数字集成电路的分类

合集下载

《数字集成电路》课件

《数字集成电路》课件

1 滤波
去除噪声、增强信号的关键技术。
2 变换
将信号在时域与频域之间转换的方法。
3 压缩
减少数据量,方便存储和传输。
数字信号处理中的滤波器设计
FIR滤波器
时域响应仅有有限个点,稳定性好。
IIR滤波器
时域响应呈指数衰减,延时较小。
模拟/数字混合信号集成电路
1
基础理论
混合信号电路设计所需的模拟电路与数字电路基础知识。
时序逻辑电路
触发器与锁存器
用于存储时钟信号冲突消除和数 据暂存。
计数器
移位寄存器
用于计算和记录触发事件的数量。
用于数据移位操作,实现数据的 串行传输。
数字信号处理技术
数字信号处理(DSP)是用数字计算机或数字信号处理器对原始信号进行处理、分析和存储的一 种技术。它在通信、音频处理和图像处理等领域具有广泛应用。
《数字集成电路》PPT课 件
数字集成电路PPT课件大纲: 1. 什么是数字集成电路 2. 数字集成电路的分类和结构
数字电路设计的流程
1
需求分析
确定数字电路的功能与性能要求,并定义输入输出及约束条件。
2
电路设计
利用逻辑门、触发器等基本组件进行数字电路设计。
3
电路仿真
使用仿真软件验证数字电路中的电气特性和功能。
2 低功耗设计
3 增强型通信
减少功耗,延长电池寿命。
提升通信性能和速度。
2
模拟数字转换
模拟和数字信号之间的转换方法和技术。
3
功耗与噪声
如何平衡功耗Βιβλιοθήκη 噪声性能。电路模拟与仿真SPICE仿真
使用电路仿真软件模拟电路 的工作状态。
参数提取与建模

从集成度来说,数字集成电路的分类(一)

从集成度来说,数字集成电路的分类(一)

从集成度来说,数字集成电路的分类(一)
数字集成电路的分类
按功能分类
•组合逻辑电路:由门电路组成,根据输入信号的组合产生输出信号。

•时序逻辑电路:根据时钟信号的变化产生输出信号,具有状态和记忆功能。

•存储器:用于存储和读取数据的电路,例如RAM和ROM。

•控制电路:用于控制其他电路或系统的运行的电路。

按规模分类
•大规模集成电路(LSI):集成度较高的电路,通常包含数千个逻辑门。

•中等规模集成电路(MSI):集成度适中的电路,包含数十到数百个逻辑门。

•小规模集成电路(SSI):集成度较低的电路,通常只包含几个逻辑门。

按工艺分类
•PMOS:使用p型MOSFET器件制造的电路,适用于工艺落后。

•NMOS:使用n型MOSFET器件制造的电路,速度较快但功耗较高。

•CMOS:使用p型MOSFET和n型MOSFET器件制造的电路,兼具速度和功耗优势。

按应用领域分类
•通信集成电路:用于无线通信和有线通信等领域,如手机芯片和光通信芯片。

•测量与控制集成电路:用于仪器仪表、自动化控制等领域。

•计算机集成电路:包括中央处理器(CPU)、图形处理器(GPU)等用于计算机内部的电路。

•模拟与混合信号集成电路:用于音频、视频、模拟信号处理等领域。

按硬件级别分类
•数字电路:采用离散的数值进行处理和传输的电路。

•模拟电路:采用连续的信号进行处理和传输的电路。

•模拟-数字混合电路:同时包含模拟和数字电路的混合电路。

以上是数字集成电路的一些常见分类,不同的分类方式可以帮助
我们更好地理解和应用数字集成电路。

集成逻辑门1数字集成电路的分类

集成逻辑门1数字集成电路的分类
UP1=1V,Uc=0.3V; 当A、B、C全部为高电平(3.6V)时, UP1=4.3V , Uc=3.6V 。可见,仅当所有输入都为高时,输 出才为高,只要有一个输入为低,输出便是低,所以起到 了与门的作用。
第3章 集 成 逻 辑 门
e1 N e2 N e3 N P N P型衬底 (a ) UCC R1 b e1 e2 e3 A BC c A e1 B e2 C e3 (b ) R1 V1 V2 V3 b P1 V4 c UCC b c
图 3-2 多射极晶体管的结构及其等效电路
第3章 集 成 逻 辑 门
② 中间级。由V2、R2、R3组成,在V2的集电极与
发射极分别可以得到两个相位相反的电压,以满足输
出级的需要。 ③ 输出级。由 V3 、 V4 、 V5和R4、R5 组成,这种电 路形式称推拉式电路,它不仅输出阻抗低,带负载能 力强, 而且可以提高工作速度。
超大规模集成电路(VLSI-Very Large Scale Integration),
每片组件内含100 000个元件(或1000个以上等效门)。
第3章 集 成 逻 辑 门
目前常用的逻辑门和触发器属于SSI, 常用的译码器、 数据选择器、 加法器、 计数器、 移位寄存器等组件属 于MSI。 常见的LSI、 VLSI有只读存储器、 随机存取存 储器、 微处理器、 单片微处理机、 位片式微处理器、
第3章 集 成 逻 辑 门
1. 输入全部为高电位(3.6 V) 当输入端全部为高电位3.6V时,由于V1的基极电压 Ub1 最多不能超过 2.1V(Ub1=Ubc1+Ube2+Ube5) ,所以 V1 所有 的发射结反偏;这时 V1 的集电结正偏, V1 管的基极电流 Ib1流向集电极并注入V2的基极,

数字集成电路的特点与分类

数字集成电路的特点与分类

CMOS 传输门
39
A 和 A 控制传输门的通断: A=+UDD A=0V时,传输门接通 A=0V A=+UDD时,传输门断开
左下图 uI 由0V变为UDD时,CL充电 右下图 uI 由UDD变为0V时,CL放电
40
41
UNH=UOH(min)- UIH(min)
=2.4-2.0V=0.4V
UOH
UIH
P106
躁声容限 门电路之间相互连接时,前一级24 门的输出就是后一级门的输入,在前一级输 出为最坏的情况下(输出低电位为UOL(max)), 后一级门的输入电压允许的变化幅度叫做噪 声容限。
UNL=UIL(max)- UOL (max)
6
同一个电路,按两种不同的约定去分析, 会得出不同的结论。
在今后讨论电路时,必须明确采用哪种约定。 一般采用正逻辑约定。
uo
高电位 低电位
正 逻 辑 约 定
0
1 1
0
负 逻 辑 约 定
7
4.2 晶体管-晶体管逻辑电路(TTL电路)
4.2.1 最简单的与门、非门和与非门电路 1. 二极管与门
10
由真值表可知,上面电路是一个非门
电路的输入与输出电位
输入A 0.2V 5V
输出F 5V 0.2V
电路的真值表
输入A 0 1
输出F 1 0

3 晶




11
+
12
4.2.1 TTL与非门电路
输入
输A 入
与 0.2V
输 0.2V
出 电
5V
位 5V
B 0.2V 5V 0.2V 5V
输出 F 5V 5V 5V

电路中的数字集成电路设计与分析

电路中的数字集成电路设计与分析

电路中的数字集成电路设计与分析数字集成电路(Digital Integrated Circuit,简称DIC)是现代电子电路中的重要组成部分。

它们基于数字信号处理和逻辑运算,被广泛应用于计算机、通信、控制系统等领域。

本文将分析数字集成电路的设计原理和技术,并探讨其在电路中的应用。

一、数字集成电路的基本原理1.1 数字电路和模拟电路的区别数字电路是一种使用二进制数表示信息的电路,通过处理离散的数字信号进行逻辑运算;而模拟电路则是通过处理连续的模拟信号进行运算。

数字电路具有精确性高、噪声干扰小等优点,适合用于逻辑运算和信号处理。

1.2 数字集成电路的分类数字集成电路根据功能和结构可以分为多种类型,包括时序电路、组合电路和存储电路等。

其中时序电路用于时钟信号控制的功能电路,组合电路用于逻辑运算的功能电路,存储电路用于存储信息的功能电路。

二、数字集成电路的设计过程2.1 设计规划在进行数字集成电路设计之前,需要明确设计目标,包括功能需求、性能指标和设计约束等。

同时,还需对设计流程和设计工具进行规划,确保设计过程的有效性和可行性。

2.2 逻辑设计逻辑设计是数字集成电路设计的核心环节,通过逻辑门、触发器等基本模块的组合和连接,实现设计目标的功能和逻辑运算。

逻辑设计需要使用专业的设计语言和工具,如VHDL、Verilog等。

2.3 电路图设计电路图设计是将逻辑设计转化为具体的电路图的过程,包括将逻辑门、触发器等模块转化为相应的元件和连线。

在电路图设计中,需要考虑电路的布局和连接方式,以满足电路的性能指标和工艺要求。

2.4 仿真和验证仿真和验证是数字集成电路设计的重要环节,通过软件仿真和硬件验证,验证设计的正确性和稳定性。

仿真和验证过程需要使用仿真工具和测试设备,确保设计结果符合预期。

2.5 物理设计和布局物理设计和布局是将电路图设计转化为真实芯片的过程。

在物理设计中,需要考虑芯片的几何结构、层次布局和连线规划等。

数字集成电路的分类

数字集成电路的分类

数字集成电路的分类⼀、数字集成电路的分类数字集成电路有多种分类⽅法,以下是⼏种常⽤的分类⽅法。

1.按结构⼯艺分按结构⼯艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四⼤类。

如图0-1所⽰。

世界上⽣产最多、使⽤最多的为半导体集成电路。

半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三⼤类。

ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能⼒强,但功耗较⼤、集成度较低。

双极型集成电路主要有 TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。

其中TTL电路的性能价格⽐最佳,故应⽤最⼴泛。

ECL,即发射极耦合逻辑电路,也称电流开关型逻辑电路。

它是利⽤运放原理通过晶体管射极耦合实现的门电路。

在所有数字电路中,它⼯作速度最⾼,其平均延迟时间tpd可⼩⾄1ns。

这种门电路输出阻抗低,负载能⼒强。

它的主要缺点是抗⼲扰能⼒差,电路功耗⼤。

MOS电路为单极型集成电路,⼜称为MOS集成电路,它采⽤⾦属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造⽅便、集成度⾼、功耗低,但速度较慢。

MOS集成电路⼜分为PMOS(P-channel Metal Oxide Semiconductor,P沟道⾦属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道⾦属氧化物半导体)和CMOS(Complement Metal Oxide Semiconductor,复合互补⾦属氧化物半导体)等类型。

MOS电路中应⽤最⼴泛的为CMOS电路,CMOS数字电路中,应⽤最⼴泛的为4000、4500系列,它不但适⽤于通⽤逻辑电路的设计,⽽且综合性能也很好,它与TTL电路⼀起成为数字集成电路中两⼤主流产品。

数字集成电路的分类与特点

数字集成电路的分类与特点

数字集成电路的分类与特点数字集成电路有双极型集成电路(如TTL、ECL)和单极型集成电路(如CMOS)两大类,每类中又包含有不同的系列品种一、TTL数字集成电路这类集成电路内部输入级和输出级都是晶体管结构,属于双极型数字集成电路。

其主要系列有:1.74 –系列这是早期的产品,现仍在使用,但正逐渐被淘汰。

2.74H –系列这是74 –系列的改进型,属于高速TTL产品。

其“与非门”的平均传输时间达10ns左右,但电路的静态功耗较大,目前该系列产品使用越来越少,逐渐被淘汰。

3.74S –系列这是TTL的高速型肖特基系列。

在该系列中,采用了抗饱和肖特基二极管,速度较高,但品种较少。

4.74LS –系列这是当前TTL类型中的主要产品系列。

品种和生产厂家都非常多。

性能价格比比较高,目前在中小规模电路中应用非常普遍。

5.74ALS –系列这是“先进的低功耗肖特基”系列。

属于74LS –系列的后继产品,速度(典型值为4ns)、功耗(典型值为1mW)等方面都有较大的改进,但价格比较高。

6.74AS –系列这是74S –系列的后继产品,尤其速度(典型值为1.5ns)有显著的提高,又称“先进超高速肖特基”系列。

二、CMOS集成电路CMOS数字集成电路是利用NMOS管和PMOS管巧妙组合成的电路,属于一种微功耗的数字集成电路。

主要系列有:1.标准型4000B/4500B系列该系列是以美国RCA公司的CD4000B系列和CD4500B系列制定的,与美国Motorola公司的MC14000B 系列和MC14500B系列产品完全兼容。

该系列产品的最大特点是工作电源电压范围宽(3~18V)、功耗最小、速度较低、品种多、价格低廉,是目前CMOS集成电路的主要应用产品。

2.74HC –系列54/74HC –系列是高速CMOS标准逻辑电路系列,具有与74LS –系列同等的工作度和CMOS集成电路固有的低功耗及电源电压范围宽等特点。

74HCxxx是74LSxxx同序号的翻版,型号最后几位数字相同,表示电路的逻辑功能、管脚排列完全兼容,为用74HC替代74LS提供了方便。

数字集成电路及实际应用

数字集成电路及实际应用
低电平“0” 接近电源VSS 。 (6)扇出能力
在低频工作时,一个输出端可驱动50个以上CMOS
器件。 (7)抗辐射能力
CMOS管是多数载流子受控导电器件,射线辐射对 多数载流子浓度影响不大。
(8)CMOS集成电路的制造 CMOS集成电路的制造工艺比TTL集成电路的制造 工艺简单, 占用硅片面积小,适合于制造大规模和 超大规模集成电路。
2021年2月24日星期三
数字集成电路及实际应用
7
9.1.3 使用数字集成电路的注意事项
1. 不允许在超过极限参数的条件下工作。电路在超 过极限参数的条件下工作,就可能工作不正常,且 容易引起损坏。 2. 电源的电压的极性千万不能接反。
3. CMOS电路要求输入信号幅度不能超过VDD~VSS。
4. 对多余输入端的处理。对CMOS电路,多余的输入 端不能悬空;对TTL电路,对多余的输入端允许悬空。
B C
D
≥1
Y4
1
Y5
&≥1 Y6
2021年2月24日星期三
数字集成电路及实际应用
11
7)异或门
Y7 A B AB AB
A B
=1
Y7
(2)反相器与缓冲器
VCC 6A 6Y 5A 5Y 4A 4Y 14 13 12 11 10 9 8
VDD 6A 6Y 5A 5Y 4A 4Y 14 13 12 11 10 9 8
9.1 数字集成电路的分类与特性
9.1.1 数字集成电路的分类
数字集成电路的种类繁多,在实际应用中,广 泛使用的是(如TTL、HTL、DTL、ECL)等和 (如CMOS、PMOS、NMOS)等集成电路。
CMOS和TTL集成电路是生产数量最多、应用 最广泛、通用性最强的两大主流数字集成电路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相器 反相器
• 电路组成 • 传输特性
I区:Ui≥0且<UGS(th)N.T1管截止,T2管导通. 输出电压U0=UOH=UDD Ⅱ区: Ui ≥ UG S(th)N且<UDD/2,T1管和T2管 皆导通, : <U T , IDD随UI的增加而增大,UO随UI的增加而减小. Ⅲ区:UI在UDD/2附近.T1和T2管皆导通,输出 电压UO随UI增加而急剧地减小.当UI=UDD/2 , 电源电流IDD到达最大值. Ⅳ区:Ui>UDD/2且≤ UDD -|UGS(th)P | T1和T2管皆导通, IDD随着U1增加而减小;UO随UI增加而继续减小. Ⅴ区: UI>UDD -|UGS(th)P |且≤ UDD ,T2管截止, T1管导通. IDD=0 UO=UOL=0V,
重点
• 重点掌握各种逻辑系列在速度、功能和 干扰能力等方面的主要特点并掌握各种 逻辑系列和主要参数的物理意义和数值 的量级。 • 作业: P122 4 • P122 6
• • • • • • 提高工作速度 二极管DK是肖特基势垒 二极管.这种二极管的正 向压降仅0.3V.开关速度 比一般PN结二极管快一 万倍.在图中,由于DK的引入,可使三极管的关闭时 间减少;DK的引入却不会使三极管的开启时间变坏, 这是因为,当三极管由截止区转向放大区,直到进 入饱和区之前,其集电结为反向偏置,DK截止,DK上 无电流流过,不会影响三极管的基极电流.
TTL门的主要参数 门的主要参数
• 空载功耗 • 传输特性
– 噪声容限: – UNH=UOH(MIN)-UIH(MIN) – UNL=UIH(MAX)-UOH(MAX)
• 传输延时tpd和速度功耗积 传输延时 • 扇出系数NO 扇出系数
– NO=输出/输入
肖特基TTL电路 电路STTL 肖特基 电路
工作原理:
A=0.2V B=0.2V T1基极U=0.9V<1.4V T2、T4截止 电流从 UC-R2-T3基极(基极电流很小)T3基极U=UC=5V T3与D导通 F=5-1.4=3.6V A=0.2V B=3.6V T1基极U=0.9V F=3.6V A=3.6V B=0.2V F=3.6V A=3.6V B=3.6V T1基极U=3.6+0.7=4.3V>2.1V T2、T4导 通,使得T1基极U=2.1V T2集电极U=0.7+0.3=1V,T3基极U=1V <1.4V T3 与D截止 F=0.3V A 0 0 1 1 B 0 1 0 1 F 1 1 1 0
CMOS逻辑门
T1、T2管并联;T3、T4管 串联 A=0 B=0 F=1 A=0 B=1 F=0 A=1 B=0 F=0 A=1 B=1 F=0 A=0 B=0 C=0 A=0 B=0 C=1 F=1 F=0
• CMOS与非门
– 电路组成 – 工作原理
• CMOS或非门 CMOS
– 电路组成 – 工作原理
d: G=0 A=0 T1=1 T2=0 F=0 A=1 T1=0 T2=1 F=1 G=1 T1=0 T2=0 高阻态
不同逻辑系列的配合问题
• (一)逻辑电平的配合
– CMOS可以直接驱动TTL电路 – TTL通过上拉电阻驱动CMOS电路
• (二)驱动能力的配合
本章小结
• 1.教学内容 • 分立元件三极管非门; • 常用集成门电路的工作原理、参数及使用方 法。 • 2.教学要求 • 了解三极管非门的电路结构与工作原理; • 了解与非门和三态门的基本工作原理; • 掌握常用TTL集成门(例如与非门、三态门) 的主要特性参数与使用方法; • 了解CMOS电路系列主要特性参数
二极管与门
三极管非门
• Ui=0.2V 三极管截止,Uo=Ucc=5V • Ui=5V 三极管饱和,Uo=Uces=0.2V
晶体管与非门
• 利用二极管与门和一个非门可构成一个 与非门电路
TTL与非门
• 组成:(三部分)
输入级: T1 (多发射极晶体管)R1 与功能 中间极:T2和R2,R3 非功能 输出级:T3,D,T4和R4
• CMOS与或非门
– 电路组成 – 工作原理
CMOS三态门
• 工作原理
a: G'=0 高阻态 G'=1 A=1 F=0 A=0 F=1 b: G'=0 T1=0 T3=0 高阻态 G'=1 T1=1 A=1 T2=0 T3=1 F=1 A=0 T2=1 T3=0 F=0 c: G=0 T3=1 A=0 F=0 A=1 F=1 G=1 T3=0 T1=0 高阻态
• 电路图 • 符号 • 几个OC门的输出可并联在一起完成一定 OC 的逻辑功能。
2三态 三态TTL门 三态 门
• 工作原理 • 符号 • 例子
三态:高电平、低电平、高阻态 (输出与电源U断开、与地也断开) 当使能端G与门的交界处有非号说明 低有效:当G=0时,门执行其功能 (如本例中执行与非门的功能)当 G=1时,输出呈现高阻态; G A B F 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 X X 高阻态 当G与门的交界处无非号,则说明高 有效:当G=1时,门执行其功能当 G=0时,输出为高阻态。
第四章 门电路
• 数字集成电路的分类
– 按内部有源器件的不同:
• 双极型晶体管集成电路 • 绝缘栅场效应管集成电路或称金属一氧化物半导体MOS集成电路。
– 数字集成电路按其集成度可分为:
• 小规模集成(SSI):内含10~100个元件(10~20个等效门) • 中规模集成(MSI):内含100~1000个元件(20~100个等 效门) • 大规模集成(LSI)和超大规模集成等(VLSI)LSI器件 内含1000~100000个元件(100~1000个等效门);器件内 含100000个元件(1000个等效门)以上时,称为VLSI。
可以线或的TTL门 门 可以线或的
• • • • • • • 通常两个TTL门的输出端 是不可并联使用。也不可 短接到地或者电源上 但是有两种TTL门可将它 们的输出端用连线并联在 一起,构成或(或者与)逻辑, 或 与 即所谓的线或(或者线与) 线或( 线与) 线或 线与
1集电极开路门 集电极开路门OC 集电极开路门
CMOS传输门 传输门
• • • • 电路组成 符号 工作原理 外部工作情况
– – – – – MOS管的漏极和源极是 可以随电路的工作情况 相互交换的, 且MOS管的 源和漏是对称的
ABC + ABC + ABC = AC + ABC = C ( A + B) = C * AB = C + AB
相关文档
最新文档