第四章函数
全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结

全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结单选题1、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解.因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增,所以f(x)在R 上单调递增,所以lgx >2,解得x >100.故选:D.2、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项.因为0<a <1,故y =a x 的图象经过第一象限和第二象限,且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限.故选:A .3、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A .23天B .33天C .43天D .50天答案:B分析:根据题设条件先求出m 、a ,从而得到ℎ=120⋅2110t ,据此可求失去50%新鲜度对应的时间. {10%=m ⋅a 1020%=m ⋅a 20⇒{a 10=2,m =120,故a =2110,故ℎ=120⋅2110t , 令ℎ=12,∴2t 10=10,∴t 10lg2=1,故t =100.3≈33,故选:B.4、已知函数f(x)=9+x 2x ,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可.当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a ,所以254≥3+a ,可得a ≤134.故选:A5、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( )A .−1B .−5C .11D .13答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值.令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x)=log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( )A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在 (−∞,−12)单调递增答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0 ,得x ≠±12. 又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ),∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增, 又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增,在(﹣∞,−12),(12,+∞)上单调递减.故选:B .7、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为()A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x与y 3=10−x =(110)x 是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A .故选:A8、化简√a 3b 2√ab 23(a 14b 12)4⋅√b a 3 (a >0,b >0)的结果是( )A .b aB .a bC .a 2bD .b 2a 答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a 3b 2√ab 23(a 14b 12)4⋅√a 3=a 32b⋅a 16b 13(a 14b 12)4⋅a −13⋅b 13 =a 32+16−1+13b 1+13−2−13=ab −1=a b 故选:B 9、函数f (x )=√3−x +log 13(x +1)的定义域是( ) A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3]答案:C分析:由题可得{3−x ≥0x +1>0,即得. 由题意得{3−x ≥0x +1>0, 解得−1<x ≤3,即函数的定义域是(−1,3].故选:C.10、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( )A .−1或2B .−1C .2D .12答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值.由题意可得{m 2−m −1=1m >0m ≠1,解得m =2. 故选:C.填空题11、方程lg (x 2−x −2)=lg (6−x −x 2)的解为 __________ .答案:x =−2分析:由题意知lg (x 2−x −2)=lg (6−x −x 2),可求出x 的值,再结合真数大于零进行检验,从而可求出最终的解.由lg (x 2−x −2)=lg (6−x −x 2),得x 2−x −2=6−x −x 2,所以x =±2,又因为x 2−x −2>0且6−x −x 2>0,所以x =−2;所以答案是:x =−2.12、已知函数f (x )的定义域是[-1,1],则函数f (log 2x )的定义域为____.答案:[12,2]分析:根据给定条件列出使函数f (log 2x )有意义的不等式组,再求出其解集即可.因函数f (x )的定义域是[-1,1],则在f (log 2x )中,必有−1≤log 2x ≤1,解不等式可得:{12≤x ≤2x >0,即12≤x ≤2, 所以函数f (log 2x )的定义域为[12,2].所以答案是:[12,2]13、函数f(x)=4+log a (x −1)(a >0且a ≠1)的图象恒过定点_________答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题14、对于函数f(x),若其定义域内存在实数x满足f(−x)=−f(x),则称f(x)为“伪奇函数”.(1)已知函数f(x)=x−2x+1,试问f(x)是否为“伪奇函数”?说明理由;(2)若幂函数g(x)=(n−1)x3−n(n∈R)使得f(x)=2g(x)+m为定义在[−1,1]上的“伪奇函数”,试求实数m的取值范围;(3)是否存在实数m,使得f(x)=4x−m⋅2x+1+m2−3是定义在R上的“伪奇函数”,若存在,试求实数m的取值范围;若不存在,请说明理由.答案:(1)不是;(2)[−54,−1];(3)[1−√3,2√2].分析:(1)先假设f(x)为“伪奇函数”,然后推出矛盾即可说明;(2)先根据幂函数确定出g(x)的解析式,然后将问题转化为“2m=−(2x+2−x)在[−1,1]上有解”,根据指数函数的值域以及对勾函数的单调性求解出m的取值范围;(3)将问题转化为“2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解”,通过换元法结合二次函数的零点分布求解出m的取值范围.(1)假设f(x)为“伪奇函数”,∴存在x满足f(−x)=−f(x),∴−x−2−x+1=−x−2x+1有解,化为x2+2=0,无解,∴f(x)不是“伪奇函数”;(2)∵g(x)=(n−1)x3−n(n∈R)为幂函数,∴n=2,∴g(x)=x,∴f(x)=2x+m,∵f(x)=2x+m为定义在[−1,1]的“伪奇函数”,∴2−x+m=−2x−m在[−1,1]上有解,∴2m=−(2x+2−x)在[−1,1]上有解,令2x=t∈[12,2],∴2m=−(t+1t)在t∈[12,2]上有解,又对勾函数y=t+1t 在[12,1)上单调递减,在(1,2]上单调递增,且t=12时,y=52,t=2时,y=52,∴y min=1+1=2,y max=52,∴y=t+1t的值域为[2,52],∴2m∈[−52,−2],∴m∈[−54,−1];(3)设存在m满足,即f(−x)=−f(x)在R上有解,∴4−x−m⋅2−x+1+m2−3=−(4x−m⋅2x+1+m2−3)在R上有解,∴2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解,令2x+2−x=t∈[2,+∞),取等号时x=0,∴2m2−6=−(t2−2)+2mt在[2,+∞)上有解,∴t2−2mt+2m2−8=0在[2,+∞)上有解(*),∵Δ=4m2−4(2m2−8)≥0,解得m∈[−2√2,2√2],记ℎ(t)=t2−2mt+2m2−8,且对称轴t=m,当m∈[−2√2,2]时,ℎ(t)在[2,+∞)上递增,若(*)有解,则ℎ(2)=22−2mt+2m2−8≤0,∴m∈[1−√3,2],当m∈(2,2√2]时,ℎ(t)在[2,m)上递减,在(m,+∞)上递增,若(*)有解,则ℎ(m)=m2−2m2+2m2−8=m2−8≤0,即m2−8≤0,此式恒成立,∴m∈(2,2√2],综上可知,m∈[1−√3,2√2].小提示:关键点点睛:解答本题(2)(3)问题的关键在于转化思想的运用,通过理解“伪奇函数”的定义,将问题转化为方程有解的问题,利用换元的思想简化运算并完成计算.15、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x万盒,需投入成本ℎ(x)万元,当产量小于或等于50万盒时ℎ(x)=180x+100;当产量大于50万盒时ℎ(x)=x2+60x+3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y(万元)关于产量x(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?答案:(1)y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N(2)70万盒分析:(1)根据题意分0≤x≤50和x>50两种情况求解即可;(2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y=200x−200−180x−100=20x−300,当产量大于50万盒时,y=200x−200−x2−60x−3500=−x2+140x−3700,故销售利润y(万元)关于产量x(万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=1402=70时,y=−x2+140x−3700取到最大值,为1200.因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。
八年级数学上册第四章一次函数

第四章一次函数一.函数1.函数的概念一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了唯一的y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
也就是说,函数是两个变量之间的关系。
注意:(1)函数是一个变量相对于另一个变量而言的,如对于两个变量y与x,可以说y是x的函数,不能说y是函数(2)函数是有顺序性的,如y=0.5x+3表示y是x的函数,而变形后的等式x=2y-6,则表示x是y的函数2.自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
3.函数的三种表示法列表法、关系式法(一定要是等式)、图像法【例1】下列关于变量x,y的关系式:①x-3y=1;②y=∣x∣;③2x-y2=9.其中y是x的函数的是,x是y的函数的是变式训练:1.下列关系式中哪些是函数,哪些不是?【例2】写出下列函数关系中自变量的取值范围【例3】写出y与 x的函数关系式并指出自变量的取值范围(1)一个长方形周长为24,一边长为x, 面积为y(2)一个长方形菜园,一边靠墙,另外三边用篱笆围成,垂直于墙的一边为x,菜园的面积为y变式训练:1.写出下列函数关系式,并写出自变量的取值范围(1)周长为24的等腰三角形,它的底边长y与腰长x之间的函数关系(2)周长为24的等腰三角形,它的腰长y与底边长x之间的函数关系小测验(10分钟)1.下列四个图像中,不表示某一个函数图像的是()2.设路程为s,速度为v,时间为t,当s=60时,t=60/v,在这个表达式中()A. t是s的函数B. t是v的函数C. v是t的函数D. v是s的函数3.已知x-3y=6,若把y看成x的函数,则可表示为4.已知变量x与y有如下关系:①y=x ②y =∣x∣③∣y∣= x ④ x2-y=0 ⑤ x-y2=0,其中y是x的函数关系的有(填序号)5.对于圆的周长公式C=2πR , 其中自变量是,因变量是,常量是6.写出下列函数关系式中,自变量的取值范围二、一次函数与正比例函数1.正比例函数和一次函数的概念一次函数:y=kx+b(k,b为常数,k≠0)正比例函数:y=kx(k≠0)一次函数有(填序号)变式训练:1.下列关系中符合正比例关系的是()A.距离s一定时,速度v和时间tB.圆的面积s和半径rC.正方体的体积和棱长aD.正方形的周长C和它的边长a其中属于一次函数的是3.粮库有粮50t,每天运走5t,写出剩下的粮食P(t)与运粮天数t (天)的函数关系式,并指出自变量的取值范围。
离散数学_第四章

4-1 函数的基本概念
例 X={1,2,3} Y={a,b} 所有的从X到Y函数:
X 。 1。 2 。 3 f1 Y 。 a 。 b X 。 1。 2 。 3 f2 Y 。 a 。 b X 。 1。 2 。 3 f3 Y 。 a 。 b X 。 1。 2 。 3 f4 Y 。 a 。 b
X 。 1。 2 。 3
f5
Y 。 a 。 b
X 。 1。 2 。 3
f6
Y 。 a 。 b
X 。 1。 2 。 3
f7
Y 。 a 。 b
X 。 1。 2 。 3
f8
Y 。 a 。 b
YX ={f1,f2,f3,f4,f5,f6,f7,f8}
第9页
济南大学离散数学
4-1 函数的基本概念
如果X和Y是有限集合,|X|=m,|Y|=n,因为X 中的每个元素对应的函数值都有n种选择,于 是可构成nm个不同的函数, 因此 |YX|=|Y||X|=nm, 可见符号YX 有双重 含义.
第15页
济南大学离散数学
4-2 逆函数和复合函数 由于函数就是关系,所以也可以进行复合 运算。 下面先回顾关系的复合,设是R从X到Y的 关系,S是从Y到Z的关系,则R和S的复 合关系记作R○ S 。定义为: R ○ S ={<x,z>|xXzZy(yY <x,y>R<y,z>S)}
源程序
编译
目标代码
硬币
自动售货机
商品
具有分析、使用函数的能力在很多领域都是十分重要的。 本章主要介绍函数的概念、函数的复合、逆函数,以 及在集合的基数中的应用。
第3页
济南大学离散数学
4-1 函数的基本概念
1.定义4-1.1:X与Y集合,f是从X到Y的关系, 如果任何x∈X,都存在唯一y∈Y,使得 <x,y>∈f,则称f是从X到Y的函数,(变换、映 射),记作f:X Y, 或X f Y. 如果f:XX是函数, 也称f是X上的函数.
北师大版八年级数学上册 第四章 一次函数 4.1函数

第四章:一次函数4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据. 自变量与另一个变量的对应关系若y 是x 的函数,当x 取不同的值时,y 的值不一定不同.如:y =x 2中,当x =2,或x =-2时,y 的值都是4. 函数的定义中包括三个要素 ① 自变量的取值范围;② 两个变量之间的对应关系;③ 后一个变量被唯一确定而形成的变化范围. 注意:①自变量可以用任意字母表示;②两个变量之间的关系必须是“唯一确定”的; ③函数不是数,而是一种特殊的对应关系.规律方法:判断两个变量是否存在函数关系,关键是看两个变量之间是否是一一对应,即给一个变量一个数值,另一个变量是否有唯一确定的值与之对应.【例1】下列图像给出了变量x 与y 之间的对应关系,其中y 不是x 的函数的是( )【例2】 下列关于变量x ,y 的关系式:①x -3y =1;②y =|x |;③2x -y 2=9.其中y 是x 的函数的是( ).A .①②③B .①②C .②③D .①②【例3】 已知y =2x 2+4,(1)求x 取12和-12时的函数值;(2)求y 取10时x 的值..函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式. 函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y =x +1是表示y 是x 的函数.若写成x =y -1就表示x 是y 的函数.也就是说:求y 与x 的函数关系式,必须是用只含变量x 的代数式表示y ,即得到的等式(解析式)左边只含一个变量y ,右边是含x 的代数式.【例4】 已知等腰三角形的周长为36,腰长为x ,底边上的高为6,若把面积y 看做腰长x 的函数,试写出它们的函数关系式.3.自变量的取值范围使函数有意义的自变量的全体取值叫做自变量的取值范围. 自变量的取值必须使含自变量的代数式都有意义。
高中数学第四章指数函数与对数函数解题方法技巧(带答案)

高中数学第四章指数函数与对数函数解题方法技巧单选题1、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( ) A .11B .5C .−8D .−5 答案:B分析:利用奇函数的定义直接计算作答. 奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B2、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K 1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69 答案:C分析:将t =t ∗代入函数I (t )=K1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解. ∵I (t )=K1+e −0.23(t−53),所以I (t ∗)=K1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t ∗−53)=19,所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.3、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[,1)C .a ∈(0,13]D .a ∈[,2)答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.3434∵f(x)满足对任意x1≠x2,都有f(x1)−f(x2)x1−x2<0成立,∴f(x)在R上是减函数,∴{0<a<1 a−2<0(a−2)×0+3a≤a0,解得0<a≤13,∴a的取值范围是(0,13].故选:C.4、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅lne−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.5、已知9m=10,a=10m−11,b=8m−9,则()A.a>0>b B.a>b>0C.b>a>0D.b>0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m=10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0. 又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则fʹ(x)=mx m−1−1, 令fʹ(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b , 又因为f(9)=9log 910−10=0 ,所以a >0>b . 故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知2a =5b =10,则1a+1b =( )A .1B .2C .12D .15答案:A分析:运用对数的定义和换底公式、以及运算性质,计算即可得到所求值. 解:若2a =5b =10, 可得a =log 210,b =log 510, 则1a +1b =1log510+1log 210=lg5+lg2=lg10=1,故选:A.7、设4a=3b=36,则1a +2b=()A.3B.1C.−1D.−3答案:B分析:先求出a=log436,b=log336,再利用换底公式和对数的运算法则计算求解. 因为4a=3b=36,所以a=log436,b=log336,则1a =log364,2b=log369,所以则1a +2b=log364+log369=log3636=1.故选:B.8、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B多选题9、函数f(x)=2x−2x−a的一个零点在区间(1,2)内,则实数a的可能取值是()A.0B.1C.2D.3答案:BC分析:根据初等函数的单调性判断函数f(x)=2x−2x−a的单调性,根据零点存在定理可得f(1)f(2)<0,从而可得结果.因为函数y=2x、y=−2x在定义域{x|x≠0}上单调递增,所以函数f (x )=2x −2x−a 在{x |x ≠0}上单调递增,由函数f (x )=2x −2x−a 的一个零点在区间(1,2)内,得f (1)×f (2)=(2−2−a)(4−1−a)=(−a )×(3−a )<0, 解得0<a <3, 故选:BC10、已知a =log 3e,b =log 23,c =ln3,则( ) A .a <b <c B .a <c <b C .D .a +c <b 答案:BC分析:由对数函数的单调性结合换底公式比较a,b,c 的大小,计算出a +c ,利用基本不等式得a +c >2,而b <2,从而可比较大小.由题意可知,对于选项AB ,因为b =log 23=ln3ln2>ln3lne=ln3=c ,所以b >c ,又因为a =log 3e <log 33=1,且c =ln3>lne =1,所以,则b >c >a ,所以选项A 错误,选项B 正确;对于选项CD ,a +c =log 3e +ln3=lne ln3+ln3=1ln3+ln3>2√1ln3⋅ln3=2,且b =log 23<b =log 24=2,所以,故选项C 正确,选项D 错误; 故选:BC.小提示:关键点点睛:本题考查对数函数的单调性,利用单调性比较对数的大小,对于不同底的对数,可利用换底公式化为同底,再由用函数的单调性及不等式的性质比较大小,也可结合中间值如0或1或2等比较后得出结论.11、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( )A .−3B .1C .−12D .−2 答案:CD分析:函数f (x )+m =0有五个零点等价于y =f (x )与y =−m 有五个不同的交点,作出f (x )图像,利用图像求解即可a cb +>c a >a c b +>函数f (x )+m =0有五个零点等价于y =f (x )与y =−m 有五个不同的交点,作出f (x )图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94 若y =f (x )与y =−m 有五个不同的交点, 则−m ∈(0,94), ∴m ∈(−94,0),故选:CD .12、已知函数f(x)=2x −12x +1,则下列结论正确的是( )A .函数f(x)的定义域为RB .函数f(x)的值域为(−1,1)C .函数f(x)的图象关于y 轴对称D .函数f(x)在R 上为增函数 答案:ABD分析:根据指数函数的性质,结合偶函数定义、单调性的性质逐一判断即可. A :因为2x >0,所以函数f(x)的定义域为R ,因此本选项结论正确; B :f(x)=2x −12x +1=1−22x +1,由2x >0⇒2x +1>1⇒0<12x +1<1⇒−2<−22x +1<0⇒−1<−22x +1<1,所以函数f(x)的值域为(−1,1),因此本选项结论正确;C:因为f(−x)=2−x−12−x+1=1−2x1+2x=−f(x),所以函数f(x)是奇函数,其图象关于原点对称,不关于y轴对称,因此本选项说法不正确;D:因为函数y=2x+1是增函数,因为y=2x+1>1,所以函数y=22x+1是减函数,因此函数f(x)=1−22x+1是增函数,所以本选项结论正确,故选:ABD13、已知函数f(x)=a x(a>1),g(x)=f(x)−f(−x),若x1≠x2,则()A.f(x1)f(x2)=f(x1+x2)B.f(x1)+f(x2)=f(x1x2)C.x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)D.g(x1+x22)⩽g(x1)+g(x2)2答案:AC分析:对选项A、B,利用指数幂的运算性质即可判断选项A正确,选项B错误;对选项C、利用g(x)=f(x)−f(−x)=a x−a−x(a>1)在R上单调递增即可判断,选项C正确;对选项D、根据f(x)=a x(a>1),且x1≠x2,由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1 a )x(a>1),由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)]即可判断选项D错误;解:对选项A:因为a x1⋅a x2=a x1+x2,所以f(x1)f(x2)=f(x1+x2),故选项A正确;对选项B:因为a x1+a x2≠a x1x2,所以f(x1)+f(x2)≠f(x1x2),故选项B错误;对选项C:由题意,因为a>1,所以g(x)=f(x)−f(−x)=a x−a−x在R上单调递增,不妨设x1>x2,则g(x1)>g(x2),所以(x1−x2)g(x1)>(x1−x2)g(x2),即x1g(x1)+x2g(x2)>x1g(x2)+ x2g(x1),故选项C正确;对选项D:因为f(x)=a x(a>1),且x1≠x2,所以由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1a )x(a>1),所以由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)],所以有f(x1+x22)+12[f(−x1)+f(−x2)]<f(−x1−x22)+12[f(x1)+f(x2)],即f(x1+x22)−f(−x1−x22)<12[f(x1)+f(x2)]−12[f(−x1)+f(−x2)],即g (x 1+x 22)<g (x 1)+g (x 2)2,故选项D 错误;故选:AC. 填空题14、已知实数a >0且a ≠1,不论a 取何值,函数y =a x−4+2的图像恒过一个定点,这个定点的坐标为______. 答案:(4,3)分析:根据指数函数过定点问题求解. 令x −4=0,得 x =4,此时 y =3,所以函数y =a x−4+2的图像恒过的定点坐标为(4,3), 所以答案是:(4,3)15、若√4a 2−4a +1=√(1−2a )33,则实数a 的取值范围_________ . 答案:(−∞,12]分析:由二次根式的化简求解由题设得√4a 2−4a +1=√(2a −1)2=|2a −1|,√(1−2a )33=1−2a ,所以|2a −1|=1−2a 所以1−2a ≥0,a ≤12.所以答案是:(−∞,12]16、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2), 可得{2k −5=1b =2,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题17、已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+mx ,函数f (x )在y 轴左侧的图象如图所示.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )−a =0有4个不相等的实数根,求实数a 的取值范围. 答案:(1)f (x )={x 2+2x,x ≤0x 2−2x,x >0(2)(−1,0)分析:(1)利用f (−2)=0可求x ≤0时f (x )的解析式,当x >0时,利用奇偶性f (x )=f (−x )可求得x >0时的f (x )的解析式,由此可得结果;(2)作出f (x )图象,将问题转化为f (x )与y =a 有4个交点,数形结合可得结果.(1)由图象知:f (−2)=0,即4−2m =0,解得:m =2,∴当x ≤0时,f (x )=x 2+2x ; 当x >0时,−x <0,∴f (−x )=(−x )2−2x =x 2−2x , ∵f (x )为R 上的偶函数,∴当x >0时,f (x )=f (−x )=x 2−2x ; 综上所述:f (x )={x 2+2x,x ≤0x 2−2x,x >0;(2)∵f (x )为偶函数,∴f (x )图象关于y 轴对称,可得f (x )图象如下图所示,f(x)−a=0有4个不相等的实数根,等价于f(x)与y=a有4个不同的交点,由图象可知:−1<a<0,即实数a的取值范围为(−1,0).18、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x万盒,需投入成本ℎ(x)万元,当产量小于或等于50万盒时ℎ(x)=180x+100;当产量大于50万盒时ℎ(x)=x2+60x+3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y(万元)关于产量x(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?答案:(1)y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N(2)70万盒分析:(1)根据题意分0≤x≤50和x>50两种情况求解即可;(2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y=200x−200−180x−100=20x−300,当产量大于50万盒时,y=200x−200−x2−60x−3500=−x2+140x−3700,故销售利润y(万元)关于产量x(万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=140=70时,y=−x2+140x−3700取到最大值,为1200.2因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。
第四章 函数的连续性

有下列三种情形之一时,函数 f (x) 在 x0处间断。
(1)在 x x0 近旁有定义,但在 x0处没有定义。
(2)虽在
x0 处有定义,但
lim
x x0
f
(x)
不存在。
(3)虽在
x0 处有定义,且
lim
x x0
f
(x)
存在,但
lim
x x0
f (x)
f (x0 )
❖间断点的类型
通常把间断点分成两类
f (x)
lim (1
x0
x) x
e
lim f (x) lim (x a) a
x0
x0
欲使 f (x)在
x
0
处连续,须有lim x0
f (x) lim x0
f (x)
即 a e ,此时 lim f (x) e
x0
(3)
lim
x0
f
(x)
f
(0)
所以 a e 时,f (x) 在 x 0 处连续。
,lim或f有(x定) 义li但m
x x0
x x0
f
( x),
则称f点(xx00)为函A数,则f称(x)x的0为跳f 跃(x)间的断可点去.间断点.
例如:
(1)函数 f (x) x2 4 在 x 2 处无定义 y
x2 所以 x 2 是该函数的间断点。
2
y f (x)
(2)函数
f
(x)
x1x,1x,
连续函数的图象是一条连续不间断的曲线。
3、函数在区间上的连续性
在区间上每一点都连续的函数 叫做在该区间上的连续函数 或者说函数在该区间上连续
•连续函数举例
第四章可测函数
§1 可测函数及其性质 §2 叶果洛夫定理 §3 可测函数的构造 §4 依测度收敛
§1 可测函数及其性质
要点:可测函数是利用勒贝格可测集来刻画的,勒贝格可 测函数是勒贝格积分的基本对象。
记号:一个定义在 E Rn 上的实函数 f (x) 确定了E的一组
子集
E f a x | xE, f (x) a
不是一个函数值,而是一个集合
可测函数等价定义 设f (x)是定义在可测集E上的实函数,对于任何有限实数a,b (a b)
f (x) 在E上可测 (1)E f a 都可测。
(2) E f a 都可测。 (3) E f a 都可测。 (4)Ea f b 都可测。
推论:设 f (x)在E上可测,则 E f a 总可测,不论 a 是有 限实数或 即:可测集E上的常值函数是可测函数。
函数 n 的极限函数,其中 1(x) 2(x)
注:1°简单函数仅取有限个实数值,且每个值是在一个可测子集上取的。 2°简单函数列的极限函数不一定是简单函数,甚至某些点处极限函数
可能为 ,然而简单函数一定是可测函数。
5、几乎处处成立
设 是一个与集合E的点 x 有关的命题,如果存在E的子集 M,适合 mM 0 ,使得 在E\M上恒成立,即E\E[ 成 立]=零测度集,则我们称 在E上几乎处处成立, 或说
n
fn
(x)
G(x)
lim n
fn (x)
也在E上可测,特别当
F ( x)
lim n
fn(x) 存在时,
它也在可测。
4、简单函数及其性质
(1)定义:设f (x) 的定义域E可分为有限个互不相交的可测集
s
E1,..., Es 即 E Ei ,使 f (x)在每个 Ei上都等于某常数 c ,则称 f (x)
第四章一次函数知识点总结
第四章 一次函数知识点总结一、函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一值与x 对应,则x 称为自变量,把y 称为因变量,y 是x 的函数。
二、函数的表示法:列表法;关系式法;图象法。
三、描点法画函数图形的一般步骤(通常选五点法):(一):列表;(二):描点;(三):连线。
四、一次函数与正比例函数定义:一般地,形如y=kx +b(k,b 是常数,k ≠0),叫做y 是x 的一次函数,当b=0时,即形如y=kx(k 是常数,k ≠0),叫做y 是x 的正比例函数。
正比例函数是特殊的一次函数.注意:⑴解析式中自变量x 的次数是1次;⑵比例系数k ≠0(k 又称为斜率)。
五、正比例函数与一次函数图象特点:(1)正比例函数y=kx 的图象是经过(0,0)的一条直线。
(2)一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)的一条直线,又称为直线y=kx+b 。
六、一次函数图象与正比例函数图象性质: (一)作正比例函数描点:(0,0)和(1,k );作一次函数函数描点:(0,b )和(-k b ,0) (二)k 决定函数增减性、直线的倾斜方向和倾斜程度:(1)增减性:k>0,y 随x 的增大而增大(变化相同);k<0,y 随x 增大而减小(变化相反).(2)倾斜方向:k>0,图象向右倾斜;k<0,图象向左倾斜。
(3)倾斜程度:|k|越大,图象越靠近于y 轴,直线越陡,变化速度越快。
k 相等则倾斜程度相同,即两条直线平行。
(三)b 的正、负决定直线与y 轴交点的位置:(1)当b >0时,直线与y 轴交于正半轴上;(2)当b <0时,直线与y 轴交于负半轴上;(3)当b=0时,直线经过原点,是正比例函数。
七、正比例函数与一次函数图象之间的关系:一次函数y=kx +b 的图象可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移):上加下减,左加右减。
《数学分析》第四章 函数的连续性教案
定理 4.3(局部保号性)若函数 f (x) 在 x0 点连续,且 f (x0 ) 0 ,
则对任意 0 存在 x0 某邻域 U (x0 ) , x U (x0 ) 时, f (x) 0
. 5.
定理 4.4(四则运算性质)若函数则 f (x) , g(x) 在区间 I 上有定义,
则称 f (x) 在点 x0 连续。
它包含着三个方面的内容:
1) f (x) 在点 x0 处有定义,即 f (x0 ) 存在。 2)极限存在即 lim f (x) A
x x0
3)极限值为函数值即 A f (x0 )
例如,函数
f
(x)
x
sin
1 x
0
x0 x0
为引入另一表述,记 x x x0 为 自变量 x (在点 x0 )的增量或改变
. 1.
§1 连续性的概念
内容: 1 、 函数在点 x0 处连续性 2 、间断点 x0 及其的分类 3 、区间上的连续函数
重点:
函数在点 x0 的连续性;间断点的分类。
难点: 连续性的证明 要求: 1、理解连续的定义,间断点的分类,会用定义证明函数的连续性。
2、能够区分出间断点所属的类别。
3、会判断函数在区间上的连续性。
四、教学难点:连续函数的保号性;一致连续性
五、授课内容:
1、连续函数的局部性质
根据函数的在
x0
点连续性,即
lim
x x0
f (x)
f (x0 ) 可推断出函数
f (x) 在 x0
点的某邻域U (x0 ) 内的性态。
定理 4.2(局部连续性)若函数 f (x) 在 x0 点连续,则 f (x) 在 x0 点的某 邻域内有界。
2023年人教版高中数学第四章指数函数与对数函数知识点归纳总结(精华版)
(名师选题)2023年人教版高中数学第四章指数函数与对数函数知识点归纳总结(精华版)单选题1、基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天答案:B分析:根据题意可得I(t)=e rt=e0.38t,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t1天,根据e0.38(t+t1)=2e0.38t,解得t1即可得结果.因为R0=3.28,T=6,R0=1+rT,所以r=3.28−16=0.38,所以I(t)=e rt=e0.38t,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t1天,则e0.38(t+t1)=2e0.38t,所以e0.38t1=2,所以0.38t1=ln2,所以t1=ln20.38≈0.690.38≈1.8天.故选:B.小提示:本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.2、已知函数f(x)={x−2,x∈(−∞,0) lnx,x∈(0,1)−x2+4x−3,x∈[1,+∞),若函数g(x)=f(x)−m恰有两个零点,则实数m不可能...是()A.−1B.0C.1D.2答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m的零点,转化为函数y=f(x)与函数y=m的交点,数形结合即可求出参数m的取值范围;解:因为f(x)={x−2,x∈(−∞,0) lnx,x∈(0,1)−x2+4x−3,x∈[1,+∞),画出函数图象如下所示,函数g(x)=f(x)−m的有两个零点,即方程g(x)=f(x)−m=0有两个实数根,即f(x)=m,即函数y=f(x)与函数y=m有两个交点,由函数图象可得m≤0或m=1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.3、已知f(x)=a−x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是()A .a >0B .a >1C .a <1D .0<a <1 答案:D分析:把f (-2),f (-3)代入解不等式,即可求得.因为f (-2)=a 2, f (-3)=a 3,f (-2)>f (-3),即a 2>a 3,解得:0<a <1. 故选:D4、函数f (x )={|2x −1|,x ≤2−x +5,x >2,若函数g (x )=f (x )−t (t ∈R )有3个不同的零点a ,b ,c ,则2a +2b +2c 的取值范围是( )A .[16,32)B .[16,34)C .(18,32]D .(18,34) 答案:D分析:作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,利用图象得出a,b,c 的性质、范围,从而可求得结论.作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,如图, 则1−2a =2b −1,4<c <5,2a +2b =2,2c ∈(16,32),所以18<2a +2b +2c <34. 故选:D .小提示:关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.5、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.6、已知函数y=a x、y=b x、y=c x、y=d x的大致图象如下图所示,则下列不等式一定成立的是()A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c答案:B分析:如图,作出直线x =1,得到c >d >1>a >b ,即得解.如图,作出直线x =1,得到c >d >1>a >b , 所以b +d <a +c . 故选:B7、函数f(x)=2x −1x 的零点所在的区间可能是( ) A .(1,+∞)B .(12,1)C .(13,12)D .(14,13) 答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增,所以函数f(x)的零点所在的区间是(12,1),故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题. 8、若n <m <0,则√m 2+2mn +n 2−√m 2−2mn +n 2等于( ) A .2m B .2n C .−2m D .−2n 答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m+n|−|m−n|,∵n<m<0,∴m+n<0,m−n>0,∴原式=−(m+n)−(m−n)=−2m.故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可.9、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.11、函数y =2x −2−x ( ) A .是R 上的减函数 B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数,故函数y =2x −2−x 是R 上的增函数. 故选:B.12、满足函数f (x )=ln (mx +3)在(−∞,1]上单调递减的一个充分不必要条件是( ) A .−4<m <−2B .−3<m <0C .−4<m <0D .−3<m <−1 答案:D分析:根据复合函数的单调性,求出m 的取值范围,结合充分不必要条件的定义进行求解即可.解:若f(x)=ln(mx+3)在(−∞,1]上单调递减,则满足m<0且m+3>0,即m<0且m>−3,则−3<m<0,即f(x)在(−∞,1]上单调递减的一个充分不必要条件是−3<m<−1,故选:D.双空题13、已知函数f(x)=2−x2+2x,x∈[0,3],则该函数的最大值为__________,最小值为_________.答案: 2 18分析:先求g(x)=−x2+2x值域,再根据y=2x单调性求f(x)最值.因为函数g(x)=−x2+2x=−(x−1)2+1在[0,1)上单调递增,在(1,3]上单调递减,且g(0)=0,g(3)=−3,g(1)=1∴g(x)∈[−3,1],因为函数y=2x单调递增,∴18≤2g(x)≤2,即函数f(x)的最大值为2,最小值为18.所以答案是:2;18小提示:本题考查函数最值、指数函数单调性、二次函数值域,考查基本分析求解能力,属基础题.14、已知函数f(x)={log0.5x,x>0x2+2x,x≤0,那么f(2)=_________;当函数y=f(x)−a有且仅有三个零点时,实数a的取值范围是__________.答案:−1−1<a<0解析:由f(2)=log0.52可得结果,函数y=f(x)−a有且仅有三个零点,即函数y=f(x)的图象与y=a的图象仅有三个交点,作出函数y=f(x)的图象,根据图象可得答案.f(2)=log0.52=−1函数y=f(x)−a有且仅有三个零点,即函数y=f(x)的图象与y=a的图象仅有三个交点.作出函数y =f (x )的图象,如图.由图可知,当−1<a <0时,函数y =f (x )的图象与y =a 的图象有三个交点. 所以函数y =f (x )−a 有且仅有三个零点时,实数a 的取值范围是−1<a <0 所以答案是: −1 ; −1<a <015、2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足N =N 0⋅2− t 5730(N 0表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳14的质量是原来的12至35,据此推测良渚古城存在的时期距今约在________年到5730年之间.(参考数据:log 23≈1.6,log 25≈2.3) 答案: 12 4011分析:(1)根据衰变规律,令t =5730,代入求得N =12N 0;(2)令N =35N 0,解方程求得t 即可.当t =5730时,N =N 0⋅2−1=12N 0 ∴经过5730年后,碳14的质量变为原来的12令N =35N 0,则2−t 5730=35 ∴−t 5730=log 235=log 23−log 25≈−0.7∴t =0.7×5730=4011 ∴良渚古城存在的时期距今约在4011年到5730年之间 故答案为12;4011小提示:本题考查根据给定函数模型求解实际问题,考查对于函数模型中变量的理解,属于基础题.16、已知函数f(x)={2xlog2x (x<1)(x≥1),则f(8) = _________,若直线y=m与函数f(x)的图象只有1个交点,则实数m的取值范围是_________.答案: 3 {0}∪[2,+∞)解析:根据自变量范围代入对应解析式,求得f(8);作出函数f(x)图象,再结合图象确定参数取值范围.f(8)=log28=3,作出函数f(x)的图象,如图所示,若直线y=m与函数f(x)的图象只有1个交点,则m≥2或m=0,所以答案是:3,{0}∪[2,+∞)小提示:本题考查求分段函数值以及根据函数零点个数求参数,考查综合分析求解能力,属中档题.17、若实数a,b满足log a2=blog23=1,则a=__________,3b=__________.答案: 2 2解析:根据对数的运算法则和概念求解.因为log a2=1,所以a=2,因为blog23=1,所以log23b=1,所以3b=2.所以答案是:2;2.小提示:本题考查对数的概念与运算法则,属于基础题.解答题18、给出下面两个条件:①函数f(x)的图象与直线y=−1只有一个交点;②函数f(x)的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数f(x)的解析式确定.已知二次函数f(x)=ax2+bx+c满足f(x+1)−f(x)=2x−1,且______.(1)求f (x )的解析式;(2)若对任意x ∈[19,27],2f (log 3x )+m ≤0恒成立,求实数m 的取值范围; (3)若函数g (x )=(2t −1)f (3x )−2×3x −2有且仅有一个零点,求实数t 的取值范围.答案:(1)选①f (x )=x 2−2x ,选②f (x )=x 2−2x(2)(−∞,−16](3){−√3+12}∪(12,+∞) 分析:(1)利用已知条件求出a 、b 的值,可得出f (x )=x 2−2x +c .选①,由题意可得出f (1)=−1,可得出c 的值,即可得出函数f (x )的解析式;选②,由根与系数的关系求出c 的值,即可得出函数f (x )的解析式;(2)ℎ=log 3x ,ℎ∈[−2,3],由参变量分离法可得出m ≤[−2f (ℎ)]min ,结合二次函数的基本性质可求得实数m 的取值范围;(3)令n =3x >0,所以关于n 的方程(2t −1)f (n )−2n −2=0有且仅有一个正实根,对实数t 的取值进行分类讨论,结合二次函数的零点分布可得出关于实数n 的不等式组,综合可解得实数t 的取值范围.(1)解:因为二次函数f (x )=ax 2+bx +c 满足f (x +1)−f (x )=2x −1,f (x +1)−f (x )=a (x +1)2+b (x +1)+c −ax 2−bx −c =2ax +a +b =2x −1,所以{2a =2a +b =−1 ,解得{a =1b =−2,所以f (x )=x 2−2x +c . 选①,因为函数f (x )的图象与直线y =−1只有一个交点,所以f (1)=1−2+c =−1,解得c =0, 所以f (x )的解析式为f (x )=x 2−2x .选②,设x 1、x 2是函数f (x )的两个零点,则|x 1−x 2|=2,且Δ=4−4c >0,可得c <1, 由根与系数的关系可知x 1+x 2=2,x 1x 2=c ,所以|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√4−4c =2,解得c =0,所以f (x )的解析式为f (x )=x 2−2x .(2)解:由2f (log 3x )+m ≤0,得m ≤−2f (log 3x ),当x ∈[19,27]时,log 3x ∈[−2,3],令ℎ=log 3x ,则ℎ∈[−2,3], 所以对任意x ∈[19,27],2f (log 3x )+m ≤0恒成立,等价于m ≤−2f (ℎ)在ℎ∈[−2,3]上恒成立, 所以m ≤[−2f (ℎ)]min =−2f (−2)=−16,所以实数m 的取值范围为(−∞,−16].(3)解:因为函数g (x )=(2t −1)f (3x )−2×3x −2有且仅有一个零点, 令n =3x >0,所以关于n 的方程(2t −1)f (n )−2n −2=0有且仅有一个正实根, 因为f (x )=x 2−2x ,所以(2t −1)n 2−4tn −2=0有且仅有一个正实根, 当2t −1=0,即t =12时,方程可化为−2n −2=0,解得n =−1,不符合题意; 当2t −1>0,即t >12时,函数y =(2t −1)x 2−4tx −2的图象是开口向上的抛物线,且恒过点(0,−2), 所以方程(2t −1)n 2−4tn −2=0恒有一个正实根;当2t −1<0,即t <12时,要使得(2t −1)n 2−4tn −2=0有且仅有一个正实根, {∆=16t 2+8(2t −1)=02t 2t−1>0 ,解得t =−√3+12. 综上,实数t 的取值范围为{−√3+12}∪(12,+∞). 19、设函数f (x )=log m x (m >0且m ≠1)的图像经过点(3,1).(1)解关于x 的方程f 2(x )+(m −1)f (x )+1−m 2=0;(2)不等式[1+f (x )]⋅[a −f (x )]>0的解集是(13,9),试求实数a 的值. 答案:(1)x =9或x =181;(2)a =2.分析:(1)根据给定条件求出m 值,并代入方程,再解方程即得.(2)由给定解集借助对数函数单调性求出f (x )范围,换元借助一元二次不等式即可得解.(1)由已知得f(3)=1,即log m3=1,则m=3,于是得f(x)=log3x,方程f2(x)+(m−1)f(x)+1−m2=0⇔f2(x)+2f(x)−8=0,从而得f(x)=2或f(x)=−4,即log3x=2或log3x=−4,x=9或x=181,所以原方程的根为x=9或x=181;(2)依题意,函数f(x)=log3x中,x∈(13,9),从而得log3x∈(−1,2).又[1+f(x)]⋅[a−f(x)]>0⇔(log3x+1)⋅(log3x−a)<0,令log3x=t,即一元二次不等式(t+1)⋅(t−a)<0的解集为(−1,2),因此有-1,2是关于t的方程(t+1)⋅(t−a)=0的两根,则a=2,所以实数a的值为2.20、已知f(x)=(log12x)2−2log12x+4,x∈[2 , 4].(1)设t=log12x,x∈[2 , 4],求t的最大值与最小值;(2)求f(x)的值域.答案:(1)最大值-1,最小值-2;(2)[7,12]解析:(1)t=log12x,x∈[2,4],可得t在x∈[2,4]上是减函数,即可得出.(2)f(x)=t2−2t+4=(t−1)2+3=g(t),可得g(t)在t∈[−2,−1]单调递减,即可得出值域.(1)t=log12x,x∈[2,4],∴t在x∈[2,4]上是减函数,∴x=2时t有最大值log122=−1;x=4时t有最小值log124=−2.(2)f(x)=t2−2t+4=(t−1)2+3=g(t),∴g(t)在t∈[−2,−1]单调递减,∴t=−2(即x=4),取得最大值,g(−2)=12.t=−1(即x=2),取得最小值,g(−1)=7.所以函数f(x)的值域[7,12].小提示:利用换元法求函数值域是常用的方法也是重要方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.6 常用函数的应用
SUM函数
“sum”在英语中表示“总数、总和、求 和”的意思,SUM函数是用来计算某一个或多 个单元格区域中所有数字的总和的求和函数。
第四章函数\5sum.xls
AVERAGE函数
“average”在英语中表示“平均、平均数”的 意思,AVERAGE函数是用来计算指定数据集合中所有 数值平均值的函数。 其语法结构为: AVERAGE(number1,number2,…) 第四章函数\6average.xls
第四章函数\10(if).xls
COUNTIF函数
COUNTIF函数是计算数据区域中满足给定 条件的单元格数量。 其语法结构为: COUNTIF(range,criteria) range 需要计算满足条件的单元格数目 的单元格区域; criteria 确定哪些单元格将被计算在内 的条件。
第四章函数\11(countif).xls
单元格的引用
相对引用和绝对引用 单元格的引用通常是为了使用某个 单元格的公式,而对单元格进行标识的 方式。 引用单元格能够通过所标识的单元 格来快速获得公式对数据的运算。
第四章函数\2单元格的引用.xls 第四章函数\3跨工作表引用.xls 第四章函数\4跨工作簿引用
4.4 认识函数
函数格式=函数名(参数1,参数2,…) = SUM(A1:A3,A5:A8) 等号 函数 参数 参 数
OFFSET函数
以指定引用为参考,通过给定偏移量返回新的引用 OFFSET(reference,rows,cols) Reference:参考系的引用区域,其左上角是偏移量 的起始位置; Rows:相对于参考系的起始位置上(下)偏移的行数; Cols:相对于参考系的起始位置左(右)偏移的列数; 第四章函数\16(OFFSET).xls
LARGE和SMALL函数
“large”/“small”是分别表示“大的”和 “小的”的意思,分别用来返回指定区域内所有 数值的第k个最大值和最小值。 其语法结构为: LARGE(array,k) (k<n) SMALL(array,k) (k<n) 注意:LARGE和MAX的区别 LARGE函数的统计范围比MAX函数广,可以返 回第k个最大值,而MAX函数只能返回指定数据集 合中的最大值。 同理,SMALL和MIN函数也是如此。
注意嵌套函数的应用
第四章函数\12if嵌套函数.xls
第四章函数\13嵌套函数.xls
VLOOKUP函数
VLOOKUP函数是在表格数据的首列查找指定的值,并由此 返回表格数据当前行其他列的值。其语法结构为: VLOOKUP (lookup_value,table_array,col_index_num,range_lookup) lookup_value 需要在表格数组第一列查找的数值; table_array 需要进行查询转置的数组或单元格区域; ol_index_num 待返回的匹配值的列序号; range_lookup 逻辑值,希望查找匹配的是精确值还是近 似值,如果为true或省略,则为模糊查询;false为精确匹配。 第四章函数\14(vlookup).xls
MAX和MIN函数
“max”/“min”是“maximum”和“minimum” 的缩写。在英语中分别表示“最大量”和“最小量 ”的意思,分别用来返回指定区域内所有数值的最 大值和最小值。 其语法结构为: MAX(number1,number2,…) MIN(number1,number2,…) 第四章函数\7(max、min).xls
第四章函数\8(large、small).xls
RANK函数
“rank”在英语中表示“等级、排列” 的意思,用来返回指定区域内所有数值的大 小排序的情况。 其语法结构为: RANK(number,ref,order) number 需要进行排位的数值 ref 数字列表数组 order 表示对ref进行排序的方式 为0或省略时表示降序,为1表示升序
函数分类
序号 分类
1 2 3 4 5 6 7 8 9 10 数据库工作表函数 日期与时间函数 工程函数 信息函数 财务函数 逻辑函数 统计函数 查找和引用函数 文本函数 数学和三角函数
功能简介
分析数据清单中的数值是否符合特定条件 在公式中分析和处理日期值和时间值 用于工作分析 确定存储在单元格中数据的类型 进行一般的财务计算 进行逻辑判断或者进行复合检验 对数据区域进行统计分析 在数据清单中查找特定数据或者查找一个单元格的引用 在公式中处理字符串 进行数学计算
第四章函数\9(rank).xls
IF函数
“if”在英语中表示“如果,假设”的意思,用 来判断真假值,再根据逻辑判断的真假值返回不同 结果的函数。 其语法结构为: IF (logical_test,value_if_true,value_if_false) logical_test 判断的方式,返回值或表达式 value_if_true 表示判断结果为真时返回的值 value_if_false 表示判断结果为假时返回的值
EXCEL在财务管理中的应用
经济管理系 姜EXCEL2007常用函数的使用
4.1认识公式 第四章函数\认识公式.docx 4.2使用公式 第四章函数\1使用公式.xls 4.3单元格的引用 4.4认识函数 4.5使用函数 4.6常用函数的应用 4.7财务管理常用函数的应用
INDEX函数
返回数组中指定单元格或单元格数组的数值。 INDEX(array,row_num,column_num) Array:单元格区域或数组常数; Row_num为数组中某行的行序号,函数从该行返 回数值; Column_num为数组中某列的列序号,函数从该 列返回数值。 第四章函数\15index.xls