电位分析原理与离子选择电极
电位分析法(离子选择性电极)

参比电极 Ag/AgCl参比电极 电极套管 0.1mol/LNH4Cl溶液 溶液 透气膜
气敏氨电极结构示意图
以Ca 2+离子选择性电极为例
液膜 二癸基磷酸钙的苯基磷
酸二辛酯溶液
内 参 比 溶 液
Ca2+
| | | |
CaR | | | | | | ++++ +
Ca2+ 待 测 溶 液
++++++
X-
X-
带电荷流动载体膜作用示意图 X- 非响应离子 R 载体 CaR 离子型 缔合物
气敏电极
pH玻璃电极 玻璃电极
电位分析法
RT aM,内 RT aM,外 膜电位的产生ln 若敏感膜仅对阳离子 n+有选 若敏感膜仅对阳离子M ln E道 ,内 = k 2 + E道 ,外 = k1 + nF 择性相应 a′ ,内 nF a′ ,外 M M
E道内 E扩内 E扩外 E道外 内参 比溶 液
a内 a内/
待测 溶液 膜
a外/ a外
晶体膜电极 以F-选择性电极为例
内参比电极 Ag-AgCl
塑料管 内参比溶液 NaF-NaCl
RT EF = k − ln a F − 掺EuF 的LaF 单晶片 F F 电极电极结构示意图 = k − 0.059 lg a F −
2 3 −
流动载体电极: 流动载体电极:
• 其关键部分 是液体敏感 膜,它由三 部分组成: 部分组成: 载体 有机溶剂 惰性微孔膜。 惰性微孔膜。
RT aM,外 E膜 = E道 ,外 − E道 ,内 = ln nF aM,内
E膜 = k 3 +
电化学分析方法之一电位分析法

)
(K2
0.0592
lg
aH 内 aH 内表面
)
K
0.0592
lg
a H
外
K
0.0592
pH
C、PH玻璃电极的电极电位:
E玻 E内参 E膜 E内参 K 0.0592 pH试
E玻 K玻 0.0592 pH试
D、电位法测定溶液pH的基本原理 电位法测定溶液的pH,是以玻璃电
极作批示电极,饱和甘汞电极作参比电 极,浸入试液中构成原电池: E = E甘 – E玻
电位滴定法中拟定终点的办法重 要有下列几个:
第一种办法:以测得的电动势和 对应的体积作图,得到E~V曲线, 由曲线上的拐点拟定滴定终点。
第二种办法:作一次微商曲线, 由曲线的最高点拟定终点。具体 由△E/△V对V作图,得到△E/△V 对V曲线,然后由曲线的最高点拟 定终点。
第三种办法:由二次微商求终点
其中,批示电极是看待测离子的 浓度变化或对产物的浓度变化有 响应的电极,参比电极是含有固 定电位值的电极。
在滴定过程中,随着滴定剂的加 入,待测离子或产物离子的浓度 要不停地变化,特别是在计量点 附近,待测离子或产物离子的浓 度要发生突变,这样就使得批示 电极的电位值也要随着滴定剂的 加入而发生突变。
惯用的有Ag/AgCl、甘汞电极 (Hg/Hg2Cl2电极)。
对于甘汞电极,其电极反映为: Hg2Cl2+2e=2 Hg+2Cl-
3. 第三类电极:它由金属,该金属 的难溶盐、与此难溶盐含有相似阴离 子的另一难溶盐和与此难溶盐含有相 似阳离子的电解质溶液所构成。表达 为M (MX,NX,N+)。如: Zn| ZnC2O4(s),CaC2O4(s),Ca2+ Ca2+ + ZnC2O4 +2e CaC2O4+ Zn
离子选择电极的原理

离子选择电极的原理
离子选择电极是一种能够选择性地检测特定离子的电极。
它基于离子的电势差,利用溶液中特定离子与电极之间的相互作用,实现对离子的测定。
离子选择电极通常由两个部分组成:离子选择膜和参比电极。
离子选择膜是一种选择性通透特定离子的薄膜,它可以通过渗透作用使特定离子与电极表面发生反应。
参比电极则是一个用于测量电位变化的电极。
在离子选择电极工作时,当特定离子与电极表面发生化学反应时,电子转移会导致电势差的变化。
该电势差可以通过与参比电极相比较来测量。
当特定离子的浓度增加时,其与电极表面的反应也增加,导致电势差的变化更明显,从而可以间接测量出离子的浓度。
离子选择电极的原理是基于离子与电极的相互作用。
这种相互作用可以是化学吸附、电分析或其他形式的反应。
离子选择膜的选择性通透性使得只有特定离子能够与电极表面发生反应,而其他离子则被屏蔽在选择膜的外部。
因此,离子选择电极可以实现对特定离子的选择性检测。
总体而言,离子选择电极的原理是通过选择性通透膜和参比电极来实现对特定离子的测定。
通过测量电势差的变化,可以间接检测出离子的浓度。
离子选择电极在环境监测、生物医学、食品安全等领域具有广泛的应用前景。
《现代仪器分析》_第二版-刘约权-课后习题答案

现代仪器分析习题解答20xx年春第12章电位分析及离子选择性电极分析法P2161.什么是电位分析法?什么是离子选择性电极分析法?答:利用电极电位和溶液中某种离子的活度或浓度之间的关系来测定待测物质活度或浓度的电化学分析法称为电位分析法。
以离子选择性电极做指示电极的电位分析,称为离子选择性电极分析法。
2.何谓电位分析中的指示电极和参比电极?金属基电极和膜电极有何区别?答:电化学中把电位随溶液中待测离子活度或浓度变化而变化,并能反映出待测离子活度或浓度的电极称为指示电极。
电极电位恒定,不受溶液组成或电流流动方向变化影响的电极称为参比电极。
金属基电极的敏感膜是由离子交换型的刚性基质玻璃熔融烧制而成的。
膜电极的敏感膜一般是由在水中溶解度很小,且能导电的金属难溶盐经加压或拉制而成的单晶、多晶或混晶活性膜。
4. 何谓TISAB溶液?它有哪些作用?答:在测定溶液中加入大量的、对测定离子不干扰的惰性电解质及适量的pH缓冲剂和一定的掩蔽剂,构成总离子强度调节缓冲液(TISAB)。
其作用有:恒定离子强度、控制溶液pH、消除干扰离子影响、稳定液接电位。
5. 25℃时,用pH=4.00的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.814V,那么在c(HAc)=1.00×10-3 mol?L-1的醋酸溶液中,此电池的电动势为多少?(KHAc=1.8×10-5,设aH+=[H+])解:∵E1=φ(+)--φ(-)=φ(+)-(K-0.0592pH1)E2=φ(+)--φ(-)=φ(+)-(K-0.0592pH2)∴E2- E1= E2-0.814=0.0592(pH2- pH1)∴E2=0.814+0.0592(-lg√Kc-4.00)=0.806(V)6.25℃时,用pH=5.21的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.209V,若用四种试液分别代替标准缓冲溶液,测得电动势分别为①0.064V;②0.329V;③0.510V;④0.677V,试求各试液的pH和H+活度解:(1)ΔE1=0.064-0.209=0.0592(pH1-pHs)∵pHs=5.21∴pH1=2.76 aH+=1.74×10-3 mol?L-1(2)ΔE2=0.329-0.209=0.0592(pH2-pHs)∵pHs=5.21∴pH2=7.24 aH+=5.75×10-8 mol?L-1(3)ΔE3=0.510-0.209=0.0592(pH3-pHs)∵pHs=5.21∴pH3=10.29 aH+=5.10×10-11 mol?L-1(4)ΔE4=0.677-0.209=0.0592(pH4-pHs)∵pHs=5.21∴pH4=13.12 aH+=7.60×10-14 mol?L-17.25℃时,电池:“镁离子电极|Mg2+(a=1.8×10-3mol?L-1)║饱和甘汞电极”的电动势为0.411V,用含Mg2+试液代替已知溶液,测得电动势为0.439V,试求试液中的pMg值。
电位分析及离子选择性电极分析

高选择性,需要在pH5~7之间使用,
pH高时:溶液中的OH-与氟化镧晶体膜中的F-交换; pH较低时:溶液中的F -生成HF或HF2 - 。
电位分析及离子选择性电极分析
2.玻璃膜电极
非晶体膜电极,玻璃膜的组成不同可 制成对不同阳离子响应的玻璃电极。
(敏感膜)
内参比电极的电位值固定,且内充溶液中离 子的活度也一定,则膜电极电位为:
IS E 内 参 膜 kR ZlF T n M
电位分析及离子选择性电极分析
离子选择电极的电位
导线
对MZ+产生响应时,
电极腔体 内参比电极 内参比溶液
内k2R ZFTln 'M M((内 内 )) 外k1R ZFTln 'M M((外 外))
电位分析及离子选择性电极分析
玻璃膜电位:
将浸泡后的玻璃电极放入待测溶液,水合硅胶层表面与溶液
中的H+活度不同,形成活度差,H+由活度大的一方向活度小的一 方迁移, 平衡时:
H+溶液==
H+ 硅胶
E内 = k1 + 0.059 lg( a2 / a2’ )
E外 = k2 + 0.059 lg(a1 / a1’ )
由于玻璃膜内、外表面的性质基本相同, 则: k1=k2 , a’1 = a’2
电极电位与溶液中给定离子活度的对数 呈线性关系。
电位分析及离子选择性电极分析
一、电极的基本构造
电极腔体――玻璃或高分子聚 合物材料做成
内参比电极――通常为 Ag/AgCl电极
内参比溶液――由氯化物及响 应离子的强电解质溶液组成
第八章 电位分析法与离子选择性电极.

RT a a jj ln nF a a
a A p P b B q Q
R:气体常数 8.314 J· mol-1· K-1; n:参加反应的电子数;
F:法拉第常数 96485C/mol T:绝对温度,单位为K。
j:标准电极电位。 aA:A组分的活度,a=gC,g:活度系数
02:35:05
(2)阳离子干扰
Be2+、Al3+、Fe3+、Th4+、Zr4+能与F-生成稳定的配合物
Al 6F ( AlF 6)
3
3
消除方法:加柠檬酸钠、EDTA、钛铁试剂、磺基水杨酸等
02:35:05
(二)气敏电极:CO2气敏电极
1. 指示电极
pH玻璃电极
2. 中介液
0.0 1 mol/L NaHCO3
02:35:05
3. 工作原理
CO2 + H2O K1 H2CO3
a(H 2C O3 ) K1 a(H 2C O3 ) K 1p(C O2 ) p(C O2 )
a(HCO K a(H 2CO3 ) 3 )a( H ) K2 a(H ) 2 a(H 2CO3 ) a(HCO 3)
一、pH玻璃电极
<一>、构造
{
玻璃膜:22% Na2O,6%CaO,72% SiO2 内参比电极:Ag/AgCl 电极 内参比溶液:一定pH值的缓冲液
(内充溶液)
02:35:05
<二> 电极电位
pH玻璃电极使用前必须在水中浸泡24小时以上,
使玻璃膜表面形成水化层
H+(水相)+ Na+Gl-(玻璃相) Na+(水相)+ H +Gl-(玻璃相)
第1节 离子选择电极及其分类汇总

φ =φOx/Red +
23:46:23
RT ln aOx nF aRed
Apparatus: reference electrode indicator electrode microammeter 实际测量时,都是通过测定由 indicating electrode 和 reference electrode 组成的Cell 的电动势(electromotive force)来完成的。 When measuring, the reference electrode does
将膜电极和参比电极一起插到被测溶液中,则电池结
构为: 外参比电极‖被测溶液( ai未知)∣ 内充溶液( ai一定)∣ 内参比电极
(敏感膜)
23:46:23
1.Glass membrane(Non-crystalline membranes)electrode
varying the composition of the glass membrane can cause the hydrated glass to acquire an increased affinity for various monovalent cations。
管之间装的是0.1mol/L二癸基磷酸
钙(液体离子交换剂)的苯基磷酸二辛 酯溶液。其极易扩散进入微孔膜,
但不溶于水,故不能进入试液溶液。
二癸基磷酸根可以在液膜-试液两相界面间传递钙离子,直至达到 平衡。由于Ca2+在水相(试液和内参比溶液)中的活度与有机相中的
活度差异,在两相之间产生相界电位。液膜两面发生的离子交换反应:
Glass Membrane Structure: SiO44- framework with charge balancing cations
电位分析及离子选择性电极分析法

第十二章
12.2 离子选择性电极 与膜电位
电位分析及离子选 12.3 离子选择性电极的
择性电极分析法
主要性能参数
12.4 离子选择性电极
的分析仪器
12.5 电位分析及离子
选择性电极分析
方法与应用
电位分析及离子
2021/3/6
选择性电极分析
法
1
12-1 概述
一、电位分析法 1.定义 利用电极的电极电位与待测试液中某种 离子的活度(或浓度)之间的关系,确定出 待测组分含量的电化学分析方法。
2021/3/6
电位分
析及离
子选择
性电极
分析法
10
2021/3/6
H+ + N电a位G分 I(固)
析及离
子选择
性电极
分析法
11
Na+ + HGI(固) (水合硅胶)
(4)玻璃膜电位的形成 玻璃电极在水溶液中浸泡,形成一个三
层结构,即中间的干玻璃层和两边的水化硅 胶层。
玻璃膜电位的产生是H+在玻璃内、外溶液和水化层 电位分
界间没有发生电子交换过程。表现为离子在 相界上的扩散。
2021/3/6
电位分
析及离
ห้องสมุดไป่ตู้
子选择
性电极
分析法
6
离子选择性电极(又称“膜电极”)组成: ★薄膜(敏感膜或传感膜)
—对特定离子有选择性响应。 ★内参比溶液
—含有与待测离子相同的离子 ★内参比电极
—Ag/AgCl电极。
2021/3/6
电位分
析及离
子选择
ln
α2 α 2
外
k2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不能进入晶格产生交换。当溶液中Na+浓度比H+浓度高1015 倍时,两者才产生相同的电位; (5) 酸差:测定溶液酸度太大(pH<1)时, 电位值偏离线 性关系,产生误差;
(6) “碱差”或“钠差” : pH>12产生误差,主要是Na+ 参与相界面上的交换所致;
(7)改变玻璃膜的组成,可制成对其它阳离子响应的玻璃 膜电极; (8) 优点:是不受溶液中氧化剂、还原剂、颜色及沉淀的 影响,不易中毒; (9)缺点:是电极内阻很高,电阻随温度变化。
SiO2基质中加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。 水浸泡后,表面的Na+ 与水中的 H+ 交换, 表面形成水合硅胶层 。 玻璃电极使用前,必须在水溶液 中浸泡。
17:15:02
玻璃膜电极
17:15:02
玻璃膜电位的形成
玻璃电极使用前,必须在水溶液中浸泡,生成三层结 构,即中间的干玻璃层和两边的水化硅胶层:
(4) 采用带有正电荷的有机液体离子交换剂,如邻菲罗啉与
二价铁所生成的带正电荷的配合物,可与阴离子ClO4-,NO3等生成缔合物,可制备对阴离子有选择性的电极;
(5) 中性载体(有机大分子)液膜电极,中空结构,仅与适当
离子配合,高选择性,如颉氨霉素(36个环的环状缩酚酞)
对钾离子有很高选择性,KK,Na=3.1×10-3;
定两电极间的电位差(电池电动势)所
进行的分析测定。 ΔE = E+ - E- + E液接电位
装置:参比电极、指示电极、电位
差计; 当测定时,参比电极的电极电位保 持不变,电池电动势随指示电极的电极 电位而变,而指示电极的电极电位随溶 液中待测离子活度而变。
17:15:02
电位分析的理论基础
理论基础:能斯特方程(电极电位与溶液中待测离子间 的定量关系)。 对于氧化还原体系: Ox + ne- = Red
水化硅胶层厚度:0.01~10 μm。在水化层,玻璃上的 Na+与溶液中H+发生离子交换而产生相界电位。 水化层表面可视作阳离子交换剂。溶液中H+经水化层扩 散至干玻璃层,干玻璃层的阳离子向外扩散以补偿溶出的离 子,离子的相对移动产生扩散电位。 两者之和构成膜电位。
17:15:02
玻璃膜电位
玻璃电极放入待测溶液, 25℃平衡后: H+溶液== H+硅胶
1976年IUPAC基于膜的特征,推荐将其分为以下几类: 原电极(primary electrodes) 晶体膜电极(crystalline membrane electrodes) 均相膜电极(homogeneous membrane electrodes) 非均相膜电极(heterogeneous membrane electrodes) 非晶体膜电极(crystalline membrane electrodes) 刚性基质电极(rigid matrix electrodes)
17:15:02
ISFET的特点:
全固态器件、体积小、响应快、易于微型化; 本身具有高阻抗转换和放大功能,集敏感元件与电子元 件于一体,简化了测试仪器的电路。 应用较广。
郑建斌等, 离子敏感场效应晶体管及其应用, 分析化学,
酶催化反应:
CO(NH2 )2 + H2O ──→ 2NH3 + CO2
葡萄糖氧化酶 尿酶
氨电极检测
葡萄糖 + O2 + H2O ────→ 葡萄糖酸 + H2 O2
氧电极检测
R-CHNH2 COO+O2 +H2 O ────→
氨基酸氧化酶
R-COCOO- +NH4+ +H2 O2
氨基酸通过以上反应后检测,或进一步氧化放出CO2 , 用气敏电极检测。
膜电极的关键:是一个称为选择膜的敏感元件。
敏感元件:单晶、混晶、液膜、功能膜及生物膜等构成。 膜电位:膜内外被测离子活度的不同而产生电位差。 将膜电极和参比电极一起插到被测溶液中,则电池结构为:
外参比电极‖被测溶液( ai未知)∣ 内充溶液( ai一定)∣ 内参比电极
内外参比电极的电位值固定,且内充溶液中离子的活度也一 定,则电池电动势为:
17:15:02
(敏感膜)
RT E E ln ai nF
1.晶体膜电极(氟电极)
结构:右图
敏感膜:(氟化镧单晶)
掺有EuF2 的LaF3单晶切片;
内参比电极:Ag-AgCl电极(管内)。
内参比溶液:0.1mol/L的NaCl和0.10.01mol/L的NaF混 合溶液(F-用来控制膜内表面的电位,Cl-用以固定内参比 电极的电位)。
具有较高的选择性,需要在pH5~7之间使用,pH高时,
溶液中的OH-与氟化镧晶体膜中的F-交换,pH较低时,溶液 中的F -生成HF或HF2 - 。
17:15:02
2.玻璃膜(非晶体膜)电极
非晶体膜电极,玻璃膜的组成不同可 制成对不同阳离子响应的玻璃电极。
H+响应的玻璃膜电极:敏感膜厚度 约为0.05mm。
17:15:02
3.活动载体电极(液膜电极)
钙电极:内参比溶液为含 Ca2+ 水溶液。内外管之间装的是
0.1mol/L二癸基磷酸钙(液体离子交
换剂)的苯基磷酸二辛酯溶液。其极 易扩散进入微孔膜,但不溶于水,
故不能进入试液溶液。
二癸基磷酸根可以在液膜-试液两相界面间传递钙离子,直至达到 平衡。由于Ca2+在水相(试液和内参比溶液)中的活度与有机相中的
二、离子选择性电极的 种类、原理和结构
type, principle and structure of ion selective electrode
三、离子选择电极的特 性
specific property of ion selective electrode
17:15:02
一、电位分析原理
principle of potentiometry analysis 电位分析是通过在零电流条件下测极
(tissue electrodes )
特性:以动植物组织为敏感膜;
优点:
a. 来源丰富,许多组织中含有大量的酶; b. 性质稳定,组织细胞中的酶处于天然状态,可发挥较 佳功效; c. 专属性强; d. 寿命较长; e. 制作简便、经济,生物组织具有一定的机械性能。 制作关键:生物组织膜的固定,通常采用的方法有物理 吸附、共价附着、交联、包埋等。
EE
O Ox/Red
aOx RT ln nF aRe d
对于金属电极(还原态为金属,活度定为1):
EE
17:15:02
O M n /M
RT ln aM n nF
二、离子选择性电极的种类、原理与结构
type , principle and structure of ion selective electrode 离子选择性电极(又称膜电极)。
17:15:02
原理:
LaF3的晶格中有空穴,在晶格上的 F-可以移入晶格邻近的空穴而导电。对 于一定的晶体膜,离子的大小、形状和 电荷决定其是否能够进入晶体膜内,故 膜电极一般都具有较高的离子选择性。 当氟电极插入到F- 溶液中时,F- 在 晶体膜表面进行交换。25℃时: E膜 = K - 0.059 lgaF- = K + 0.059 pF
17:15:02
离子敏感场效应晶体管原理
将MOSFET的金属栅极用离子选择性电极的敏感膜代替, 即成为对相应离子有响应的ISFET。 当它与试液接触并与参比电极组成测量体系时,由于在 膜与试液的界面处产生膜电位而叠加在栅压上,将引起
ISFET漏电流(Id)相应改变, Id 与响应离子活度之间具有
类似于能斯特公式的关系。 应用时,可保持Vd 与Vg 恒定,测量 Id 与待测离子活度 之间的关系( Id 以μA为单位)。也可保持Vd 与Id 恒定,测量 Vg 随待测离子活度之间的关系(也具有类似于能斯特公式的 关系)。
E膜 = E外 - E内 = 0.059 lg( a1 / a2)
如果: a1= a2 ,则理论上E膜=0,但实际上E膜≠0
产生的原因: 玻璃膜内、外表面含钠量、表面张力以及 机械 和化学损伤的细微差异所引起的。长时间浸泡后(24hr) 恒定(1~30mV);
17:15:02
讨论:
( 4) 高选择性 :膜电位的产生不是电子的得失。其它离子
活度差异,在两相之间产生相界电位。液膜两面发生的离子交换反应:
[(RO)2PO]2 - Ca2+ (有机相) = 2 [(RO)2PO]2 -(有机相) + Ca2+ (水相) 钙电极适宜的pH范围是5~11,可测出10-5 mol/L的Ca2+ 。
17:15:02
活动载体电极(液膜电极)的讨论
(1) 流动载体膜电极(液膜电极)的机理与玻璃膜电极相似;
第四章 电位分析法
potentiometry and conductometry
一、电位分析原理
principle of potentiometry analysis
第一节 电位分析原理与离子 选择电极
principle of potentio-metry analysis and ion selective electrode
流动载体电极(electrodes with a mobile carrier)
敏化电极(sensitized electrodes) 气敏电极(gas sensing electrodes)
酶电极(enzyme electrodes)
17:15:02
离子选择性电极的原理与结构
离子选择性电极又称膜电极。 特点:仅对溶液中特定离子有选择性响应。