电子自旋共振完整版

合集下载

电子自旋共振

电子自旋共振
第九页,共25页。
谱的解释(jiěshì)
强度: 理论上在吸收曲线下的积分面积 和样品中的不成对电子(diànzǐ)数成正比, 强度近似于吸收曲线的峰值高度,或者 近似于在特定条件下测到的一次导数曲 线的峰—峰幅度。
g值:自由基g值偏离很少超过±0.5%,非 有机自由基,g值可以在很大范围内变化。
有机自由基的研究:不但能证明自由基的存在,而且能得到分 子结构,化学反应(fǎnyìng)机理和反应(fǎnyìng)动力学方面 的重要信息。
催化剂的研究:能获得催化剂表面的性质及反应(fǎnyìng)机理。 生物、医学研究:证明了细胞的代谢过程、酶反应(fǎnyìng)的
机理都离不开自由基。除此之外,许多病理的过程如衰老、癌变 过程也都离不开自由基。其中很重要的原因就是氧自由基的作用。 物理方面:利用EPR对半导体掺杂的研究,可指导采用不同的掺 杂技术获取不同性质的半导体。
电子(diànzǐ)顺磁共振 谱(EPR,ESR)
Electron Paramagnetic Resonance, Electron Spin Resonance
更多N第一M页R,共,25页M。RI,ESP资料(zīliào),
磁诱导(yòudǎo)电子自旋能 级裂分
Ms
Ms = +½
ห้องสมุดไป่ตู้±½
DE=hn=gbB
❖ 三重态分子(triplet molecule):这种化合物的分子轨 道中含有两个(liǎnɡ ɡè)未成对电子,且相距很近,彼此 之间有很强的相互作用。如氧分子,它们可以是基态或激 发态。
第六页,共25页。
电子(diànzǐ)顺磁共振的研究 对象
过渡金属离子和稀土离子:这类分子在原子轨道中出现未成对电子, 如常见的过渡金属离子有Ti3+(3d1),V3+(3d7)等。

电子自旋共振PPT课件

电子自旋共振PPT课件
扫场法,后者还可以恒定磁场,采取扫频法。
.
8
EPR应用
有机自由基的研究:不但能证明自由基的存在,而且能 得到分子结构,化学反应机理和反应动力学方面的重要 信息。
催化剂的研究:能获得催化剂表面的性质及反应机理。
生物、医学研究:证明了细胞的代谢过程、酶反应的机 理都离不开自由基。除此之外,许多病理的过程如衰老、 癌变过程也都离不开自由基。其中很重要的原因就是氧 自由基的作用。
.
11
超精细结构 (Hyperfine Coupling)
未成对电子之间偶合 未成对电子与磁核之间偶合
偶极-偶极偶合----各向异性 费米接触----各向同性:s轨道
.
12
Electron
S (½)
Nucleus
I (½) Hyperfine Coupling
MS=±½
Ms +½
DE1
MI +½
❖ 双基(Biradical)或多基(Polyradical):在一个分子 中含有两个或两个以上未成对电子的化合物,但它们的未 成对电子相距较远,相互作和较弱。
❖ 三重态分子(triplet molecule):这种化合物的分子轨 道中含有两个未成对电子,且相距很近,彼此之间有很强 的相互作用。如氧分子,它们可以是基态或激发态。
H2O2 2·OH, CH3OH + ·OH ·CH2OH + H2O
.
16
自旋捕捉剂和自旋标记
亚硝基化合物
.
17
自旋捕捉剂和自旋标记
氮氧化合物
.
18
稳定自由基谱
.
19
应用举例1:初级自由基研究
有机过氧化氢与N,N-二甲胺

电子自旋共振实验报告pdf

电子自旋共振实验报告pdf

电子自旋共振实验报告.pdf 电子自旋共振(Electron SpinResonance,ESR)是一种常用于研究物质中未成对电子的磁共振技术。

下面是电子自旋共振实验报告:一、实验目的1.了解电子自旋共振的基本原理;2.掌握电子自旋共振实验操作流程;3.分析实验数据,得出结论。

二、实验原理电子自旋共振是研究未成对电子在磁场中的磁矩和磁性行为的磁共振技术。

当未成对电子在外加磁场中产生磁矩时,会引起电子能级的分裂,分裂的能级之间发生跃迁。

当外加电磁辐射满足共振条件时,即其频率与能级分裂相等,电子发生能级跃迁并吸收辐射能量,产生电子自旋共振信号。

三、实验步骤1.准备实验器材和样品;2.将样品放入ESR管中,密封;3.将ESR管放入微波谐振腔中;4.开启磁场调节器,逐渐增大磁场强度;5.通过微波源产生微波信号,并调节其频率;6.观察ESR信号的变化,记录共振信号;7.改变磁场强度和微波频率,重复步骤4-6;8.数据分析及处理。

四、实验结果1.实验数据记录序磁场强度(mT)微波频率(GHz)ESR信号强度(dB)号10.109.48-30.220.209.48-22.530.309.48-17.440.109.58-28.650.209.58-21.860.309.58-16.72.ESR信号强度与磁场强度和微波频率的关系图【请在此处插入ESR信号强度与磁场强度和微波频率的关系图】通过观察实验数据,可以发现ESR信号强度与磁场强度和微波频率均存在一定的关系。

一般来说,磁场强度越大,ESR信号强度越强;而当微波频率接近或等于某一定值时,ESR信号强度达到最大值。

这个值即为共振频率。

五、数据分析与结论通过对实验数据的分析,可以得出以下结论:1.ESR信号强度与磁场强度成正比关系,说明电子自旋在磁场中的行为受到磁场强度的影响;2.当微波频率等于或接近某一定值时,ESR信号强度达到最大值,说明该微波频率与样品中未成对电子的磁矩产生共振。

《电子自旋共振》PPT课件

《电子自旋共振》PPT课件

O2N
.
NN
NO2
O2N验仪器
扫描线圈
5
电磁铁
3 2
1
4
6
FD-ESR-II电子顺磁共振仪构成图
精选课件ppt
1继7 续
1、微波源:
变容二极管
体效应管
频率调节
电源输入端+12V
微波源由体效应管、变容二极管、频率调节组成。 用于输出频率为9.37GHz的微波。
9.37G微波辐射
精选课件ppt
12
扫场法检测共振信号
B=B0+B’sinωt
通过调节励磁线圈的直流电流,改变恒定磁场的大小,当恒定
磁场B0=2 ν/γ时,共振吸收信号等间距排列。此时对应的恒定 磁感应强度即为共振条件方程中所对应的磁场强度。利用特斯
拉计测量该磁感应强度代入共精选振课件方ppt程可得g因子的值。
精选课件ppt
22
5、阻抗调配器
吸收曲线 色散曲线
它的主要作用是改变微波系统的负载状态。在本实验中主要作 用是观察吸收、色散信号。
精选课件ppt
23
6、谐振腔:
A
谐振腔耦合膜片 样品
B可变短路调节器
通过调节可变短路调节器的位置,使微波在谐振腔内形成 驻波,得到最强的电子顺磁共振信号。
Yevgeny 精Z选a课v件oipsptky (1917-1976)
5
一、背景介绍 --应用
电子自旋共振研究的对象是具有未偶(未配对)电子 的物质,如具有奇数个电子的原子、分子以及内电子 壳层未被充满的离子,受辐射作用产生的自由基及半 导体、金属等。通过共振谱线的研究,可以获得有关 分子、原子及离子中未偶电子的状态及其周围环境方 面的信息,从而得到有关物质结构和化学键的信息, 故电子自旋共振是一种重要的近代物理实验技术,在 物理、化学、材料、生物、医学等领域有广泛的应用。

电子自旋共振 完整版

电子自旋共振 完整版

电子自旋共振摘要:电子自旋共振是近代物理学的一个重要发现,该现象目前已经被广泛的应用。

本文主要介绍基于FD-ESR-C型微波电子自旋共振实验仪的实验原理、实验装置、实验方法、实验步骤等。

关键词:近代物理实验;微波;电子自旋共振;g因子;【1】引言电子顺磁共振(电子自旋共振)是1944年由前苏联的扎伏伊斯基首先观察到的。

它是指电子自旋磁矩在磁场中受到响应频率的电磁波作用时,在它们的磁能级之间发生的共振跃迁现象。

这种现象在具有未成对自旋磁矩的顺磁物质(即含有未耦电子的化合物)中能够观察到,因此,电子顺磁共振是探测物质中未耦电子以及它们与周围原子相互作用,从而获得有关物质微观结构信息的重要方法。

这种方法具有有很高的灵敏度和分辨率,能深入物质内部进行细致分析而不破坏样品结构以及对化学反应无干扰等优点。

本实验要求观察电子自旋共振现象,测量DPPH中电子的g因子。

【2】实验原理本实验采用含有自由基的有机物“DPPH ”,其分子式为 3226256)()NO H NC N H C ,称为“二苯基苦酸基联氨”,其结构式如图所示:在第二个氮原子上存在一个未成对电子——自由基,ESR 就是观测该电子的自旋共振现象。

对于这种“自由电子”没有轨道磁矩,只有自旋磁矩,因此实验中观察到的共振现象为ESR ,也就是电子自旋共振。

这里需要指出这种“自由电子”也并不是完全自由的,它的 e g 值为(2.0023±0.0002),DPPH 的ESR 信号很强,其e g 值常用作测量其值接近2.00的样品的一个标准信号,通过对各种顺磁物质的共振吸收谱线e g 因子的测量,可以精确测量电子能级的差异,从而获得原子结构的信息。

自由电子的自旋磁矩和外加恒定磁场 B 0相互作用将使基态能级发生分裂 , 2 个能级之间的能量差ΔE 与外加磁场 B 0 的大小成正比:0B B μ g = E Δ(1)式中g 的值是Lande 因子或劈裂因子。

电子自旋共振(射频) (340)

电子自旋共振(射频) (340)

中国石油大学 近代物理实验 实验报告 成 绩:班级:应用物理学09-2班 姓名:王国强 同组者:庄显丽 教师:电子自旋共振(射频)一、基础知识原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为() 1+=S S p S (7-2-1)其中S 是电子自旋量子数,2/1=S 。

电子的自旋角动量S p 与自旋磁矩S μ间的关系为()⎪⎩⎪⎨⎧+=-=12S S g p m e g B S S e Sμμμ(7-2-2) 其中:e m 为电子质量;eB m e 2 =μ,称为玻尔磁子;g 为电子的朗德因子,具体表示为)1(2)1()1()1(1++++-++=J J S S L L J J g (7-2-3)J 和L 为原子的总角动量量子数和轨道角动量量子数,S L J ±=。

对于单电子原子,原子的角动量和磁矩由单个电子决定;对于多电子原子,原子的角动量和磁矩由价电子决定。

含有单电子或未偶电子的原子处于基态时,L=0,J=S=1/2,即原子的角动量和磁矩等价于单个电子的自旋角动量和自旋磁矩。

设g m e e2=γ为电子的旋磁比,则S S p γμ= (7-2-4)电子自旋磁矩在外磁场B (z 轴方向)的作用下,会发生进动,进动角频率ω为B γω= (7-2-5) 由于电子的自旋角动量S p 的空间取向是量子化的,在z 方向上只能取m p zS= (S S S S m -+--=,1,,1, )m 表示电子的磁量子数,由于S =1/2,所以m 可取±1/2。

电子的磁矩与外磁场B 的相互作用能为B B B E z S Sγμμ21±==⋅= (7-2-6)相邻塞曼能级间的能量差为B g B E B μγω===∆ (7-2-7)如果在垂直于B 的平面内加横向电磁波,并且横向电磁波的量子能量 ω正好与△E 相等时,即满足电子自旋共振条件时,则电子将吸收此旋转磁场的能量,实现能级间的跃迁,即发生电子自旋共振。

电子自旋共振波谱(1)

电子自旋共振波谱(1)

第1节 电子的角动量
电子自旋共振波谱(1)
第1节 电子的角动量
电子自旋共振波谱(1)
1-4 升降算符
第1节 电子的角动量
电子自旋共振波谱(1)
第1节 电子的角动量
电子自旋共振波谱(1)
第1节 电子的角动量
1-5 轨道角动量在p、d 轨道上的矩阵表象
电子自旋共振波谱(1)
第1节 电子的角动量
8-3 线宽
第8节 ESR谱线信号的强度、线宽与驰豫
tEh E h/2T1
电子自旋共振波谱(1)
3rew
演讲完毕,谢谢听讲!
再见,see you again
2023/12/28
电子自旋共振波谱(1)
电子自旋共振波谱(1)
2023/12/28
电子自旋共振波谱(1)
1-1 角动量的数学形式
第1节 电子的角动量
电子自旋共振波谱(1)
第1节 电子的角动量
电子自旋共振波谱(1)
1-2 角动量概念的推广
第1节 电子的角动量
电子自旋共振波谱(1)
1-3 角动量矩阵
第1节 电子的角动量
电子自旋共振波谱(1)
电子自旋共振波谱(1)
第4节 自由原子(离子)Lande’因子的推导
电子自旋共振波谱(1)
第5节 微扰理论
电子自旋共振波谱(1)
6-1 ESR波谱学的地位和研究背景
第6节 ESR基本原理
电子自旋共振波谱(1)
6-2 ESR技术的研究对象
第6节 ESR基本原理
1) 具有奇数个电子的原子,如H原子; 2) 内电子壳层未被充满的原子,如过渡金属元素的离子; 3) 具有奇数个电子的分子,如NO ; 4) 某些不含奇数个电子,但其总角动量不为零的分子,

第二章电子自旋共振波谱ppt课件

第二章电子自旋共振波谱ppt课件
– 自由基以及那些轨道含有未成对电子的过渡金 属离子(Fe3+, Fe2+, Cu2+, Co2+等)络合物具有顺 磁性。
– 物质的顺磁性是由分子的永久磁矩引起的。
高分子科学系周平
2
一、基本原理
• 1、电子自旋共振的产生
• 电子自旋共振(ESR)或电子磁共振(EMR)与 核磁共振(NMR)在量子力学原理上有许多相似 之处,都是由于粒子在静态磁场中角动量能级发 生分裂,从而造成低能态与高能态粒子的布居数 不同,之后,在另外一个电磁波的共振激发下吸 收能量,使布居数达到平均,因此而产生共振信 号。
• 3、应用举例 • 高分子材料的ESR谱
• ESR能够有效检测聚合物聚集态的 分子运动和微观结构。
• 将一种含稳定自由基的探针化合物 TOMPOL在聚氨酯(PU)及其与不同 含量的苄基淀粉(BS)反应时加入,由 此形成的材料PUL以及半互穿网络聚 合物UBS20L和UBS50L的ESR在低 温时呈宽谱,说明TOMPOL运动缓慢, 而随温度升高,峰型变窄,说明分子 运动加快。峰宽值Azz随温度变化曲 线如图所示,峰宽变化50%的温度分 别为67, 62和55C,与玻璃化转变温 度对应。说明随BS的加入,降低了 PU网络的交联密度,PU分子上的
hυ=gβH
则处于低能级的电子吸收此微波而发生受 激跃迁,并产生电子自旋共振波谱。
高分子科学系周平
7
一、基本原理
• 1、电子自旋共振的产生
高分子科学系周平
8
一、基本原理
• 1、电子自旋共振的产生
• 由于电子质量比核质量小得多(< 103倍),根据测不准原理,运 动速度越快的粒子,吸收线形越宽。因此,ESR 吸收信号的 线宽较 NMR 信号宽得多 (> 103倍!),一般ESR谱用磁场调 制系统使输出线型呈一次微分图,并用相敏检测,以提高分辨 率,滤除噪音信号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子自旋共振
摘要:电子自旋共振是近代物理学的一个重要发现,该现象目前已经被广泛的应用。

本文主要介绍基于FD-ESR-C型微波电子自旋共振实验仪的实验原理、实验装置、实验方法、实验步骤等。

关键词:近代物理实验;微波;电子自旋共振;g因子;
【1】引言
电子顺磁共振(电子自旋共振)是1944年由前联的扎伏伊斯基首先观察到的。

它是指电子自旋磁矩在磁场中受到响应频率的电磁波作用时,在它们的磁能级之间发生的共振跃迁现象。

这种现象在具有未成对自旋磁矩的顺磁物质(即含有未耦电子的化合物)中能够观察到,因此,电子顺磁共振是探测物质中未耦电子以及它们与周围原子相互作用,从而获得有关物质微观结构信息的重要方法。

这种方法具有有很高的灵敏度和分辨率,能深入物质部进行细致分析而不破坏样品结构以及对化学反应无干扰等优点。

本实验要求观察电子自旋共振现象,测量DPPH中电子的g因子。

【2】实验原理
本实验采用含有自由基的有机物“DPPH ”,其分子式为
3226256)()NO H NC N H C - ,称为“二苯基苦酸基联氨”,其结构式如图所示:
在第二个氮原子上存在一个未成对电子——自由基,ESR 就是观测该电子的自旋共振现象。

对于这种“自由电子”没有轨道磁矩,只有自旋磁矩,因此实验中观察到的共振现象为ESR ,也就是电子自旋共振。

这里需要指出这种“自由电子”也并不是完全自由的,它的 e g 值为(2.0023±0.0002),DPPH 的ESR 信号很强,其e g 值常用作测量其值接近2.00的样品的一个标准信号,通过对各种顺磁物质的共振吸收谱线e g 因子的测量,可以精确测量电子能级的差异,从而获得原子结构的信息。

自由电子的自旋磁矩和外加恒定磁场 B 0相互作用将使基态能级发生分裂 , 2 个能级之间的能量差ΔE 与外加磁场 B 0 的大小成正比:
0B B μ g = E Δ (1)
式中g 的值是Lande 因子或劈裂因子。

完全自由电子的 g 值是 2.00232 , 为一个无量纲的常量。

he/4πe =μB 是Bohr 磁子。

若在垂直于静磁场的方向加一个频率为ν的微波交变磁场 , 当微波频率ν与直流静磁场 B 0 满足关系式:
g μ = E Δ =h νB0B
(2)
时 , 将有少量处于低能级上的电子从微波磁
场吸收能量,跃迁到高能级上去。

这种现象称之为电子自旋共振或电子顺磁共振,式 ( 2 ) 称为共振条件 . 由式 ( 2 ) 得到: B /μh =g 0B ν
(3)
可见 g 因子的测量精度决定于微波频率和共振磁场的准确测量。

原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为:
(4)其中S是电子自旋量子数,S=1/2。

μ间的关系为
电子的自旋角动量P S与自旋磁矩
S
(5)其中:m e为电子质量;g的具体表达式为:
(6)
【3】实验仪器
实验仪由三部分组成:磁铁系统,微波系统,实验主机系统,实验时配有双跟踪示波器从右往左依次为微波源(上面为双跟踪示波器),隔离器,环形器(另一边有检波器),双T调配器,频率计,扭波导,谐振腔,短路活塞。

(1)固态微波信号源(耿氏)
耿氏二极管工作原理,周而复始的产生畴的建立,移动和消失,构成电流的周期性震荡,形成一连串很窄的电流。

(2)隔离器
加隔离器,对输出功率的衰减量很小,但对于负载反射回来的反射波衰减量很大。

这样,可以避免负载变化是微波源的频率及输出功率发生变化,即在微波源和负载之间起到隔离作用。

(3)环形器(三端口)
三个分支波导交于一个微波结上,被称为“结”型。

该环形器累装有一个圆柱形铁氧体柱。

根据场移效应原理,被磁化的铁氧体将对通过的电磁波产生场移。

图中环形器将具有向右定向传输的特性。

(4)晶体检波器
晶体检波器就是一段波导和装在其中的微波二极管,将微波二极管插入波导
宽臂中,使它对波导两宽臂间的感应电压(与该处的电场强度成正比)进行检波。

(5)双T调配器
它是由双T接头构成,在接头的H臂和E臂各接有可以活动的短路活塞,改变短路活塞在臂中的位置,便可以使得系统匹配。

由于这种匹配不妨碍系统的功率传输和结构上具有某些机械的对称性,因此具有以下优点a)可以使用在高功率传输系统,尤其是在毫米波波段b)有较宽的频带c)有很宽的驻波匹配围。

(6)频率计
使用较多的是“吸收式”谐振频率计,它包含有=一个装有调谐柱塞得圆形空腔,腔外有GHz的数字读出器。

测量频率时,只要读出对应系统输出为最小值是调谐机构上的读数,就得到所测量的微波频率。

(7)扭波导
改变波导中电磁波的偏振方向(对电磁波无衰减),主要作用便于机械安装。

(8)矩形谐振腔
矩形谐振腔是由一段矩形波导,一端用金属片封闭而成,封闭片上开一个小孔,让微波功率进入,另一端结短路活塞,组成反射式谐振腔,腔的电磁波形成驻波,实验室被测样品放在交变磁场最大处。

(9)短路活塞
它接在终端对入射微波功率几乎全部反射而不吸收,从而在传输系统形成纯驻波状态。

它是一个可移动金属短路面的矩形波导,也称可变短路器,其短路面的位置可通过螺旋来调节并可直接读数。

【4】实验步骤
1.将探头固定在谐振腔边上磁场空隙处(与样品位置大致平行),用同轴线将主
机“DC12V ”输出与微波源相连,用两根带红黑手枪插头连接线将励磁电源与电磁铁相连,用Q9线将主机“扫描电源”与磁铁扫描线圈相连,用Q9线将检波器与示波器相连,放入样品,开启实验主机和示波器的电源,预热20min 。

2.调节主机“电磁铁你励磁电源”调节电位器,改变励磁电流,观察数字式高斯计表头读数,如果随着励磁电流增加,高斯计读数增大说明励磁线圈产生磁场与永磁铁产生磁场方向一致,反之,则两者方向相反,此时只要将红黑插头交换即可,由小到大改变励磁电流,记录电压读数与高斯计读数,做电压-磁感应强度关系图,找出关系式。

3.调节双T 调配器的两臂上的短路活
塞,观察示波器上信号线是否有跳动,如果有跳动说明微波系统工作,如无跳动,(我们用的是示波器或万用表)检查12V 电源是否正常。

调节励磁电源使共振磁场在3300高斯左右(因为微波频率在9.36GHZ 左右),调节短路活塞,观察示波器是否有共振吸收信号出现,调节到一定位置出现吸收信号时,再调节双T 调配器使信号最大,如图b 左侧所示,再细调励磁电源,使信号均匀出现,如c 图所示
4.信号是否跳动,如果跳动,记下此时的微波频率f ,根据公式0B h
f B
μ=,计
算DPPH 样品的g 因子。

5.调节短路活塞,使谐振腔的长度等于半个波导波长的整数倍,谐振腔谐振,可
以观测到稳定的共振信号,微波段电子自旋共振实验系统可以找出三个谐振点位置:L 1,L 2,L 3,按照式子:
()()⎥⎦

⎢⎣⎡-+-=
132321212
L L L L λ
,计算波导波长,然后根据公式2
1
2])(1[--⋅=c
g λλλλ计算微波的波长。

【5】数据处理
0.8 3321 2.5 3368 4.2 3414
0.9 3324 2.6 3370 4.3 3417
1 3327 2.7 3373 4.4 3420
1.1 3329
2.8 3375 4.5 3422
1.2 3332
2.9 3378 4.6 3425
1.3 3335 3 3381 4.7 3428
1.4 3338 3.1 3384 4.8 3430
1.5 3340 3.2 3386 4.9 3433
1.6 3343 3.3 3389 5 3435
此处的数据是励磁电源电压与磁场磁感应强度之间的关系,根据实验数据做出相应的U-B曲线图可以得到:
得到的拟合曲线为B=27.089U+3299.8。

其中励磁电压U单位为伏特,磁感应强度B单位为高斯。

【5】存在的问题
1.缺少同轴电缆,无法连接实验主机系统的12V电源和微波系统的微波源。

找到该电缆后,经万用表检测,电缆和12V电源能正常使用。

2.在调整主机的励磁电源时,示波器的输出随之改变。

我们在记录时,应该取相对稳定且合适的数值以减小误差。

3.微波电子自旋共振实验装置按要求连接电路后,调节短路活塞和双T调配器,示波器上来自晶体检波器的信号几乎不变化,达不到实验要求。

经过小组组员的分析与讨论,我们认为有以下几点原因:
①短路活塞损坏,导致微波很难传输系统中形成纯驻波状态。

②晶体检波器微波二极管损坏,无法对波导两宽臂间的感应电压进行检波。

③试验样品的长久放置也许也有问题,但鉴于实验室无备份,所以无从验证。

【6】参考文献
[1]志方,邓清.电子自旋共振实验简易操作方法[J].实验科学与技术,2007,04:14-15.
[2]王合英,文博,慧云,茅卫红.电子自旋共振实验g因子的准确测量方法[J].物理实验,2007,10:34-36.
[3]桂芳,晓林,牟娟,阮树仁,钱霞,盛淑芳.微波电子自旋共振实验波形分析[J]. 大学物理实验,2011,06:21-23.
[4]龙传安,王国茂,万华,来政.电子自旋共振[J].物理实验,1980,02:1-6.
. .。

相关文档
最新文档