湍流理论发展概述
湍流理论介绍

湍流理论湍流理论theory of turbulence研究湍流的起因和特性的理论,包括两类基本问题:①湍流的起因,即平滑的层流如何过渡到湍流;②充分发展的湍流的特性。
湍流的起因层流过渡为湍流的主要原因是不稳定性。
在多数情况下,剪切流中的扰动会逐渐增长,使流动失去稳定性而形成湍流斑,扰动继续增强,最后导致湍流。
这一类湍流称为剪切湍流。
两平板间的流体受下板面加热或由上板面冷却达到一定程度,也会形成流态失稳,猝发许多小尺度的对流;上下板间的温差继续加大,就会形成充分发展的湍流。
这一类湍流称热湍流或对流湍流。
边界层、射流以及管道中的湍流属于前一类;夏天地球大气受下垫面加热后产生的流动属于后一类。
为了弄清湍流过渡的机制,科学家们开展了关于流动稳定性理论(见流体运动稳定性)分岔(bifurcation)理论和混沌(chaos)理论的研究,还进行了大量实验研究(见湍流实验)。
对于从下加热流层而向湍流过渡的问题,原来倾向于下述观点:随着流层温差的逐渐增加,在发生第一不稳定后,出现分岔流态;继而发生第二不稳定,流态进一步分岔;然后第三、第四以及许多更高程度的不稳定接连发生;这种复杂的流动称为湍流。
实验结果支持这一论点。
但是,这一运动过程在理论上得不出带有连续谱的无序运动,而与实验中观察到的连续谱相违。
最近,对不稳定系统的理论分析提出了另一种观点:在发生第一、第二不稳定之后,第三不稳定就直接导致一个可解释为湍流的无序运动。
这一观点也得到实验的支持。
剪切流中湍流的发生情况更为复杂。
实验发现,平滑剪切流向湍流过渡常会伴有突然发生的、作奇特波状运动的湍流斑或称过渡斑。
可以设想,许多逐渐形成的过渡斑,由于一再出现的新的突然扰动而互相作用和衰减,使混乱得以维持。
把过渡斑作为一种孤立的非线性波动现象来研究,有可能对湍流过渡现象取得较深刻的理解。
因此,存在着不止一条通向湍流的途径。
过去认为,一个机械系统发生无序行为往往是外部干扰或外部噪声影响的结果。
(完整word版)湍流模型理论

湍流模型理论§3.1 引言自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。
湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。
回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。
在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。
90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术.但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。
要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1。
平均N-S方程的求解,2。
大涡模拟(LES),3。
直接数值模拟(DNS)。
但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。
因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。
自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。
但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。
《湍流流动模型》课件

• 混合模型:结合基于方程的模型 和基于统计的模型的特点,通过 混合这两种方法来描述湍流流动 。如SST k-ω模型和修正后的k-ε 模型等。计算量适中,精度较高 ,适用于多种工程应用场景。
03 湍流流动模型的建立与求解
湍流流动模型的建立
湍流现象的描述
湍流是流体的一种复杂流动状态,具有高度的不规则性和 随机性。为了理解和模拟湍流,需要建立一个数学模型来 描述其基本特征和规律。
3
纳维-斯托克斯方程的满足度
检验模型是否满足纳维-斯托克斯方程,以评估 模型的物理意义和准确性。
湍流流动模型的应用Байду номын сангаас例
航空航天领域
湍流流动模型用于研究飞行器在高速飞行时 产生的湍流流动现象,以提高飞行器的性能 和安全性。
能源与环境领域
湍流流动模型用于模拟燃烧过程、流体机械内部流 动等复杂湍流现象,以提高能源利用效率和环境保 护水平。
化工与制药领域
湍流流动模型用于研究化学反应过程中产生 的湍流流动现象,以提高化学反应效率和制 药工艺水平。
05
湍流流动模型的发展趋势与展 望
湍流流动模型的发展趋势
多尺度模拟
随着计算能力的提升,湍流流动模型正朝着多尺度模拟的方向发 展,以更准确地模拟湍流在不同尺度上的行为。
非线性模型
传统的线性模型在处理复杂湍流时显得力不从心,非线性模型的研 发和应用成为新的趋势。
基于本征方程的模型
本征方程模型
通过求解湍流的本征方程来描述湍流 流动。本征方程基于湍流的物理特性 ,能够更准确地描述湍流流动。但计 算量大,对计算机性能要求高。
简化的本征方程模型
为了减小计算量,对基本的本征方程 进行简化处理,如忽略某些项或采用 近似解。计算量相对较小,精度有所 降低。
粘性流体力学第一章

有关三维边界层和边界层分离计算仍在不断发展。
有关湍流计算的模式理论等仍适用边界层的计算, 有关边界层流动的研究也是这些理论和方法发展的动 力。
ቤተ መጻሕፍቲ ባይዱ
边界层的实验测量
在湍流边界层计算的发展中,边界层的实验测量, 其中最主要的是对速度分布规律的研究,这方面的 成果有普朗特(Prandtl 1933年)的内层律,卡门 的外层律(Karman 1930年),克劳塞(Clauser 1954年,1956年)压力梯度对外层律影响的修正, 科尔斯(Coles)的尾迹律, 以及1960年代克兰 (Kline)开始用氢气泡技术观察到的边界层猝发 (burst)现象。
粘性流体力学的发展 两种基本流态——层流、湍流 和雷诺数 流体的传输性质 应变率张量和应力张量 广义牛顿定律
第一节 粘性流体力学的发展
1、研究流体粘性的意义
流体存在着粘性,粘性是流体阻止其本身流动 的性质。当流场中存在速度梯度时,流体就会 产生阻力,这就是粘性。
在求解运动物体在流体中的阻力,以及涡旋的 扩散、热量的传递等问题时,粘性会起主导作 用不能忽略。
D. Catherall et al(1966)首先提出了二维边界层 积分型逆解法。在二维边界层上主要应用East(1977)的 逆解法。
三维边界层在分离现象、判别和模拟方面比二维复杂, J. Cousteix(1981)提出了三维边界层的逆解法。以后Le Ballear(1981),Delery J and Formery(1983), Radwan S. F. (1984)和Edwards D.E.(1987)等都进 行边界层逆解法的计算,并取得了满意的结果。
湍流简史

湍流简史精选已有 3889 次阅读2012-9-22 10:40|个人分类:学术探讨|系统分类:科研笔记|关键词:湍流简介湍流理论发展简史:N-S方程的导出:描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。
因1821年由C.-L.-M.-H.纳维(基于分子运动)和1845年由G.G.斯托克斯(基于连续介质假定)分别导出而得名。
后人在此基础上又导出适用于可压缩流体的N-S方程。
N-S方程包含两个假设:第一连续介质假定;第二是所有涉及到的场,全部是可微的假定。
N-S方程和连续方程共同构成了一个闭合的非线性方程组。
该方程组是质量守恒定律和牛顿运动定律在流体力学中的一种应用形式,由于其高度非线性,因此很难求得其解析解。
一般认为无论流体运动多么复杂,方程组都能够描述流体的运动。
湍流的发现:1839年,G.汉根在实验中首次观测到了流动由层流向紊流的转变。
层流向湍流转变的雷诺实验:1883年英国科学家雷诺(Reynolds)通过实验研究并展示了液体在流动中存在两种内部结构完全不同的流态:层流和紊流。
雷诺揭示了重要的流体流动机理,即根据流速的大小,流体有两中不同的形态,并提出了著名的层流向紊流转变的雷诺数(包括分层流动的情况)。
当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。
流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。
并在1885年提出了著名的雷诺平均方法。
湍动能串级过程:1922年Richardson发现湍动能串级过程。
大尺度涡流脉动犹如一个很大的蓄能池,它不断从外界获得能量并输出给小尺度涡能量;小尺度湍流就像一个耗能机械,从大尺度湍流涡输出来的动能在这里全部耗散掉,流体的惯性犹如一个传送机械,把大尺度脉动传给小尺度脉动。
流动的雷诺数越大,蓄能的大尺度和耗能的小尺度之间的惯性区域越大。
中国湍流研究的发展史_中国科学家早期湍流研究的回顾

中国湍流研究的发展史I 中国科学家早期湍流研究的回顾黄永念北京大学力学与工程科学系,湍流与复杂系统国家重点实验室,北京,100871摘要总结了二十世纪三十年代到六十年代中国老一辈科学家(包括物理学家,力学家)周培源、王竹溪、张国藩、林家翘、谢毓章、张守廉、黄授书、胡宁、柏实义、陈善模、庄逢甘、陆祖荫、李政道、蔡树棠、是勋刚、李松年、谈镐生、包亦和等诸位先生的湍流研究工作。
介绍他们对流体力学中最为困难的湍流问题所作出的努力和贡献。
关键词湍流统计理论,能量衰变规律,均匀各向同性湍流,剪切湍流。
引言湍流一直被认为是物理学中最难而又久未解决的基础理论研究的一个课题。
从1883年Reynolds圆管湍流实验研究算起已经跨越了两个世纪,湍流问题仍未得到解决。
在跨入二十一世纪时,很多从事湍流研究工作的科学家都在思考这样的问题:二十世纪的湍流研究留给我们哪些宝贵财富?二十一世纪又应该如何面对这个老大难问题?Yaglom在2000年法国举行的一次湍流讲习班上回顾了二十世纪的湍流理论发展过程[1],指出了其中两个最重要的成就:一个是Kolmogorov的局部均匀各向同性湍流理论,另一个是von Karman的湍流平均速度的对数分布律。
同时又一次向世人介绍著名科学家Lamb在临终前对解决湍流问题的悲观看法。
由于中国与世界各国在文字和语言上的差异和长期缺乏国际间的交流,历次湍流研究工作的总结和回顾中,人们往往忽略了中国科学家的作用。
只有周培源教授在1995年流体力学年鉴上发表了“中国湍流研究50年”才打破了这种隔阂[2]。
但是这篇文章也只局限于周培源教授率领的北京大学研究组所做的系列研究工作。
实际上有很多中国科学家在上一世纪中做了非常出色的工作。
本文仅就半个世纪前的三十年代到六十年代他们的湍流研究工作做一个简单的介绍,目的是要引起大家关注中国科学家的湍流研究和对湍流研究所做的贡献。
中国科学家的湍流研究工作可以分成两个方面,一是在国内极其困难的条件下坚持开展的研究工作,这方面的工作国际上鲜为人知。
湍流基本理论、特征与分析

时
u
1
0,
u2
0,也就是说
u
1
和
u 2 是异号的。
还可以认为 u2 ~ u1,这是因为当 x2 l处的微团
到达点 x 2 时,恰巧在 x2 l微团的左边时,就会产
生碰撞,而产生横向运动u 1,源自样u 2~u
1
。同样,
当向两中个间微 补团 充到 也达 会产x 2生点u 2时。向相反运动时,周围的微团会
Cebci-Smith(1968)(CS)模型, Mellor-Herring(1968)(MH), Patanka-Spalding(1968)(PS)和 Baldwin-Lomax(BL)等模型。 t 这些模型的共同点是根据湍流边界层的结构, 对 在边界层的内层和外层须用不同的尺度。
CS模型发展了Van Priest的模型,得到广泛的 应用,其公式为:
(6-53)
Fw ake= m in
x2
m ax
Fm
ax
,
C
wk
x2
maxU
2 dif
/ Fmax
Fw ake为 尾 流 函 数 , Fm ax 和 x 2 m ax 分 别 为 F ( x 2 ) x 2 [1 e x p
( x 2 / A )]的 最 大 值 和 最 大 值 的 坐 标 ; U dif 是 平 均 速 度 剖
u x 2 l u x 2 u x 2 l 假设微团从x2 l或 x2 l运动至 x 2,对于 x 2 来讲,
脉动速度 u2 0 或 u2 0 ,
8
湍流基本理论、特征和分析
u1x2lu1x2ldud1x(2 x2)xx2......
u1 u1x2lu1x2ld du2 1x
湍流

1.湍流简述:1.1 湍流概念湍流是流体的一种流动状态。
当流速很小时,流体分层流动,互不混合,称为层流;逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。
这时的流体作不规则运动,有垂直于流动轴线方向的分速度产生,这种运动称为湍流。
湍流的本质是紊乱的浑沌的,但是湍流也不是完全随机的,因为它也服从流体运动的基本方程组。
如果假设某一个速度分量是完全随机的,这其余的两个分量一定会由三大守恒定律限制其脉动的范围。
在近三十年来的试验研究发现,在湍流混合层和边界层中都存在拟序结构,它们都以大尺度漩涡运动为特征。
1.2湍流能量级联过程为了描述完全发展了的湍流运动的物理过程,常假设流动是由许多尺寸完全不同的、杂乱堆集着的漩涡形成的。
旋涡的最大尺度与流动的整个空间有相同的量级,旋涡的最小尺度则由需要它耗散掉的湍流能量确定。
1.3湍流统计理论人们普遍认为纳维-斯托克斯方程组可用于描写湍流,而纳维-斯托克斯方程组的非线性使得用解析的方法精确描写湍流的三维时间相关的全部细节变得极端困难,甚至基本不可能。
退一步说,如果郑能求得这样的解,在实践问题上直接使用这个解也并不都是必要的,应为人们关心的仍是其总效、平均的性能,这些情况决定了对湍流的研究主要采用统计的、平均的方法。
湍流的统计过去主要沿两个方向发展:一个是湍流相关函数的统计理论,另一个是湍流平均量的半经验分析。
湍流的半经验理论确是另一种情况。
人们对于工程技术上迫切需要解决的问题,如管流,边界层和自由湍流等,惊醒了大量实验研究以确定湍流的特征参数,在这些实验的基础上形成湍流的半经验理论,这些理论研究将数据系统化并可以来预估类似条件下的结果1.4湍流模型由于湍流瞬时运动的极端复杂性,其不可能有一个准确解。
我们主要关心的仍是其平均参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. 湍流理论发展概述一、湍流模型的研究背景自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。
对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。
这也就引发了对湍流过程进行模拟的想法。
对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。
然而由于计算方法及计算机运算水平的限制,该种方法不易实现。
另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。
目前数值模拟主要有三种方法:1.平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。
所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。
目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。
对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。
但是,对于复杂的湍流运动,则不一定。
湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。
这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。
二、基本湍流模型常用的湍流模型有:零方程模型:C-S模型,由Cebeci-Smith给出;B-L模型,由Baldwin-Lomax 给出。
一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。
二方程模型:应用比较广泛的两方程模型有Jones 与Launder 提出的标准k-e 模型,以及k-omega 模型。
下面仅针对有代表性的模型进行论述:1、零方程模型上世纪30年代发展的一系列湍流的半经验理论,如Prandtl 的混合长度理论、Taylor 的涡量输运理论、von Karman 的相似性理论等,本质上即是零方程湍流模型。
零方程模型直接建立雷诺应力与平均速度之间的代数关系,由于不涉及代数关系故称为另方程模型:''m u u v yρρε∂-=∂ 其中m ε称为涡粘系数,他与分子的运动粘性系数ν有相同的量级。
对于一般的三维的情况,上式可写为:''223i j m ij ij u v S K ρεδ-=- K 为单位质量的湍流脉动动能。
为了发展上述方法,需要建立m ε与平均速度之间的关系。
1925年,普朗特沿这一方向做了重要工作,提出可混合长度理论,混合长度理论认为,存在这样的长度l ,在此长度内流体质点运动是自由的(不与其他质点相遇),我们把这样的l 称为混合长度[2]。
由于湍流漩涡的作用,流体微团就爱那个上下跳动,由于微团的流向速度不会立即改变,到达新位置后他会低于当地周围的平均速度,此即流向脉动速度'10()()u U y U y ≈-,显然,此速度差取决于当地的平均速度梯度U y ∂∂与微团沿y 向跳动的距离l ,即:'U u l y∂≈∂ 此l 称为混合长度,他表示这样的距离,在此距离内微团沿y 向跳动时基本不丧失其原有速度。
实际测量表明,虽然一般情况下流向的脉动速度的均方根值大于法向值,但他们有相同的量级,因此有:'U v l y∂≈∂ 所以有:''2u u u v l y yρρ∂∂-=∂∂由此可算出涡粘性系数为:2m u l yε∂=∂ 由此可见,若假设l 不随速度变化,则可得出湍流切应力与平均速度平方成比例,这与实验结果是一致的。
混合长度理论已成功的用于研究多种湍流剪切流,如流管、边界层和各种湍流剪切流。
目前应用最广泛的零方程模型是Baldwim-Lomax 模型[3],该模型对湍流边界层的内层和外层采用不同的混合长度假设,在流体分离不严重的流场计算中结果较好。
事实上,零方程湍流模型仅适用于局部平衡状态的湍流流动。
2,、一方程模型单方程模型一般求解湍流动能或涡粘性系数的输运方程,精度较好,鲁棒性也比较好,其中B-B 模型和S-A 模型是单方程模型中的优秀代表。
特别是S-A 模型,从经验和量纲分析出发得出了涡粘性系数的输运方程,采用大量的实验结果标定模型系数,具有良好的鲁棒性和计算准确性,目前已经被集成在各种商业软件和科学计算的代码中,在航空航天领域空气动力学计算中得到了十分广泛的应用。
S-A 湍流模型是个一方程模型。
它常被认为是B-L 代数模型和两方程模型之间的桥梁。
由于其容错功能好,处理复杂流动的能力强,S-A 模型已得到广泛应用。
S-A 模型与B-L 模型相比,其湍流涡粘场是连续的。
S-A 模型优于 模型之处在于其容错性好,计算量少。
该湍流的原理是建立在一个附加的涡粘输运方程的解决上。
方程中包含对流项,扩散项和源项,以非守恒形式建立。
S-A 模型不同于其他一些单方程模型,不是从 方程经过简化得到的,而是直接根据经验和量纲分析,从简单流动开始,直接得到最终的控制方程。
该模型具有一些很好的特点,相对于两方程模型计算量小和稳定性好,同时又有较高的精度。
由于模型方程的因变量函数在对数律区内与到壁面的距离成线性关系,所以可以使用相对与低雷诺数模型较粗的网格。
另外,模型是非当地型的,方程中没有诸如y+这类当地型的项在内,所以在有多个物理面的复杂流场中不需要特殊处理,使用方便。
3、两方程模型上世纪70年代,Launder 发展的k-ε模型被称为标准k-ε模型,它求解湍流动能k 及湍流动能耗散率ε的输运方程,能够反映一定的湍流物理量的输运特性,是两方程湍流模型的先驱性工作。
之后研究人员又发展了重整化群k-ε (RNG k-ε)模型、可实现性k-ε模型等,进一步强化k-ε系列模型的计算性能。
另外一个系列的两方程模型为-k ω模型系列,其中比较有代表性的有标准-k ω模型和SST -k ω模型。
一般来说,k-ε模型对高Re 数充分发展的湍流模拟结果较好,而-k ω模型改进了k-ε模型对受壁面影响湍流模拟的缺陷,对壁面附近的湍流模拟精度较高。
k-ε模型在湍流模型的发展过程中逐渐形成了零方程模型、一方程模型和两方程模型,由于使用的局限性零方程模型和一方程模型很难应用于工程实际。
目前两方程模型在工程中使用最为广泛,最基本的两方程模型是k-ε模型,即分别引入关于湍动能k 和耗散率ε的方程:()()()e k k b k k k kk k u k G G t x x x μρρρεσ∂∂∂∂+=++-∂∂∂∂ 12()()()()e k k k k k k u c G c t x x x kεμρεερερεσ∂∂∂∂+=+-∂∂∂∂ 式中:222[2()2()()]k t u v u v G x y y xμ∂∂∂∂=+++∂∂∂∂ ()t t b x y t t T T G g g x yμμβρσσ∂∂=-+∂∂ e t μμμ=+ 2t k C μμρε=模型中各通用常数据计算经验可取为:120.09, 1.44, 1.92,1, 1.3k C c c εμσσ===== 标准K-ε模型特性[4]:可用于边界层型流动和分离流;近壁需修正或在计算边界上用壁函数(半经验公式)作边界条件;属于涡粘模型;ε方程模化不确定因素多,可靠性差;模型常数通用性差;不能模拟强各向异性流(如矩形槽道中的二次流);不能计入涡量的影响。
除此之外还有各种改进的k ε-模型,比较著名的是RNG k ε-模型和带旋流修正的k ε-模型。
k-ω模型标准-k ω模型是基于Wilcox -k ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。
Wilcox -k ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。
标准k ε-模型的一个变形是SST -k ω模型。
SST -k ω模型由Menter 发展,以便使得在广泛的领域中可以独立于-k ω模型,使得在近壁自由流中-k ω模型有广泛的应用范围和精度。
为了达到此日的,-k ε模型变成了-k ω公式。
SST -k ω模型和标准-k ω模型相似,但有以下改进:(1)SST -k ω模型是由标准的-k ω模型和变形的-k ε模型分别乘上一个混合函数相加得到的,在近壁面混合函数将为1,此时启用标准-k ω模型,在远壁面,混合函数将为0,此时启用变形的-k ε模型。
(2)SST -k ω模型合并了来源于方程中的交叉扩散。
(3)湍流粘度考虑到了湍流剪应力的传播。
(4)模型常量不同。
这些改进使得SST -k ω模型比标准-k ω模型在在广泛的流动中有更高的精度和可信性。
由Fluent 提供的SST -k ω模型更适合对流减压区的计算。
另外它还考虑了正交发散项从而使方程在近壁面和远壁面都适合。
SST -k ω模型[5]:k ()()()i k k i j jk k ku G Y t x x x ρρ∂∂∂∂+=Γ+-∂∂∂∂ ()()()i i j ju G Y D t x x x ωωωωωρωρω∂∂∂∂+=Γ+-+∂∂∂∂式中:k G ——由层流速度梯度而产生的湍流动能;k ωΓΓ和——K 和ω的扩散率;k ωΓΓ和——K 和ω的扩散率;k Y Y ω和—— K 和ω的发散项;D ω——正交发散项。
4、其他模型其他形式的湍流模型涡粘系数输运(SA)模型(3方程),雷诺应力模型(2阶矩模型)、雷诺应力模型方程(7方程模型)。
一阶矩模型在工程湍流计算中获得了很大的成功,但它们存在一些本质上的缺陷,即这些模型均是基于Boussinesq线性各向同性的假设,导致雷诺正应力在三个方向上的分量相等,这与很多实际的湍流流动矛盾。
因此,一阶矩模型对强逆压梯度下的流动、强分离流动、二次流、存在旋转和曲率效应的复杂湍流等预测精度较差,需要进行相应的修正。
二阶矩模型,即雷诺应力输运模型,通过求解雷诺应力各个分量的输运方程来封闭雷诺应力项,可以考虑湍流的各向异性及历史效应,理论上具有一阶矩所不能及的模拟复杂流动的能力。
我国周培源教授首次建立了雷诺应力的输运方程组,1951年Rotta在这个基础上发展了完整的雷诺应力模型。