032
13-2000⨯==U C W J 102W -A -30⨯==W 外 9.有一导体球与一同心导体球壳组成的带电系统,球的半径1 2.0R cm =,球壳的内、外半径分别为2 4.0R cm =,3 5.0R cm =,其间充以空气介质,内球带电量83.010Q C -=⨯时,求:()1带电系统所存储的静电能;()2用导线将球与球壳相连,系统的静电能为多少? 解:(1)由导体的静电平衡条件和电荷守恒定律、高斯定理,可分析得:导体球上所带电量在球面,电量为Q +;球壳内表面带电量为Q -,外表面带电量为Q + 。

由高斯定理可得各个区域的电场分布:
)(010R r E <=,)(4212
01R r R r Q
E <<=πε, )(0322R r R E <<=,)(432
03R r r Q E >=πε 带电系统所储存的能量为: )111(82)4(212)4(212121212121212
132102220022002302102302202100200203
213
21332211R R R Q rdr r Q rdr r Q dV E dV E dV E dV E dV E dV E dV E dW W R R R R R R R R R R R R e e +-=+=+=+++===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∞∞∞
πεππεεππεεεεεεεεε
(2) 当内球与球壳连在一起时,由于球与球壳是等势体,在球与球壳之间没有电场,01=E ;在两面上的电量中和,只有球壳外表面带Q +电量,电场只分布在3R r >区域,可求得: 30222002302082)4(2121213
3R Q rdr r Q dV E dV E dW W R R e e πεππεεεε=====⎰⎰⎰⎰∞∞。

相关文档
最新文档