11本1、2概率统计试卷
概率论与数理统计B复习题(1,2)10.5

概率论与数理统计B 复习题一、填空题1.设两事件A ,B 满足P (A )=0.8, P (B )=0.6,P (B|A )=0.8,则P (A ∪B )= . 2.某人进行射击, 设每次射击的命中率为0.02, 独立射击10次, 至少击中两次的概率为 .3.设随机变量(X ,Y )有()25,()36,0.6XY D X D Y ρ===,则(2)D X Y -= . 4.设~(2,4),~(3,2)X N Y N 且X 与Y 相互独立,则~2Y X - . 5.设总体X 的数学期望和方差, 9)(,)(==X D X E μ, 试用切比雪夫不等式估计{||4}P X μ-<____________ .6. )(n t α为)(n t 分布的上α分位点,则当025.0=α时,=>)}()({025.0n t n t P .7.已知()0.8,()0.5,P A P A B ==且事件A 与B 相互独立,则()P B = .8.若二维随机变量),(Y X 的联合概率分布为18.012.012.008.011101ba X Y--,且X 与Y 相互独立,则=a ;=b .9.已知随机变量~(0,2)X U ,则2()[()]D XE X = .10.已知正常男性成人血液中,每毫升白细胞平均数是7300,均方差是700.设X 表示每毫升白细胞数,利用切比雪夫不等式估计{52009400}P X ≤≤____________ .11.设123,,X X X 是总体X 的样本,11231ˆ()4X aX X μ=++,21231ˆ()6bX X X μ=++是总体均值的两个无偏估计,则a = ,b = . 二、单项选择题1.6本中文书和4本外文书,任意往书架上摆放,则4本外文书放在一起的概率是( ) (A )4!6!10!⨯ (B )710(C )4!7!10!⨯ (D )4102.设随机变量)1,0(~N X ,则X Y e -=的概率密度是( )(A ) 2ln 21020y ey π-⎧>⎪⎨⎪⎩其它 (B )2ln 21020yey π⎧>⎪⎨⎪⎩其它(C ) 2ln 21020y e y y π-⎧>⎪⎨⎪⎩其它 (D )2ln 21020ye y y π⎧>⎪⎨⎪⎩其它.3.设X ,Y 是相互独立的两个随机变量,它们的分布函数分别为(),()X Y F x F y ,则max(,)Z X Y =的分布函数是( )(A )()m ax{(),()}Z X Y F z F x F y = (B )()max{|()|,|()|}Z X Y F z F x F y = (C )()()()Z X Y F z F x F y = (D )都不是 4.设随机变量X 和Y 的概率密度分别为101()0X x f x <<⎧=⎨⎩其它, ()Y f y =2(3)32142x eπ--,x -∞<<+∞若X 和Y 相互独立,则()E XY =( ). (A )92(B )23(C )72(D )325.设i X (n i ,,2,1 =)为取自总体),(2σμN 的一个样本,其中μ未知,则下列变量中哪一个是统计量( ).(A ) 112+∑=ni iX ; (B ) ∑=-ni i X 12)(μ(C )μ-∑=n i i X n11; (D ) ∑=+-ni i n X 12σμ.6.在假设检验中,不拒绝原假设意味着( )(A )原假设肯定是正确的 (B )原假设肯定是错误的(C )没有证据证明原假设是正确的 (D )没有证据证明原假设是错误的 7.设21,X X 为总体X 的一个样本,则下列统计量中不是总体数学期望μ的无偏估计的是 ( ).(A )2113231X X Y +=; (B ) 2123221X X Y +=; (C ) 2134341XX Y +=; (D ) 2145352XX Y +=.8.甲、乙、丙三人独立地译一密码,他们每人译出密码的概率分别是0.5,0.6,0.7,则密码被译出的概率为 ( )A. 0.94B. 0.92C. 0.95D. 0.909.某人打靶的命中率为0.8,现独立射击5次,则5次中有2次命中的概率为( )A. 20.8B. 230.80.2⨯C.220.85⨯ D. 22350.80.2C ⨯⨯10.设随机变量Y X 和独立同分布,则),,(~2σμN X ( ) A. )2,2(~22σμN X B. )5,(~22σμN Y X - C. )3,3(~22σμN Y X + D. )5,3(~22σμN Y X -11.对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则( ). A. ()()()D XY D X D Y =⋅ B.()()()D X Y D X D Y +=+ C. X 和Y 相互独立 D.X 和Y 不独立 12.设 ()2~,X N μσ,其中μ已知,2σ未知,123,,X X X 为其样本, 下列各项不是 统计量的是( ).A.22212321()X X X σ++ B.13X μ+C.123m ax(,,)X X X D.1231()3X X X ++13.在假设检验中,0H 表示原假设,1H 表示备择假设,则称为犯第二类错误的是( ). A.1H 不真,接受1H B.0H 不真,接受1HC.0H 不真,接受0HD.0H 为真,接受1H14.若随机变量X 的分布函数为⎪⎩⎪⎨⎧+=,1,0)(A x F ,arcsin x B .1,1,1>≤-<x x x(1)求B A ,的值;(2)求概率密度)(x f ;(3)求概率{0.5}P X <.15.某厂有甲乙丙三台机床进行生产,各自的次品率分别为5%,4%,2%;它们各自的产品分别占总产量的25%,35%,40%。
2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。
概率论与数理统计考试试卷与答案

一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p Y 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。
2、一个袋子中有大小相同的红球6只、黑球4只。
(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。
3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为: 0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。
7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。
8、设2),(125===Y X Cov Y D X D,)(,)(,则=+)(Y X D 30 9、设261,,X X Λ是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。
高中数学概率统计(含详细答案)

1.某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率. 解:(1)0.192000x= ∴ 380x =(2)初三年级人数为y +z =2000-(373+377+380+370)=500, 现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈, 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个∴ 5()11P A =2.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. (Ⅰ)求该总体的平均数;(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果.事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =.3.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.4.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(I )求全班人数及分数在[)90,80之间的频数;(II )估计该班的平均分数,并计算频率分布直方图中[)90,80间的矩形的高; (III )若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯ 全班人数为.2508.02= …………3分所以分数在[)90,80之间的频数为42107225=---- …………5分(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分为60×7+2+3+3+5+6+8+9=456;(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6) (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6) (4,5),(4,6) (5,6)共15个, …………12分 其中,至少有一个在[90,100]之间的基本事件有9个, …………14分故至少有一份分数在[90,1000]之间的频率是6.0159= …………15分5.袋子中装有编号为b a ,的2个黑球和编号为e d c ,,的3个红球,从中任意摸出2个球。
11-12(2)概率统计B(答案)

东莞理工学院(本科)试卷(B 卷)2011 --2012 学年第二学期一、填空题(共70分 每空2分)2、已知事件A ,B 满足)()(B A P AB P =,且3.0)(=A P ,则=)(B P 0.7 。
3、.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的点数),则这两颗骰子的点数和为5的概率是91。
4、袋中有6只白球,4只红球,从中抽取两只。
如果作不放回抽样,则抽得的两个球颜色不同的概率为158;如果作放回抽样,则抽得的两个球颜色不同的概率为 0.48 。
5、已知某对夫妇有四个小孩,则男孩的个数Y 服从的分布为 )5.0 ,4(B ,恰有两个男孩的概率为83,在已知至少有一个女孩的条件下,至少还有一个男孩的概率为1514。
10、一个系统由100个互相独立起作用的部件组成,各个部件损坏的概率均为 0.2,已知必须有80个以上的部件正常工作才能使整个系统工作,则由中心 极限定理可得,整个系统正常工作的概率为 0.5 。
13、设随机变量X 的概率密度为:⎩⎨⎧≤≤=其它 ,010 ,)(2x kx x f , 则=k 3 .,=2EX 53。
14、设二维随机向量),(Y X 的联合分布密度函数=)(x f XY ⎩⎨⎧≤≤-其它, 00 ,y x e y ,则X 的密度函数=)(x f X ⎩⎨⎧<≥-0,00 ,x x e x ,Y X 与的独立性为不独立。
15、某食品超市的牛奶销售量服从正态分布,每天平均销售200公斤,标准差为20公斤。
如果老板希望牛奶供不应求的概率不超过0.025,则该超市购进的牛奶量至少为239.2公斤。
16、设随机变量X 的概率密度为:⎩⎨⎧≤≤+=其它 ,010 )1()(x x x f θθ,则参数θ的矩估计量=θ XX --112 17、设X 1,X 2,X 3是来自总体X 的简单随机样本,则下列统计量3211X X X T -+=,)(313212X X X T ++=,3213614121X X X T ++=, )(21214X X T +=中, 总体均值的无偏估计量为421,,T T T , 在上述无偏估计量中最有效的一个为 2T18、在假设检验中,显著性水平α=0.01时拒绝H 0,则当显著水平α=0.05时应 拒绝 (拒绝、接收、有时拒绝有时接收)H 0。
概率统计考试试卷B(答案)

概率统计考试试卷B(答案)系(院):专业:年级及班级:姓名:学号: .密封线1、五个考签中有⼀个难签,甲、⼄、丙三个考⽣依次从中抽出⼀张考签,设他们抽到难签的概率分别为1p ,2p ,3p ,则( B ) (A)321p p p (B)1p =2p =3p (C)321p p p (D)不能排⼤⼩解:抽签概率均为51,与顺序⽆关。
故选(B )2、同时掷3枚均匀硬币,恰有两枚正⾯向上的概率为(D )(A)0.5 (B)0.25 (C)0.125 (D)0.375解:375.0832121223==??? ????? ??C ,故选(D )3 、设(),,021Φ=A A B P 则( B )成⽴(A)()01 B A P (B)()[]()()B A P B A P B A A P 2121+=+ (C)()02≠B A A P (D)()121=B A A P解:条件概率具有⼀般概率性质,当A 1A 2互斥时,和的条件概率等于条件概率之和。
故选(B )课程名称:《概率论与数理统计》试卷类别:考试形式:开卷考试时间:120 分钟适⽤层次:本科适⽤专业:阅卷须知:阅卷⽤红⾊墨⽔笔书写,⼩题得分写在相应⼩题题号前,⽤正分表⽰;⼤题得分登录在对应的分数框内;考试课程应集体阅卷,流⽔作业。
系(院):专业:年级及班级:姓名:学号: .密封线4、10张奖券中含有3张中奖的奖券,每⼈购买⼀张,则前3个的购买者中恰有1⼈中奖的概率为(D )(A)3.07.02321 解:310272313A A C C P ?==402189106733=,故选(D ) 5、每次试验成功的概率为p ,独⽴重复进⾏试验直到第n 次才取得()n r r ≤≤1次成功的概率为(B )。
(A)()rn rn p p C --1 (B)()rn rr n p p C ----111(C)()rn r p p --1 (D) ()rn r r n p pC -----1111解:rn r r n r n r r n qp C q p C p ---+-----=?1111111,故选(B )第n 次6、设随机变量X 的概率密度为)1(12x +π,则2X 的概率密度为(B ) (A))1(12x +π (B))4(22x +π (C))41(12x +π (D))x +π解:令()x g x y ==2 ()y h y x ==21 ()21='y h ()214112+=y y P Y π=()21442?+y π=()242y +π,故选(B )7、如果随机变量X 的可能值充满区间( A B ),⽽在此区间外等于零,则x sin 可能成为⼀随机变量的概率密度。
概率论与数理统计试题与答案完整版
概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。
4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。
6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。
(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。
10-11Ⅰ概率论与数理统计试卷(A)参考答案
10-11Ⅰ概率论与数理统计试卷(A)参考答案| | | | | | | |装|| | | |订|| | | | |线| | | | | | | | |防灾科技学院2010~2011学年第⼀学期期末考试概率论与数理统计试卷(A )使⽤班级本科各班适⽤答题时间120分钟⼀、填空题(每题3分,共21分)1、设A 、B 、C 是三个事件,4/1)(=A P ,3/1)(=A B P ,2/1)(=B A P ,则=)(B A P1/3 ;2、已知10件产品中有2件次品,在其中任取2次,每次任取⼀件,作不放回抽样,则其中⼀件是正品,⼀件是次品的概率为16/45 ;3、随机变量X 的分布函数是??≥<≤<=.1,110,,0,0)(2x x x x x F ,=)}({2X E X P e21;5、从1,2,3中任取⼀个数,记为X ,再从X ,,1 任取⼀个数,记为Y ,则==}2{Y P 5/18 ;6、设随机变量X 和Y 相互独⽴,且均服从区间[]1,0的均匀分布,则3/4 ;7、设样本4321,,,X X X X 为来⾃总体)1,0(N 的样本,243221)(X X X C X Y +++=,若Y 服从⾃由度为2的2χ分布,则=C 1/3 。
⼆、单项选择题(本⼤题共7⼩题,每题3分,共21分)1、某⼈向同⼀⽬标独⽴重复射击,每次射击命中⽬标的概率为p ,则在第4次射击时恰好第2次命中⽬标的概率为( B )(A) 22)1(4p p -; (B) 22)1(3p p -; (C) 22)1(2p p -; (D) 3)1(p p -; 2、设随机变量X 的概率分布律为,2,1,0,!}{===k k A k X P ,则参数=A ( D )(A) 0 ; (B) 1; (C) e ; (D) 1-e ;3、设随机变量X 的分布函数为()F x ,则31Y X =+的分布函数为( A )(A )11()33F y -;(B ) (31)F y +;(C ) 3()1F y +;(D 11()33F y -;4、设连续型随机变量X 的概率密度为?<≥=-.0,0,0,)(x x e x f x λλ,则=≥})({X D X P ( C )(A) 0 ; (B) 1; (C) 1-e ; (D) e ;5、设随机变量X 与Y 相互独⽴,其概率分布分别为10.40.6XP 01(A )1}{==Y X P ;(B )0}{==Y X P ;(C )52.0}{==Y X P ;(D )5.0}{==Y X P ;6、若)2(,,,21≥n X X X n 为来⾃总体)1,0(N 的简单随机样本,X 为样本均值,2S为样本⽅差,则(C )(A ))1,0(~N X n ;(B ))(~22n nSχ;(C ))1(~/-n t nS X ;(D ))1,0(~N X ;7、总体X 的分布律 ()1/,0,1,2,,1P X k N k N ===- .已知取⾃总体的⼀个样本为(6,1,3,5,3,4,0,6,5,2),则参数N 的矩估计值是 ( A ))(A 8; )(B 7; )(C 6; )(D 5.(本⼤题共2⼩题,每题7分,共14分。
11-12概率统计A(答案).doc
东莞理工学院(本科)试卷(A卷)2011 -2012学年第二学期一'填空题(共70分每空2分)1、A、B是两个随机事件,已知P(A) = 0.3 , P(B) = 0.5。
若A与B互不相容,则P(A + J B)= 08;若A与B相互独立,则P(A + B)= 0.65 ;若P(A-B) = 0.1,则P( A | B ) = 0.42、一个袋子中有大小相同的红球3只,白球2只,若从中不放回地任取2只,设X为取到的白球的个数,则P(X = 1) = 0.6 , EX =0,83、三个人独立破译一个密码,他们单独破译的概率分别为丄,丄,丄,则此密码3 4 5能被破译的概率为0. 6 。
4、在区间[0,1]±等可能任取两个数,则这两个数之和小于彳的概率为彳。
5、已知某对夫妇有三个小孩,在已知至少有一个女孩的条件下,至少还有一个男孩的概率为°。
2_6、有甲乙两台设备生产相同的产品,甲生产的产品占60%,次品率为10%;乙生产的产品占40%,次品率为20%。
(1)若随机地从这批产品中抽出一件,抽到次品的概率为0.14 ; (2)若随机地从这批产品中抽出一件,检验出为次品,则该次品属于甲厂生产的概率是°。
2_7、、某公司业务员平均每见两个客户可以谈成一笔生意,他一天见了六个客户,设他谈成的生意为X笔,则X服从的分布为B(6, 0.5),他正好谈成两笔生意的概率为d, DX = 1. 5 o648、设顾客在某银行的窗口等待的服务时间X (以分钟计)服从指数分布E(5), X的密度函数为y = 2x + i的概率密度函数为:f y(y)=<V-12 1< v<30,其它。
囂『则,X的密度Q-x~3 ,则参数&的矩估其它-、0.2e~a2t, /〉0 j(t) = <0, ?<0若等待超过10分钟他就离开,他去一次银行没办成事就离开的概率为£2;他一个月要去银行5次,则他至少有一次没办成事就离开的概率为1-(1-eV9、假设某公路上每分钟通过的汽车数可以用泊松(Poisson)分布P(10)来描述。
高一数学概率与统计试题
高一数学概率与统计试题概率与统计综合测试卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一所中学有高一.高二.高三共三个年级的学生1600名,其中高三学生400名.如果通过分层抽样的方法从全体高中学生中抽取一个容量为80人的样本,那么应当从高三年级的学生中抽取的人数是()A.10 B.20 C.30 D.402.从总体中抽取的样本数据共有m个a,n个b,p个c,则总体的平均数的估计值为( )A. B. C.D.3.甲.乙两人独立地解同一问题,甲解出这个问题的概率是,乙解出这个问题的概率是,那么其中至少有1人解出这个问题的概率是()A. B.C. D.4.若的展开式中各项的系数和为128,则项的系数为( )A.189 B.252 C.-189 D.-2525.甲.乙.丙.丁四名射击选手在选拨赛中所得的甲乙丙丁8998S25.76.25.76.4平均环数及其方差S2如下表所示,则选送参加决赛的最佳人选是A.甲B.乙C.丙 D.丁6.已知n为奇数,且n≥3,那么被9除所得的余数是( )A.0 B.1 C.7D.87.某仪表显示屏上有一排八个编号小孔,每个小孔可显示红或绿两种颜色灯光.若每次有且只有三个小孔可以显示,但相邻小孔不能同时显示,则每次可以显示()种不同的结果.A.20 B.40 C.80 D.1608.现有20个零件,其中16个一等品,4个二等品.若从20个零件中任取2个,那么至少有一个是一等品的概率是()A.B.C.D.9.七张卡片上分别写有0.0.1.2.3.4.5,现从中取出三张后排成一排,组成一个三位数,则共能组成( )个不同的三位数.A.100 B.105 C.145D.15010.把一枚质地不均匀的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是()A. B.C.D.二.填空题:本大题共6小题,每小题5分,共30分.11.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示:宽带动迁户原住户已安装6035未安装4560则该小区已安装宽带的户数估计有户12.如下是一个容量为200的样本的频率分布直方图,根据图中数据填空:(1)样本数据落在范围[5,9)的频率为_______;(2)样本数据落在范围[9,13)的频数为_______.13.在某市高三数学统考的抽样调查中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为_____________人.14.方程的解集是____________________.15.若某人投篮的命中率为p,则他在第n次投篮才首次命中的概率是________________.16.从1到10这10个数中任取不同的三个数,相加后能被3整除的概率是_____________.戴南高级中学_~_学年度下学期月考高二年级数学科答卷二.填空题:111213141516三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)有A.B.C.D四封信和1号.2号.3号三个信箱,若四封信可以随意投入信箱,投完为止.(1)求3号信箱恰好有一封信的概率;(2)求A信没有投入1号信箱的概率.18.(本小题满分12分)一个口袋中装有三个红球和两个白球.第一步:从口袋中任取两个球,放入一个空箱中;第二步:从箱中任意取出一个球,记下颜色后放回箱中.若进行完第一步后,再重复进行三次第二步操作,分别求出从箱中取出一个红球.两个红球.19.(本小题满分12分)若非零实数m.n满足2m+n=0,且在二项式(a_gt;0,b_gt;0)的展开式中当且仅当常数项是系数最大的项,(1)求常数项是第几项;(2)求的取值范围.20.(本小题满分12分)在一次由甲.乙.丙三人参加的围棋争霸赛中,比赛按以下规则进行,第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者.根据以往战绩可知,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,(1)求比赛以乙连胜四局而告终的概率;(2)求比赛以丙连胜三局而告终的概率.21.(本小题满分12分)在矩形ABCD中,AB=4,BC=3,E为DC边的中点,沿AE将ΔAED 折起,使二面角D-AE-B为60°.(1)求DE与平面AC所成角的大小;(2)求二面角D-EC-B的大小.(1)(2)22.(本小题满分12分)已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.(1) 第一小组做了三次实验,求至少两次实验成功的概率;(2) 第二小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.戴南高级中学___学年度下学期期中考试高二年级数学科试卷参考答案一.B.D.D.C.CC.D.D.B.A二.(11)9500; (12)0.32,72;(13)810;(14){1,3};(15); (16)三.(17) (1)设3号信箱恰好有一封信的概率为P1,-------(1分)则P1 == ;------(5分)(2)设A信没有投入1号信箱的概率为P2, -------(6分)则.------(10分)(18)设从箱中取出一个红球.两个红球.三个红球的概率分别为----(1分)从箱中取出一个红球时,完成事件只有一种可能:第一步取出的2个球1红1白,此时事件发生的概率为--------(6分)从箱中取出两个红球时,完成事件只有一种可能:第一步取出的2个球1红1白,此时事件发生的概率为-------(12分)解法二:设从箱中取出一个红球.两个红球.三个红球的概率分别为----(1分)第一步操作结束后,箱子中没有红球的概率为,箱子中有1个红球的概率为,箱子中有2个红球的概率为,-------(5分)则,--------(8分),--------(12分)(19)(1)设为常数项, ------(1分)则可由------(3分)解得 r=4, ------(5分)所以常数项是第5项. ------(6分)(2)由只有常数项为最大项且a_gt;0,b_gt;0,可得-------(10分)解得------(12分) (20)(1)设乙连胜四局的概率为,则-------(6分)(2)设丙连胜三局的概率为,则------(12分)(21)解:(1)在图(2)中,作平面,为垂足,作,为垂足,连结,则∴为二面角的平面角∴在中,在中,∵平面∴为与平面所成的角------------(6分)(2)在图(2)中过作于,为垂足,连结,则∴为二面角的平面角则∴∴二面角的平面角为.----------(12分)(22)(1) 第一小组做了三次实验,至少两次实验成功的概率是.------------(6分)(2) 第二小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其各种可能的情况种数为.因此所求的概率为. ----------(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共 4 页,第 3 页
共 4 页,第 4 页
)
系:
密
( A).n 4, p 0.6
4、设 A,B 为任意两个事件,且 A B, P( B) 0, 则下列选项成立的是( A. P( A) P( A | B) C. P( A) P( A | B)
共 页,第 页
).
B. P( A) P( A | B) D. P( A) P( A | B)
线
7、设随机变量 X 的分布函数为
Ax, 0 x 1, f ( x) 0, 其他.
求(1)常数 A (2) X 的分布函数(3) P0.5 X 1.5 (8 分)
4、设样本 X 1 , X 2 ,..., X 6 来自总体 N (0,1),Y ( X 1 X 2 X 3 ) 2 ( X 4 X 5 X 6 ) 2 ,试确定常 数 C 使 CY 服从 2 分布。 (6 分)
10 、 设 f1 x 为 标 准 正 态 分 布 的 概 率 密 度 , f2 x 为 [-1,3] 上 均 匀 分 布 的 概 率 密 度 , 若
af1 x x 0 (a 0, b 0) 为概率密度,则 a,b 应满足() 。 f x = bf 2 ( x) x 0
10、设 X 为一随机变量, 若 D(10 X ) 10 , 则 DX ______
共 4 页,第 2 页
三、计算题(共 7 题,共 50 分) 1、设随机变量 X 服从泊松分布 ( ) ,已知 P X 1 P X 2 ,求 P X 4 (4 分)
5、病树的主人外出,委托邻居浇水,设已知如果不浇水,树死去的概率为 0.8.若浇水则 树死去的概率为 0.15.有 0.9 的把握确定邻居会记得浇水. (1)求主人回来树已死去的 概率.(2)若主人回来树已死去,求邻居忘记浇水的概率. (8 分)
0 x0 9、设随机变量 x 的分布函数 F(x)= 1 / 2 0 x 1 ,则 P{X=1}=( ) 1 e x x 1
(A)0 (B)1/2 (C)1/2— e
1
)
(D)1— e
1
一、选择题(共 10 题,每题 2 分,共 20 分)
1、设随机变量 X ~ N 1, 4 , Y 2 X 1 ,则 Y 所服从的分布为( A. N 3,4 封 B. N 3,8 C. N 3,16 D. N 3,17 ) )
(A) f1 x f 2 x (B) 2 f2 x F 1 x (C) f1 x F2 x (D) f1 x F2 x f2 x F 1 x
2k e 8 、已知离散型随机变量 X 服从参数为 2 的泊松分布,即 P X k , k 0,1, 2,..., 则随机变量 k!
Z 3 X 2 的数学期望 E(Z)= 。 1 2 9、设平面区域 D 由曲线 y 及直线 y 0, x 1, x e 所围成,二维随机变量(X,Y)在区域 D 上服从均 x
匀分布,则关于 X 的边缘概率密度在 x=2 处的值为 。
姓名:
7、设 A, B 为随机事件,且 P( B) 0, P( A | B) 1 ,则必有( ) (A) P( A B) P( A). (C) P( A B) P( A). (B) P( A B) P( B). (D) P( A B) P( B). 共 4 页,第 1 页
6、袋中有 50 个乒乓球,其中 20 个是黄球,30 个是白球,今有两个人依次随机的从袋中各取一球,取后不 放回 ,则第二个人取得黄球的概率是 。 7、设随机事件 AB 及其和事件 A A B 的概率 P( AB) 。
2
B 的概率分别为 0.4,0.3 和 0.6,若 B 表示 B 的对立事件,那么积事件
枣庄学院 2012—2013 学年第 1 学期
11 级机电专业课概率论期中考试试卷
考试时间: 题号 一 得分 班级: 线 登分 签字 二 年 三 月 四 日 五 时 六 分 —— 七 时 八 分 九 试卷类型:A 十 成绩 复 核 签字 8、设随机变量 X 与 Y 相互独立,且 EX 与 EY 存在,记 U=max{x,y},V=min{x,y},则 E(UV)=( (A)EU EV (B)EX EY (C)EU EY (D)EX EV
(A)2a+3b=4 (B)3a-2b=4 (C)a-b=1 (D)a+b=2
年级:
2、设 X , Y 是任意随机变量, C 为常数,则下列各式中正确的是( A. D X Y D( X ) D(Y ) C. D X Y D( X ) D(Y ) 3、已知随机变量 X B. D X C D( X ) C D. D X C D( X )
封
1 1 求: (1) P X , Y ; (2) E X Y (8 分) 4 2
3、设总体的概率密度为
x 1 , 0 x 1, ( 0) f ( x; ) 其它 . 0 , 试用来自总体的样本 X1 , X 2 ,..., X n ,求未知参数 的矩估计量和最大似然估计量. (8 分)
二、填空题(共 10 题,每题 3 分,共 30 分)
2 1、设随机变量 X ~ N (2,3 ) , Y ~ b(12,0.5) , X 与 Y 相互独立,则 D( X Y ) __________
专业:
2、设 P( A) 0.5 , P( AB ) 0.4 ,则 P( B | A) _________ 3、设 X ~ N , 且 EX 3, DX 1,则 P 1 X 1 _________
4、设 A,B,C 是随机事件,A,C 互不相容,P(AB)=1/2,P(C)=1/3,则 P(AB C )=________。 5、 设二维随机变量(X,Y)服从 N( , , 2 , 2 ,0 )则 E (X Y )=________。
2
B(n, p) ,且 EX 2.4, DX 1.44 ,则二项分布的参数 n, p 的值为( ( B).n 6, p 0.4 (C ).n 8, p 0.3 ( D).n 24, p 0.1
共 页,第 页
5、设随机变量 X , Y 的方差 D( X ) 4 , D(Y ) 1, 相关系数 XY 0.6 , 则方差 D( 3 X 2Y ) ( ) 学号: A. 40 B. 34 C. 25.6 D. 17.6
6、 设F 其相应的概率密度 f1 x , f2 x 是连续函数, 则必为概率密度的是 ( ) 1 x , F 2 x 为两个分布函数,
2、 一射手进行射击, 击中目标的概率为 p(0 p 1) ,射击直至击中目标两次为止, 设以 X 表示首次击中目标所进行的射击次数,以 Y 表示总共进行的射击次数,试求 X 和 Y 的联 合分布律和条件分布律。 (8 分)
密
3x, 0 x 1, 0 y x 6、设随机变量 X , Y 的概率密度为 f x, y 其他 0,