相似三角形复习教案

合集下载

三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。

二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。

(2)学生掌握相似三角形判定定理1,并了解它的证明。

(3)使学生初步掌握相似三角形的判定定理1的应用。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。

三、教学重难点:重点:掌握相似三角形判定定理1及其应用。

难点:定理1的证明方法。

四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。

(2)、师生共同总结:两角对应相等的两个三角形相似。

2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。

(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。

(完整版)相似三角形专题复习教案

(完整版)相似三角形专题复习教案

龙文教育学科老师个性化教案教师学生姓名梁瀚文上课日期学科数学年级九年级教材版本类型知识讲解□:考题讲解□:本人课时统计第()课时共()课时学案主题相似三角形课时数量(全程或具体时间)第()课时授课时段教学目标教学内容相似三角形专题复习个性化学习问题解决查漏补缺,巩固提升教学重点、难点用相似三角形的判定与性质解决简单的几何问题和实际问题。

考点分析理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用。

教学过程学生活动教师活动知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。

对应边的比叫做相似比。

三条平行线截两条直线所得的对应线段的比相等。

2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL”)。

相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。

3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。

4.相似三角形的应用:求物体的长或宽或高;求有关面积等。

(三)考点精讲 考点一:平行线分线段成比例 例1、(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.5例2(2012•福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)练习:1.(2011湖南怀化,6,3)如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为( ) A .9 B .6 C .3 D .4ECDB A2.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A .ED DF EA AB = B . DE EF BC FB = C .BC BF DE BE = D . BF BCBE AE=a b c A B C D EF m n3.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .512- B .512+ C .51- D .51+考点二:相似三角形的判定 例3、(2011湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) A.0种 B. 1种 C. 2种 D. 3种例5(2012•徐州)如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC= 14BC .图中相似三角形共有( ) A .1对 B .2对C .3对D .4对例6(2012•资阳)(1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果(不必写计算过程);(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).练习: 1.(2011江苏无锡,7,3分)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是 ( ) A .①和②相似 B .①和③相似GEADB CP FC .①和④相似D .②和④相似2.(2011新疆乌鲁木齐,10,4分)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为 A .12B .23C .34D .13. (2012•攀枝花)如图,△ABC ≌△ADE 且∠ABC=∠ADE ,∠ACB=∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC=DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有( ) A .1个 B .2个 C .3个 D .4个4. (2012•义乌市)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.A B CDO① ②③④(第7题)考点三:相似三角形的性质 例7、(2010山东烟台)如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( ) A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD 例8、(2011浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33(C )34(D )36例9(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习1.(2011青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为 A .9 B .12 C .16 D .182.(2011四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF ABCDE G FOABDC(例5) A B C DE3.(2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积= . 4.(2011辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.Q PECDBA考点四 位似例10(2012•玉林)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=32,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( ) A .16 B .13 C .12 D . 23考点四:相似三角形的应用 例6、(2010安徽芜湖)如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD,AB ∥CD,AB=2m,CD=6m,点P 到CD 的距离是2.7m,则_______m .例7、(2011青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm .练习:1.(2011湖北黄石,13,3分)有甲乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4).将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为。

相似三角形的专题复习课

相似三角形的专题复习课

αα6600°°
EEE
6α6α00°°
CCC
1.矩形ABCD中,把DA沿AF对折,使D与
CB边上的点E重合,若A善D于=1在0复, A杂B图=形8,
则EF=___5___
中寻找基本型
D
A
F
C
EE
B
2.已知:D为BC上一点, ∠B= ∠C= ∠EDF=60°, BE=6 , CD=3 , CF=4 ,
长线于点E.
求证:OC2=OA·OE.
旋转型
例3. D为△ABC内的一点,E为△ABC外的一点,且∠1=
∠2,∠3=∠4.
求证:(1)△ABD∽△CBE;
(2)△ABC∽△DBE.
证明:(1)∵∠1=∠2,∠3=∠4(已知), ∴△ABD∽△CBE.
双垂直型 例4:在Rt△ABC中,∠ACB=90°,CD⊥AB于 点D.
A
D E
解:∵∠AED=∠B, ∠A=∠A
∴△AED∽ △ABC(两角对 应相等,两三角形相似)
B
C
∴ AD DE
AC BC
∴ AD·BC=AC·DE
练1.如图所示,当满足下列条件之一时,都可判 定△ADC∽△ACB.

∠ACD=∠B


∠ACB=∠ADC

D

AD AC
AC 或AC2 AB
AD• AB。
学习目标
1、进一步熟练相似三角形的性质与判定。 2、归纳总结相似三角形的几种基本图形, 能利用这些基本图形进行相关的计算与证明。
回顾与反思
判定两个三角形相似的方法:
1.定义:三角对应相等,三边对应成比例的两个三 角形相似。 2.平行三角形一边的直线和其他两边相交(或两边的延 长线),所构成的三角形与原三角形相似. 3.三边对应成比例的两个三角形相似。 4.两边对应成比例且夹角相等的两个三角形相似。

九年级数学《相似三角形判定-复习课》教案

九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。

帮助学生回忆相似三角形的几种判定方法。

以简单的选择、判断题复习相关知识点。

目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

学生熟悉学习目标学生按照学习目标复习知识点。

帮助学生梳理知识要点。

学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。

以相似三角形的基本图形为主线回顾知识点。

从形的角度帮助学生更好地理解知识点。

议探交流尝试练习:学生完成尝试练习1、2两题。

议探交流:组内相互交流,先对议,再互议。

教师适时巡堂,深入小组,进行个别指导。

学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。

)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。

各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。

沪科版数学九年级上册第22章《相似三角形》复习教学设计

沪科版数学九年级上册第22章《相似三角形》复习教学设计

沪科版数学九年级上册第22章《相似三角形》复习教学设计一. 教材分析《相似三角形》是沪科版数学九年级上册第22章的内容,本章主要让学生掌握相似三角形的性质和判定方法,以及相似三角形在实际问题中的应用。

本章内容是学生以前学过三角形知识的进一步拓展,也是为后续学习相似多边形、相似圆等知识打下基础。

二. 学情分析九年级的学生已经掌握了三角形的基本知识,如三角形的性质、分类等。

同时,他们具备一定的逻辑思维能力和问题解决能力。

但是,对于相似三角形的性质和判定方法,学生可能存在理解上的困难,因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,深入理解相似三角形的性质和判定方法。

三. 教学目标1.知识与技能目标:使学生掌握相似三角形的性质和判定方法,能够运用相似三角形的知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.教学重点:相似三角形的性质和判定方法。

2.教学难点:相似三角形的性质和判定方法在实际问题中的应用。

五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考等活动,自己发现相似三角形的性质和判定方法。

2.合作学习法:学生分组讨论,共同解决问题,培养学生的合作能力和沟通能力。

3.案例教学法:教师通过列举实际问题,引导学生运用相似三角形的知识解决问题。

六. 教学准备1.教学课件:制作课件,展示相似三角形的性质和判定方法。

2.实际问题:准备一些实际问题,用于引导学生运用相似三角形的知识解决问题。

3.学具:准备一些三角形模型,供学生观察和操作。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本知识,如三角形的性质、分类等。

然后,教师提出本节课的主题——相似三角形,激发学生的学习兴趣。

2.呈现(10分钟)教师利用课件展示相似三角形的性质和判定方法,引导学生观察、思考,自己发现相似三角形的性质和判定方法。

相似三角形的性质数学教案

相似三角形的性质数学教案

相似三角形的性质数学教案
标题:相似三角形的性质
一、教学目标:
1. 理解并掌握相似三角形的定义。

2. 掌握相似三角形的基本性质,并能够应用这些性质解决实际问题。

3. 培养学生的空间观念和逻辑推理能力。

二、教学重点与难点:
1. 教学重点:理解相似三角形的定义和性质。

2. 教学难点:运用相似三角形的性质解决实际问题。

三、教学过程:
(一)引入新课
通过一些生活中的实例引出相似的概念,激发学生的学习兴趣。

(二)新课讲解
1. 定义:如果两个三角形的对应角相等,那么这两个三角形就叫做相似三角形。

2. 性质:相似三角形的对应边成比例,对应高的比等于对应边的比,对应中线的比等于对应边的比,对应角平分线的比也等于对应边的比。

(三)例题解析
1. 选择适当的题目进行示范,让学生理解和掌握如何运用相似三角形的性质解决问题。

2. 让学生自己尝试解答一些题目,教师在一旁指导。

(四)课堂练习
设计一些练习题,让学生巩固所学的知识。

(五)小结与作业
1. 小结本节课的主要内容和学习的重点。

2. 分配一些课后作业,让学生在课后继续复习和巩固所学知识。

四、教学反思
在教学结束后,对整个教学过程进行反思,总结成功之处和需要改进的地方。

相似三角形的教案

相似三角形的教案

相似三角形的教案【篇一:《相似三角形》教学设计】《相似三角形》教学设计教学设计说明一、教材分析本节“相似三角形”是北师大版实验教材八年级下册第四章第五节的内容,在此之前学生已经学习了相似多边形,知道了相似多边形的本质特征,为学习本节内容做了铺垫。

本节课旨在由一般到特殊引出相似三角形的概念,并应用这一概念解决一些实际问题,为下一步学习相似三角形的判定定理做感性和理性的准备,因此本节课具有承前启后的联系和纽带作用。

同时本节内容的教学对整章学习掌握起着奠基作用,也为学生今后在学习和生活中更好的用数学作准备,因而它在本章的学习中占有重要地位。

二.设计理念:1.指导思想:本节课是关于相似三角形概念的教学,课本内容较少,如何使知识容量、思维容量尽可能饱和,有效培养学生的创新能力,是设计本节课的指导思想。

2. 设计思路:①.为了使学生能较顺利地在教师的引导下进行先学,在复习相似多边形的基础上,由一般到特殊引出相似三角形的定义,并能在具体情景中深入理解,认识相似三角形的本质并应用它来解决问题。

借助练习,通过合作探究,独立思考来完成本课的目标②.整堂课设置问题,层层深入,给学生充分的思考时间,使学生感受到了自己是课堂的主人,让学生在亲身实践中去体验、去感悟,一切的新知识都是由学生自己发现。

教师只是引导和帮助学生去探索,而没有把现有的知识灌输给学生。

③.根据《数学课程标准》所提出的先进教学理念,用教材教,而不是教教材,让课堂由学生主导,充分发挥学生的主体作用,结合初中生的认知特点,本节课力求形成“创设问题情景→构建模型→合作探究→实践应用”的模式,在重视双基的同时,更关注知识的形成过程。

三.教学目标知识与技能目标:使学生了解两个三角形相似的概念,学会利用相似三角形解决一些实际问题,在实际应用中加深对相似三角形的认识和理解。

培养学生的抽象思维能力和解决实际问题的能力。

过程与方法目标:在相似三角形概念及性质的学习过程中,引导学生对问题观察、分析、归纳、猜想,养成良好的思维习惯。

相似三角形 复习课教案

相似三角形 复习课教案

相似三角形复习课教案一、教学目标1、使学生理解相似三角形的概念,掌握相似三角形的判定定理和性质定理。

2、能够熟练运用相似三角形的知识解决实际问题,提高学生的逻辑推理和综合运用能力。

3、通过复习,培养学生的空间观念和创新意识,激发学生对数学的兴趣。

二、教学重难点1、重点(1)相似三角形的判定定理和性质定理。

(2)相似三角形的应用。

2、难点(1)相似三角形的判定定理的灵活运用。

(2)相似三角形与其他几何图形的综合应用。

三、教学方法讲授法、练习法、讨论法四、教学过程1、知识回顾(1)相似三角形的概念:对应角相等,对应边成比例的三角形叫做相似三角形。

相似三角形对应边的比叫做相似比。

(2)相似三角形的判定定理①两角对应相等的两个三角形相似。

②两边对应成比例且夹角相等的两个三角形相似。

③三边对应成比例的两个三角形相似。

(3)相似三角形的性质定理①相似三角形对应角相等,对应边成比例。

②相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

③相似三角形周长的比等于相似比,面积的比等于相似比的平方。

2、例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

解:因为 DE∥BC,所以△ADE∽△ABC。

所以\(\frac{AD}{AB} =\frac{AE}{AC}\)因为 AD = 3,BD = 2,所以 AB = AD + BD = 5所以\(\frac{3}{5} =\frac{4}{AC}\)解得 AC =\(\frac{20}{3}\)所以 CE = AC AE =\(\frac{20}{3} 4 =\frac{8}{3}\)例 2:如图,在△ABC 中,∠C = 90°,D 是 AC 上一点,DE⊥AB 于 E,若 AC = 8,BC = 6,DE = 3,求 AD 的长。

解:在 Rt△ABC 中,AB =\(\sqrt{AC^2 + BC^2} =\sqrt{8^2 + 6^2} = 10\)因为∠A =∠A,∠AED =∠C = 90°所以△ADE∽△ABC所以\(\frac{AD}{AB} =\frac{DE}{BC}\)即\(\frac{AD}{10} =\frac{3}{6}\)解得 AD = 53、课堂练习(1)如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2,DB = 1,AE = 15,求 EC 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似复习》导学案
复习目标:
①回忆两个三角形相似的概念,巩固两个三角形相似的性质与判定。

② 归纳总结一般几何证明题的思路与相似三角形的基本模型.
③通过学生动手画,动脑想,动笔写,进一步加深对三角形相似与理解. 一、 知识点复习: 一)比例线段及其性质:
比例线段定义: 比例的基本性质: 1.相似三角形的定义: 2.相似比:
'''ABC A B C ∆∆∽,如果3BC =,'' 1.5B C =,那么'''A B C ∆与ABC ∆的相似比为____。

二)三角形的识别、性质和应用 1、
C'
B'A'
C
B A
①如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似. 几何语言:
②如果一个三角形的两条边分别与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
几何语言:
③如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似. 几何语言:
2、直角三角形相似:
3、射影定理:
4、性质:两个三角形相似,则:
① ②; ③ 三)位似:
位似定义及性质: 三、典型举例 例1 判断
①所有的等腰三角形都相似. ②所有的直角三角形都相似.
③所有的等边三角形都相似 ④所有的等腰直角三角形都相似.
B D C
例2、(1)如图1,当 时,ABC ADE ∆∆∽ (2)如图2,当 时, ABC AED ∆∆∽。

(3)如图3,当 时, ABC ACD ∆∆∽。

图3
图2
图1
D
C
B
A
E
D
C
B
A
E
D C
B
A
小结:以上三类归为基本图形:母子型或A 型
例3(3)如图4,如图1,当AB ∥ED 时,则△ ∽△ 。

(4)如图5,当 时,则△ ∽△ 。

E'
D'
C'
B'
A'
E
D
C
B
A
小结:此类图开为基本图开:兄弟型或X 型 (5)特殊图形(双垂直模型) ∵∠BAC =90° ∴
D
C
B A
例4、:已知,如图,梯形ABCD 中,AD ∥BC , ∠A =900,对角线BD ⊥CD
求证:(1) △ABD ∽△DCB ; (2)BD 2=AD ·BC 证明:
例5、小明家的园子里有一三角形的花圃,将它的大小按1:100画在纸上,如图18-4。

现量得所画图形中BC 边长为3.5cm ,高AD 为2cm ,求花圃
的面积。

AD BC ⊥BAC BDA ADC ∆∆∆∽∽D
C
B A
F E
D
C
B
A 例6、如图,在△ABC 中,A
B =A
C ,点
D 、
E 、
F 分别在AB 、BC 、AC 边上,DE=DF ,∠EDF =∠A .
(1)求证:BC
AB
EF DE =
.(2)证明:BDE ∆与EFC ∆相似。

例7、如图,已知△ABC 中CE ⊥AB 于E,BF ⊥AC 于F,求证:△AFE
∽△ABC
例8、已知,如图,CD 是Rt ABC ∆斜边上的中线,DE AB ⊥交BC 于F ,交AC 的延长线于E ,
说明:⑴ ADE ∆∽FDB ∆; ⑵DF DE CD •=2

例9、如图,ABC ∆是一块锐角三角形余料,边长120BC =毫米,高80AD =毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少? 解:
课后作业
1、在△ABC 中,若∠A =∠C =
1
3
∠B ,则∠A = ,∠B = ,这个三角形是 .
2、已知三角形的三边长分别为
3、8、x ,若x 的值为偶数,则x 的值有( )
A. 6个
B. 5个
C. 4 个
D. 3个
3、已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )
A.60°
B.75°
C.90°
D.120° 4、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )
A F
E
M Q N
P
D C
B
A
5、如右图所示,D 是△ABC 的边AC 上的点,过D 作直线DE ,与AB 交于点E ,若△ADE•与△ABC 相似,则这样的直线DE 最多可作_______条.
6、如果
=-+=++==z y x z y x z
y x 那么且,5,4
32 7、已知4x -5y=0,则(x+y)∶(x -y)的值为( )
A 、1∶9
B 、-9
C 、9
D 、-1∶9
8、P 为正△ABC 的边CB 延长线上一点,Q 是BC 延长线上的点,∠PAQ=1200,求证:BC 2=PB ·CQ
9、已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F ,求证:
EF
GF CF ⋅=2。

A B
C
D
F G E
10、如图ΔABC 中,∠C=90°, BC = 8cm, AC = 6cm,点P 从B 出发,沿BC 方向以2cm/s 的速度移动,点Q 从C 出发,沿CA 方向以1cm/s 的速度移动.若P 、Q 分别同时从B 、C 出发,经过多少时间ΔCPQ 与ΔCBA 相似?
11、如图,△ABC 中D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD ,E 为垂足,连结AE.求证:(1) ED=DA ;(2)∠EBA =∠EAB ;(3) BE 2=AD ·AC
小结:1复习了相似三角形的相关内容。

2总结了基本模型和基本方法。

A
B
C P
Q
E
D
C
B
A。

相关文档
最新文档