算法实验动态规划----矩阵连乘

合集下载

动态规划-(矩阵连乘)

动态规划-(矩阵连乘)
} return m[0][n-1]; }
12
4、构造最优解
void MatrixChain::Traceback(int i, int j) {
if(i==j) { cout<<'A'<<i; return;} if (i<s[i][j]) cout<<'('; Traceback(i, s[i][j]); if (i<s[i][j])cout<<')'; if(s[i][j]+1<j)cout<<'('; Traceback(s[i][j]+1, j); if(s[i][j]+1<j) cout<<')'; } void MatrixChain::Traceback() { cout<<'('; Traceback(0, n-1); cout<<')'; cout<<endl; }
②当i=j时,A[i:j]=Ai,因此,m[i][i]=0,i=1,2,…,n ③当i<j时,m [ i ] j ] [ m [ i ] k ] [ m [ k 1 ] j ] [ p i 1 p k p j
这里 A i 的维数为 pi1pi
∴可以递归地定义m[i][j]为:
m [i]j] [ m i k j{ m [i]n k [ ] m [k 0 1 ]j] [ p i 1 p kp j}i i j j
根据MatrixChain动态规划算法: ②计算m[i][j]数乘次数
m[2][5]=min m[2][2]+m[3][5]+p1p2p5=13000

动态规划法解矩阵连乘问题

动态规划法解矩阵连乘问题

动态规划法解矩阵连乘问题实验内容给定n个矩阵{A1,A2,….An},其中Ai与Ai+1是可乘的,i=1,2,3。

,n-1。

我们要计算这n个矩阵的连乘积。

由于矩阵乘法满足结合性,故计算矩阵连乘积可以有许多不同的计算次序。

这种计算次序可以用加括号的方式确定。

若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则我们可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。

解题思路将矩阵连乘积A(i)A(i+1)…A(j)简记为A[i:j],这里i <= j 。

考察计算A[i:j]的最优计算次序。

设这个计算次序在矩阵A(k)和A(k+1)之间将矩阵链断开,i <= k < j, 则其相应完全加括号方式为(A(i)A(i+1) …A(k)) * (A(k+1)A(k+2) …A(j))。

特征:计算A[i:j]的最优次序所包含的计算矩阵子链A[i:k]和A[k+1:j]的次序也是最优的。

矩阵连乘计算次序问题的最优解包含着其子问题的最优解。

设计算A[i:j] , 1 <= i <= j <= n ,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1, n]当i = j 时,A[i:j]=Ai ,因此,m[i,i] = 0 , i = 1,2, …,n当i < j 时,m[i,j] = m[i,k] + m[k+1,j] + p(i-1)p(k)p(j) 这里A(i)的维数为p(i-1)*(i)( 注:p(i-1)为矩阵A(i)的行数,p(i)为矩阵A[i]的列数)实验实验代码#in elude <iostream>#in elude <vector>using n amespaee std ;class matrix_cha in{public:matrix_eha in(const vector <int> & c){ cols = c ;count = cols.size (); mc.resize (co unt);s.resize (co unt);for (i nt i = 0; i < count; ++i) { mc[i].resize (co unt); s[i].resize (co unt);}for (i = 0; i < count; ++i) { for (int j = 0; j < count; ++j) { mc[i][j] = 0 ;s[i][j] = 0 ;//记录每次子问题的结果void lookup_cha in () {__lookup_cha in (1, count - 1);min_count = mc[1][co unt - 1];cout << "min _multi_co unt = "<< min_count << endl ;//输出最优计算次序__trackback (1, count - 1);}//使用普通方法进行计算void calculate () {int n = count - 1; //矩阵的个数// r表示每次宽度// i,j表示从从矩阵i到矩阵j// k表示切割位置for (i nt r = 2; r <= n; ++ r) {for (int i = 1; i <= n - r + 1; ++ i) {int j = i + r - 1 ;//从矩阵i到矩阵j连乘,从i的位置切割,前半部分为0mc[i][j] = mc[i+1][j] + cols[i-1] * cols[i] * cols[j];s[i][j] = i ;for (int k = i + 1; k < j; ++ k) {int temp = mc[i][k] + mc[k + 1][j] +cols[i-1] * cols[k] * cols[j];if (temp < mc[i][j]) {mc[i][j] = temp ;s[i][j] = k ;}} // for k} // for i} // for rmin_count = mc[1][ n];cout << "min _multi_co unt = "<< min_count << endl ;//输出最优计算次序__trackback (1, n);private:int __lookup_cha in (int i, i nt j) {//该最优解已求出,直接返回if (mc[i][j] > 0) {return mc[i][j];}if (i == j) {return 0 ; //不需要计算,直接返回}//下面两行计算从i到j按照顺序计算的情况int u = __lookup_cha in (i, i) + __lookup_cha in (i + 1, j)+ cols[i-1] * cols[i] * cols[j];s[i][j] = i ;for (int k = i + 1; k < j; ++ k) {int temp = __lookup_cha in (i, k) + __lookup_cha in(k + 1, j)+ cols[i - 1] * cols[k] * cols[j];if (temp < u) {u = temp ;s[i][j] = k ;}}mc[i][j] = u ;return u ;}void __trackback (int i, i nt j) {if (i == j) {return ;}__trackback (i, s[i][j]);__trackback (s[i][j] + 1, j);cout <<i << "," << s[i][j] << " " << s[i][j] + 1 << "," << j << endl;}private:vector<int> cols ; // 列数int count ; // 矩阵个数+ 1vector<vector<int> > mc; //从第i个矩阵乘到第j个矩阵最小数乘次数vector<vector<int> > s; //最小数乘的切分位置int min_count ; //最小数乘次数};int mai n(){//初始化con st i nt MATRIX_COUNT = 6 ;vectorvi nt> c(MA TRIX_COUNT + 1);c[0] = 30 ;c[1] = 35 ;c[2] = 15 ;c[3] = 5 ;c[4] = 10 ;c[5] = 20 ;c[6] = 25 ;matrix_cha in me (c); // mc.calculate (); mc」o okup_cha in (); return 0 ;}实验结果实验验证从s 可知计算顺序为((A1(A2A3))((A4A5))A6))实验总结在这次实验中懂得了动态规划法运用方法和解题思路的重要性,在这个程序中如何 建立动态规划的过程建立递归过程 保存已解决的子问题答案。

算法设计与分析——矩阵连乘问题(动态规划)

算法设计与分析——矩阵连乘问题(动态规划)

算法设计与分析——矩阵连乘问题(动态规划)⼀、问题描述引出问题之前我们先来复习⼀下矩阵乘积的标准算法。

int ra,ca;//矩阵A的⾏数和列数int rb,cb;//矩阵B的⾏数和列数void matrixMultiply(){for(int i=0;i<ra;i++){for(int j=0;j<cb;j++){int sun=0;for(int k=0;k<=ca;k++){sum+=a[i][k]*b[k][j];}c[i][j]=sum;}}}给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。

如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。

加括号的⽅式对计算量有很⼤的影响,于是⾃然地提出矩阵连乘的最优计算次序问题,即对于给定的相继n个矩阵,如何确定矩阵连乘的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

⼆、问题分析矩阵连乘也是Catalan数的⼀个常⽤的例⼦,关于时间复杂度的推算需要参考离散数学关于Catalan的内容。

下⾯考虑使⽤动态规划法解矩阵连乘积的最优计算次序问题。

1、分析最优解的结构问题的最优⼦结构性质是该问题可以⽤动态规划求解的显著特征!!!2、建⽴递归关系3、计算最优值public static void matrixChain(int n) {for (int i = 1; i <= n; i++) {m[i][i] = 0;}for (int r = 2; r <= n; r++) {//i与j的差值for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++) {int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]) {m[i][j] = t;s[i][j] = k;}}}}}4、构造最优解public static void traceback(int i, int j) {if (i == j) {System.out.printf("A%d", i); // 输出是第⼏个数据return;}System.out.printf("(");traceback(i, s[i][j]);// 递归下⼀个数据System.out.printf(" x ");traceback(s[i][j] + 1, j);System.out.printf(")");}三、总结。

动态规划算法解矩阵连乘问题

动态规划算法解矩阵连乘问题

动态规划算法解矩阵连乘问题一、实验目的通过上机实验,要求掌握动态规划算法的问题描述、算法设计思想、程序设计和算法复杂性分析等。

二、实验环境VC6.0 C++,vs2005三、实验内容1 用动态规划算法解矩阵连乘问题(1)问题的描述给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。

要算出这n个矩阵的连乘积A1A2…A n。

由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。

这种计算次序可以用加括号的方式来确定。

若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。

完全加括号的矩阵连乘积可递归地定义为:(1)单个矩阵是完全加括号的(当然实际上可以不加);(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。

例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。

每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。

若A是一个p×q矩阵,B 是一个q×r矩阵,则计算其乘积C=AB的标准算法中,需要进行pqr次数乘。

(3)为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵{A1,A2,A3}连乘的情况。

设这三个矩阵的维数分别为10×100,100×5,5×50。

加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。

矩阵连乘问题实验报告

矩阵连乘问题实验报告

一、实验目的通过本次实验,加深对动态规划算法的理解和应用,掌握解决矩阵连乘问题的方法,提高算法分析和设计能力。

二、实验原理矩阵连乘问题是指给定n个矩阵,每个矩阵都与它的前一个矩阵可乘,求计算这些矩阵连乘积的最优计算次序,以使计算过程中所需的数乘次数最少。

由于矩阵乘法满足结合律,因此可以通过加括号的方式确定不同的计算次序。

三、实验步骤1. 问题描述:给定n个矩阵A1, A2, ..., An,其中Ai与Ai-1是可乘的。

求计算矩阵连乘积A1A2...An的最优计算次序,使得计算过程中所需的数乘次数最少。

2. 输入数据:矩阵个数n,每个矩阵的规模。

3. 输出结果:计算矩阵连乘积的最优计算次序和最少数乘次数。

4. 算法设计:- 定义一个二维数组m[i][j],其中m[i][j]表示计算矩阵AiAi-1...Aj的最少数乘次数。

- 初始化m[i][i] = 0,因为单个矩阵无需计算。

- 对于每个子问题A[i:j],计算m[i][j]的最小值:- 遍历k从i到j-1,将问题分解为A[i:k]和Ak+1:j,计算m[i][k]和m[k+1][j]的和,并加上k个矩阵的维度乘积。

- 取上述和的最小值作为m[i][j]的值。

5. 递归关系:- 当i = j时,m[i][j] = 0。

- 当i < j时,m[i][j] = min(m[i][k] + m[k+1][j] + p[i-1]p[k]p[j]),其中k从i到j-1,p[i-1]表示矩阵Ai-1的行数,p[j]表示矩阵Aj的列数。

6. 自底向上计算:- 从m[1][1]开始,按照递归关系计算m[1][2],m[1][3],...,m[1][n]。

- 然后计算m[2][3],m[2][4],...,m[2][n],以此类推,直到计算m[1][n]。

7. 输出最优计算次序:- 从m[1][n]开始,根据递归关系和子问题的最优解,逐步确定每个子问题的最优计算次序,直到得到整个问题的最优计算次序。

矩阵连乘实验报告总结

矩阵连乘实验报告总结

一、实验背景与目的矩阵连乘问题是一个经典的算法问题,它涉及给定一系列矩阵,确定这些矩阵的最佳乘积顺序,以最小化乘法操作的次数。

本实验旨在通过动态规划算法解决矩阵连乘问题,加深对动态规划方法的理解,并提高算法分析与设计的能力。

二、实验内容与步骤1. 问题描述与理解:- 给定n个矩阵A1, A2, ..., An,其中任意两个相邻矩阵都是可乘的。

- 目标是确定计算这些矩阵连乘积的最佳顺序,以最小化所需的乘法次数。

2. 算法分析:- 使用动态规划方法,通过将问题分解为子问题并存储子问题的解来求解。

- 设定m[i, j]表示矩阵Ai到Aj的最佳乘积顺序的乘法次数。

3. 动态规划过程:- 初始化m[i, i] = 0,因为单个矩阵不需要乘法。

- 对于长度为k的矩阵序列,通过遍历所有可能的分割点,计算m[i, j]的最小值。

- 具体步骤包括:- 对于每个可能的k(1 ≤ k ≤ n-1),- 对于每个起始矩阵i(1 ≤ i ≤ n-k),- 计算m[i, i+k-1]和m[i+k, j],- 更新m[i, j]为m[i, i+k-1] + m[i+k, j] + p[i-1] p[i] p[i+k]。

4. 代码实现:- 使用C或Java等编程语言实现动态规划算法。

- 编写辅助函数来计算矩阵的乘法次数。

三、实验结果与分析1. 实验结果:- 通过实验,成功实现了矩阵连乘问题的动态规划算法。

- 得到了计算给定矩阵序列连乘积所需的最小乘法次数。

2. 结果分析:- 动态规划方法有效地解决了矩阵连乘问题,避免了穷举法的指数级时间复杂度。

- 通过分析子问题的解,我们可以找到整个问题的最优解。

四、实验总结与反思1. 实验收获:- 加深了对动态规划方法的理解,特别是如何通过子问题的解来构建整个问题的解。

- 学会了如何将实际问题转化为动态规划问题,并使用代码实现算法。

2. 反思与展望:- 实验过程中遇到了一些挑战,如理解子问题的定义和计算最优子结构的策略。

矩阵链乘法(动态规划)

矩阵链乘法(动态规划)

矩阵链乘法(动态规划)
⼀题意描述:
给定由n个要相乘的矩阵构成的序列(链)<A1,A2,A3,····A n>。

由于矩阵满⾜结合律(加括号⽅式表⽰结合⽅式),不同的计算⽅式导致的求出最终计算结果的代价相异,有的花的时间很少,有的⽅式所花时间很多,那么下⾯的任务就是求出算出结果所需要的最少时间及⼀个最优解。

⼆思路分析:
设p(n)表⽰⼀串n个矩阵可能的加全部括号⽅案数。

当n=1时,只有⼀个矩阵,此时p(1)=1。

当n>=2时,⼀个加全部括号的矩阵乘积等于两个加全部括号的⼦矩阵乘积的乘积,⽽且这两个⼦乘积之间的分裂可能发⽣在第k个和第k+1个矩阵之间,其中k=1,2,····,n-1;因此可以求得递归式:
1.找局部最优解:把问题:转化成两个最优⼦问题:及
2.构造递归解:
⾸先定义m[i,j]为解决⼦问题A[i....j]的最⼩计算次数,那么解决整个问题A[1,n]所花的最⼩时间为m[1,n]。

那么递归⽅程可以写成如下形式:
为了跟踪如何构造⼀个最优解我们可以定义s[i,j]为这样的⼀个k值,在该处分裂乘积后可得⼀个最优解。

3.构造函数进⾏求解
输出最优路径的函数⾃⼰编写,经过调⽤数组s[i][j]即可。

动态规划之矩阵连乘

动态规划之矩阵连乘

动态规划之矩阵连乘【问题描述】给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。

如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。

分析:矩阵链乘法问题描述:给定由n个矩阵构成的序列{A1,A2,...,An},对乘积A1A2...An,找到最⼩化乘法次数的加括号⽅法。

1)寻找最优⼦结构此问题最难的地⽅在于找到最优⼦结构。

对乘积A1A2...An的任意加括号⽅法都会将序列在某个地⽅分成两部分,也就是最后⼀次乘法计算的地⽅,我们将这个位置记为k,也就是说⾸先计算A1...Ak和Ak+1...An,然后再将这两部分的结果相乘。

最优⼦结构如下:假设A1A2...An的⼀个最优加括号把乘积在Ak和Ak+1间分开,则前缀⼦链A1...Ak的加括号⽅式必定为A1...Ak的⼀个最优加括号,后缀⼦链同理。

⼀开始并不知道k的确切位置,需要遍历所有位置以保证找到合适的k来分割乘积。

2)构造递归解设m[i,j]为矩阵链Ai...Aj的最优解的代价,则3)构建辅助表,解决重叠⼦问题从第⼆步的递归式可以发现解的过程中会有很多重叠⼦问题,可以⽤⼀个nXn维的辅助表m[n][n] s[n][n]分别表⽰最优乘积代价及其分割位置k 。

辅助表s[n][n]可以由2种⽅法构造,⼀种是⾃底向上填表构建,该⽅法要求按照递增的⽅式逐步填写⼦问题的解,也就是先计算长度为2的所有矩阵链的解,然后计算长度3的矩阵链,直到长度n;另⼀种是⾃顶向下填表的备忘录法,该⽅法将表的每个元素初始化为某特殊值(本问题中可以将最优乘积代价设置为⼀极⼤值),以表⽰待计算,在递归的过程中逐个填⼊遇到的⼦问题的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三:动态规划法
【实验目的】
深入理解动态规划算法的算法思想,应用动态规划算法解决实际的算法问题。

【实验性质】
验证性实验。

【实验要求】
对于下列所描述的问题,给出相应的算法描述,并完成程序实现与时间复杂度的分析。

该问题描述为:一般地,考虑矩阵A1,A2,…,An的连乘积,它们的维数分别为d0,d1,…,dn,即Ai的维数为di-1×di (1≤i≤n)。

确定这n个矩阵的乘积结合次序,使所需的总乘法次数最少。

对应于乘法次数最少的乘积结合次序为这n个矩阵的最优连乘积次序。

按给定的一组测试数据对根据算法设计的程序进行调试:6个矩阵连乘积A=A1×A2×A3×A4×A5×A6,各矩阵的维数分别为:A1:10×20,A2:20×25,A3:25×15,A4:15×5,A5:5×10,A6:10×25。

完成测试。

【算法思想及处理过程】
【程序代码】
printf ("\n\n矩阵连乘次数的最优值为:\n");
printf ("-----------------------------------------------\n");
print2 (0, 6-1, s);
printf ("\n-----------------------------------------------\n\n");
return 0;
}
void MatrixChain (int p[], int m[][6], int s[][6], int n)
{
int i, j, k, z, t;
for (i=0; i<n; i++)
{
m[i][i] = 0;
s[i][i] = 0;
}
for (z=2; z<=n; z++)
for (i=0; i<=n-z; i++)
{
j = i + z - 1;
m[i][j] = m[i+1][j] + p[i] * p[i+1] * p[j+1];
s[i][j] = i;
for (k = i+1; k<j; k++)
{
t = m[i][k] + m[k+1][j] + p[i] * p[k+1] * p[j+1];
if (t < m[i][j])
{
m[i][j] = t;
s[i][j] = k;
}
}
}
}
void print1 (int m[][6], int s[][6],int p[])
{
int i, j;
printf ("\n\n程序所给矩阵如下:\n");
printf ("-----------------------------------------------\n");
for (i=0; i<6; i++)
printf ("A%d 矩阵: %2d X %-2d \n",i+1,p[i], p[i+1]);
printf ("\n\n-----------------------------------------------\n"); printf("矩阵的最少计算次数为:%d\n", m[0][5]);
printf ("-----------------------------------------------\n");
printf ("\n\n数乘次数: \n");
printf ("-----------------------------------------------\n");
for (i=0; i<6; i++)
{
for (j=0; j<i; j++)
printf (" ");
for (j=i; j<6; j++)
printf ("%-7d", m[i][j]);
printf ("\n");
}
printf ("-----------------------------------------------\n");
printf ("\n\n中间断点: \n");
printf ("-----------------------------------------------\n");
for (i=0; i<6; i++)
{
for (j=0; j<i; j++)
printf (" ");
for (j=i; j<6; j++)
printf ("%-7d", s[i][j]);
printf ("\n");
}
printf ("-----------------------------------------------\n"); }
void print2(int i, int n, int s[][6])
{
if (i == n)
【运行结果】
【算法分析】
函数MatrixChain( )包含三重循环,循环体内的计算量为O(1) , 所以算法的时间复杂度为O(n3) ,算法的空间时间复杂度为O(n3) .
【实验总结】。

相关文档
最新文档