(新)计量经济学讲义第一讲(共十讲)

合集下载

2024版计量经济学全册课件(完整)pptx

2024版计量经济学全册课件(完整)pptx

REPORTING
2024/1/28
23
EViews软件介绍及操作指南
EViews软件概述
EViews是一款功能强大的计量经济学 软件,提供数据处理、统计分析、模型
估计和预测等功能。
统计分析与检验
2024/1/28
详细讲解EViews中的统计分析工具, 包括描述性统计、假设检验、方差分
析等。
数据导入与预处理 介绍如何在EViews中导入数据,进行 数据清洗、转换和预处理等操作。
随着大数据时代的到来,机器学 习算法在数据挖掘、预测和分类 等方面展现出强大的能力,为计 量经济学提供了新的研究工具和 方法。
机器学习在计量经济 学中的应用领域
机器学习在计量经济学中的应用 领域广泛,如变量选择、模型选 择、非线性模型估计、高维数据 处理等。
机器学习在计量经济 学中的常用算法
机器学习在计量经济学中常用的 算法包括决策树、随机森林、支 持向量机(SVM)、神经网络等。 这些算法可以用于分类、回归、 聚类等任务,提高模型的预测精 度和解释力。
面板数据特点
同时具有时间序列和截面数据的特征,能够提供更多的信息、更多的变化、更少共 线性、更多的自由度和更高的估计效率。
2024/1/28
20
固定效应模型与随机效应模型
固定效应模型(Fixed Effects Model)
对于特定的个体而言,其截距项是固定的,不随时间变化而变化。
随机效应模型(Random Effects Mode…
经典线性回归模型
REPORTING
2024/1/28
7
一元线性回归模型
模型设定与参数估计
介绍一元线性回归模型的基本形式, 解释因变量、自变量和误差项的含义, 阐述最小二乘法(OLS)进行参数估 计的原理。

计量经济学课件全

计量经济学课件全
• 计量经济的方法和统计方法一样,本质上 是归纳法,是将实事归纳成理论的一个有 效的辅助工具。计量经济学可以结合实际 观测数据对经济理论进行验证,检验理论 的正确性,提供进一步改进理论的方向。
11
数据
• 观测数据:主要是指统计数据和各种调查 数据。是所考察的经济对象的客观反映和 信息载体,是计量经济工作处理的主要现 实素材。
6
一、什么是计量经济学
• 计量经济学是利用经济理论、数学、统计推断 等工具对经济现象进行分析的一门社会科学。
• 计量经济学运用数理统计知识分析经济数据, 对构建于数理经济学基础之上的数学模型提供 经验支持,并得出数量结果。
• 计量经济学是以经济理论为前提,利用数学、 数理统计方法与计算技术,根据实际观测资料 来研究带有随机影响的经济数量关系和规律的 一门学科。
• 萨缪尔森:“经济计量学的定义为:在 理论与观测协调发展的基础上,运用相 应的推理方法,对实际经济现象进行数 量分析。”
5
一、什么是计量经济学
• 兰格:“经济计量学是经济理论和经济 统计学的结合,并运用数学和统计方法 对经济学理论所确定的一般规律给予具 体的和数量上的表示。”
• 克莱茵:“经济计量学是数学方法、统 计技术和经济分析的综合。就其字义来 讲,经济计量学不仅是指对经济现象加 以测量,而且包含根据一定的经济理论 进行计算的意思。”
GNP 10201.4 11954.5 14922.3 16917.8 18598.4 21662.5 26651.9 34560.5 46670 57494.9 66850.5 73142.7 76967.2
80579.36 88189.6
17
截面数据(cross-section data)

计量经济学课件

计量经济学课件
3) 萨谬尔逊、库普曼斯、斯通三位经济学家在 1954年计量经ቤተ መጻሕፍቲ ባይዱ学家评审委员会的报告:“根据理论 和观测的事实,运用合适的推理方法使之联系起来同 时推导,对实际经济现象进行的数量分析”。
10
《计量经济学》 [美]古扎拉蒂
定义1:计量经济学可以定义为这样的社会科学: 它把经济理论、数学和统计推断作为工具,应用于经 济现象的分析。 定义2:计量经济学可以定义为实际经济现象的数 量分析。这种发行乃基于理论与观测的并行发展,而 理论与观测又通过适当的推断方法而得以联系。 ----11
计量经济学
数量经济 学
虽把经济关系用数学式表示出来,且以此 推理,但式中的变量、参数只是用数学符号表 达,虽有数量概念,但无具体的数值估计,本 质上说仍是一种定性分析; 是根据实际的统计数据估计式中参数 的具体值,以说明经济关系的数量特征 图1-2计量经济学与经济学的区别 计量 经济 学
16
两者原则性的区别是:
限于在经济领域中的应用。即是从经济模型出发,研究模型参 数的估计和推断,这些参数有特定的经济意义,估计的参数要看在 数学原理上能否通过,要看与实际的经济内容是否一致;“计量经 济学”研究的经济问题常不能满足标准假定条件,故需建立专门的 计量经济学方法。
计量 经济 学
19
图1-4 计量经济学与数理统计学的联系与区别
形象的比喻:“数理经济学”是一只“空匣子”,“计 量统计学”是为了填充这只“空匣子”。“数理统计学”是 “计量经济学”的方法论基础(是填充“数理经济学”这只 “空匣子”的基本工具).
22
第二节 计量经济学的研究过程(步骤) 用计量经济学方法研究问题,一般可分成四个步骤: 一、模型设定 1、理论或假说的设定 2、理论的数学模型设定 3、理论的计量经济学设定

计量经济学讲义

计量经济学讲义

计量经济学讲义第一部分:引言计量经济学是研究经济现象的量化方法,它结合了统计学和经济学原理,旨在提供对经济现象进行定量分析的工具和技术。

本讲义将介绍计量经济学的基本概念和方法,帮助读者理解和应用计量经济学的基本原理。

第二部分:经济数据和计量经济学模型1. 经济数据的类型- 我们将介绍经济数据的两种主要类型:时间序列数据和截面数据。

时间序列数据是在一段时间内收集的数据,而截面数据是在同一时间点上收集的数据。

2. 计量经济学模型- 我们将讨论计量经济学模型的基本原理和应用,例如最小二乘法和线性回归模型。

这些模型可以帮助我们分析经济数据之间的关系,并进行预测和政策评估。

第三部分:经济数据的描述性统计分析1. 描述性统计分析的概念- 我们将介绍描述性统计分析的基本概念和方法,包括中心趋势测量、离散度测量和分布形态测量。

这些方法可以帮助我们理解和总结经济数据的基本特征。

2. 经济数据的描述性统计分析实例- 我们将通过实例演示如何使用描述性统计分析方法来分析和解释经济数据。

例如,我们可以使用均值和方差来描述一个国家的经济增长和收入分配。

第四部分:计量经济学的统计推断1. 统计推断的概念- 我们将讨论统计推断的基本概念和方法,包括假设检验和置信区间。

这些方法可以帮助我们从样本数据中推断总体参数,并评估推断的精度和可靠性。

2. 统计推断的实例- 我们将通过实例演示如何使用统计推断方法来研究和解释经济现象。

例如,我们可以使用假设检验来判断一个政策措施对经济增长的影响。

第五部分:计量经济学的回归分析1. 单变量线性回归模型- 我们将介绍单变量线性回归模型的基本原理和应用。

这个模型可以帮助我们分析一个因变量和一个自变量之间的关系,并进行预测和政策评估。

2. 多变量线性回归模型- 我们将讨论多变量线性回归模型的基本原理和应用。

这个模型可以帮助我们分析多个自变量对一个因变量的影响,并进行政策评估和变量选择。

第六部分:计量经济学的时间序列分析1. 时间序列模型的基本概念- 我们将介绍时间序列模型的基本概念和方法,包括自回归模型和移动平均模型。

研究生计量经济学讲义(1)

研究生计量经济学讲义(1)
因此随机游走并不能被预测arandomwalkcannot带漂移项的随机游走过程randomwalk计量经济学时间序列讲义统计系郭万山带漂移项即常数项的随机游走过程可以表示为其中为常数项而确定性趋势过程deterministictrendprocess确定性趋势过程可以表示为确定性趋势过程经常与带有漂移项的随机游走过程经常被混淆两者均包含漂移项常数项和白噪声但随机游走在t时刻之值是对上期值的回归而确定性趋势则是对时间趋势的回归
协方差平稳(定义)
随机过程 { yt } 是协方差平稳的,那么,该过程的均值、方差以及协方差是不 随机时间变化的。 若随机过程 { yt } 不满足上述条件,则称该随机过程是非平稳的。也就是说, 非平稳过程的均值、方差以及协方差是随时间变化的。非平稳性行为可能是带有 趋势的、周期性的、随机游走,也可能是三者的结合物。
最简单的平稳过程:白噪声过程 A sequence {ε t } is a whitc-noise proccss if each value in the sequence has a mean
2
计量经济学-时间序列讲义
统计系
郭万山
of zero,a constant variance,and is serially uncorrelated.
趋势平稳和差分平稳 (Trend and Difference Stationary) 差分平稳 不包含漂移项的随机游走 y t = y t-1 + ε t ,以及包含漂移项的随机游走模型
y t 间序列,两者均可以通过差分变换转换为平稳
时间过程:
y t - y t-1 = ε t y t - y t-1 = α + ε t
① 纯随机游走过程(pure random walk) 所谓随机游走是指变量 yt yt 1 t ,其中, t 为白噪声过程, t ~ iid (0, 2 ) ; 随机游走也称为一阶单整过程(process integrated of one order),单位根过程 (process with a unit root) 或带有随机趋势过程 (process with a stochastic trend) 。 随机游走过程是非均值回归过程,它可以以正的或反的方向偏离均值。随机游 走的另一个特征是方差随时间变化,当时间趋于无穷大时,方差也趋于无穷大。 因此,随机游走并不能被预测(a random walk cannot be predicted)。 ② 带漂移项的随机游走过程(random walk with a drift )

《计量经济学第一讲》课件

《计量经济学第一讲》课件
《计量经济学第一讲》 PPT课件
计量经济学是经济学中重要的分支,通过运用统计学和数学方法,研究经济 现象、测量经济关系、验证经济理论,并为经济政策提供科学依据。
简介
什么是计量经济学?
计量经济学是研究经济现象的定量分析方法, 通过建立数学模型,对经济关系进行测量、估 计和推断。
计量经济学的应用领域
计量经济学广泛应用于经济政策评估、市场预 测、企业决策和投资分析等领域。
最小二乘法的应用
4
数值。
广泛应用于回归分析、经济预测和金融 风险评估等领域。
模型诊断
为什么需要模型诊断?
模型诊断用于检验经济模型的合理性和有效性,发 现模型中的问题和不足。
模型诊断方法
- 验证模型的假设 - 分析残差 - 模型改进
总结
• 计量经济学是什么? • 计量经济学的重要性及应用领域 • 计量经济学方法的基础 • 计量经济学的未来研究方向
3 假设检验中的错误类

第一类错误(错误拒绝) 和第二类错误(错误接 受)。
参数估计
1
什么是参数估计?
参数估计是通过样本数据推断总体参数
最小二乘法的基本思想
2
的方法,用于量化经济模型中的未知参 数。
最小二乘法通过最小化观测值与模型预
测值之间的差异,选择最优的参数估计。
3

经济数据
- 交叉面数据 - 时间序列数据
- 宏观经济数据 - 微观经济数据 • 数据类型 • 数据来源
假设检验
1 假设检验的作用
假设检验用于验证经济模 型和理论是否符合实际数 据,评估变量之间的关系 是否显著和可靠。
2 假设检验的基本步骤
设定原假设和备择假设, 计算检验统计量,确定显 著性水平,做出决策。

计量经济学课件(全)

计量经济学课件(全)

计量经济学第一章绪论目前,在经济学、管理学以及一些相关学科的研究中,定量分析用得越来越多。

所谓定量分析,即揭示经济活动中客观存在的数量关系。

定量分析方法统计分析方法:一元多元经济计量分析方法:以模型为基础时间序列分析方法:动态时间序列§1.1 计量经济学及其模型概述一、计量经济学计量经济学的诞生计量经济学“Econometrics”一词最早是由挪威经济学家弗里希(R.Frish)于1926年仿照“Biometrics”(生物计量学)提出来的,这标志着计量经济学的诞生。

弗里希将计量经济学定义为经济学、统计学和数学三者的结合。

计量经济学的定义计量经济学是以经济理论为指导,以经济事实为依据,以数学、统计学为方法,以计算机为手段;主要从事经济活动的数量规律研究,并以建立、检验和运用计量经济学模型为核心的一门经济学学科。

二、计量经济学模型模型,是对现实的描述和模拟。

模型分类语义模型:语言文字。

物理模型:简化的实物。

几何模型:几何图形。

数学模型:数学公式。

计算机模拟模型:计算机模拟技术。

计量经济学模型属于经济数学模型,即用数学公式来描述经济活动。

例:生产函数经济数学模型是建立在经济理论的基础之上的。

生产理论:“在供给不足的条件下,产出由资本、劳动、技术等投入要素决定,随着各投入要素的增加,产出也随之增加,但要素的边际产出递减。

” 建立初始模型初始模型的特点模型描述了经济变量之间的理论关系;通过模型可以分析经济活动中各因素之间的相互影响,从而为控制经济活动提供理论指导;认为这种关系是准确实现的;模型并没有揭示各因素之间的定量关系,因为参数未知。

模型的改进以1964-1984年我国工业生产活动的数据作为样本,估计得到:改进模型的特点1.用随机性的数学方程描述现实的经济活动与经济关系。

2.揭示了经济活动中各因素之间的定量关系。

3.可用于对研究对象进行深入的研究,如结构分析、生产预测等。

初始模型——数理经济学模型数理经济学模型:由确定性的数学方程所构 成,用以揭示经济活动中各因素间的理论关系。

计量经济学讲义

计量经济学讲义

第一章绪论第一节什么是计量经济学计量经济学含义.计量经济学是一个迅速发展的经济学分支,其目标是给出经济关系的经济内容。

.计量经济学可以定义为实际经济现象的定量分析,这种分析根据的是适当推断方法联系在一起的理论和观测的即时发展。

计量经济学运用数理统计知识分析经济数据,对构建于数理经济学基础上的数学模型提供经验支持,并得出数量结果。

.计量经济学是将经济理论、数学方法和统计推断等工具应用于经济现象分析的社会科学。

第二节计量经济学方法计量经济学方法的内容计量经济学研究包括两个基本要素:经济理论和事实。

将经济理论与现实情况结合起来,用统计技术估计经济关系。

最可用的形式就是模型。

计量经济分析步骤.陈述理论。

例如有关价格变动与需求量之间的关系的经济理论:在其他条件不变的情况下,一商品的价格上升(下降),则对该商品的需求量减少(增加)。

建立计量经济模型⑴需求函数的数学模型例如线性函数模型。

如果需求量与价格之间的关系式线性的,则数学上需求函数可以表示为Q P αβ=+()αβ和称为该函数的参数。

等号左边的变量称为因变量或被解释变量,等号右边的变量称为自变量或解释变量。

⑵计量经济模型式()假定需求量与价格之间的关系是一种确定关系,而现实的经济变量之间,极少有这种关系,更常见的是一种不确定性关系(见散点图),线性模型应该为Q P αβε=++()ε是随机扰动项。

收集数据估计计量经济模型中的参数之前,必须得到适当的数据。

在经验分析中常用的数据有两种:时间序列数据(纵向数据)和横截面数据(横向数据)。

有时会同时出现前面的纵向数据和横向数据,称之为混合数据。

面板数据是混合数据的一种特殊类型。

估计参数如利用收集的数据估计出式()中的参数,得回归模型76.05 3.88Q P =-()假设检验对回归模型以及模型中的系数进行检验。

预测和政策分析例如在回归模型()中,想预测价格时的需求量值时,则有76.05 3.8876.05 3.88 4.558.59Q P =-=-⨯=第二章线性回归分析第一节线性回归概述2.1.1回归模型简介如果(随机)变量y 与12,,,p x x x L存在相关关系12(,,,)p y f x x x ε=+L (2.1.1)其中y 是可观测的随机变量,12,,,p x x x L 为一般变量,ε是不可观测的随机变量;y 称为因变量(被解释变量),12,,,p x x x L 称为自变量(解释变量),ε称为随机误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 普通最小二乘法的代数一、 问题假定y 与x 具有近似的线性关系:01y x ββε=++,其中ε是随机误差项。

我们对01ββ、这两个参数的值一无所知。

我们的任务是利用样本数据去猜测01ββ、的取值。

现在,我们手中就有一个样本容量为N 的样本,其观测值是:1122(,),(,),...,(,)N N y x y x y x 。

问题是,如何利用该样本来猜测01ββ、的取值?为了回答上述问题,我们可以首先画出这些观察值的散点图(横轴x ,纵轴y )。

既然y 与x 具有近似的线性关系,那么我们就在图中拟合一条直线:1ˆˆˆyx ββ=+。

该直线是对y 与x 的真实关系的近似,而01ˆˆ,ββ分别是对01,ββ的猜测(估计)。

问题是,如何确定0ˆβ与1ˆβ,以使我们的猜测看起来是合理的呢? 笔记:1、为什么要假定y 与x 的关系是01y x ββε=++呢?一种合理的解释是,某一经济学理论认为x 与y 具有线性的因果关系。

该理论在讨论x 与y 的关系时认为影响y 的其他因素是不重要的,这些因素对y 的影响即为模型中的误差项。

2、01y x ββε=++被称为总体回归模型。

由该模型有:01E()E()y x x x ββε=++。

既然ε代表其他不重要因素对y的影响,因此标准假定是:E()0x ε=。

故进而有:01E()y x x ββ=+,这被称为总体回归方程(函数),而01ˆˆˆy x ββ=+相应地被称为样本回归方程。

由样本回归方程确定的ˆy与y 是有差异的,ˆy y -被称为残差ˆε。

进而有:01ˆˆˆy x ββε=++,这被称为样本回归模型。

二、 两种思考方法法一:12(,,...,)N y y y '与12ˆˆˆ(,,...,)N yy y '是N 维空间的两点,0ˆβ与1ˆβ的选择应该是这两点的距离最短。

这可以归结为求解一个数学问题:01012201ˆˆˆˆ,,11ˆˆˆ()()NNi i i i i i Min y y Min y x ββββββ==-=--∑∑ 由于ˆi i y y -是残差ˆi ε的定义,因此上述获得0ˆβ与1ˆβ的方法即是0ˆβ与1ˆβ的值应该使残差平方和最小。

法二:给定i x ,看起来i y 与ˆi y 越近越好(最近距离是0)。

然而,当你选择拟合直线使得i y 与ˆi y是相当近的时候,j y 与ˆj y的距离也许变远了,因此存在一个权衡。

一种简单的权衡方式是,给定12,,..,N x x x ,拟合直线的选择应该使1y 与2ˆy、2y 与2ˆy 、...、N y 与ˆN y 的距离的平均值是最小的。

距离是一个绝对值,数学处理较为麻烦,因此,我们把第二种思考方法转化求解数学问题:01012201ˆˆˆˆ,,11ˆˆˆ()/()/NNi i i i i i Min y y N Min y x N ββββββ==-=--∑∑ 由于N 为常数,因此法一与法二对于求解0ˆβ与1ˆβ的值是无差异的。

三、 求解定义2011ˆˆ()Ni ii Q y x ββ==--∑,利用一阶条件,有: 01001ˆˆ2()(1)0ˆˆˆ()0(1)ˆ0i ii iiQ y x y x βββββε∂=---=∂⇒--==∑∑∑由(1)也有:01ˆˆy x ββ=+ 在这里11N i i y y N ==∑、11Ni i x x N ==∑笔记:这表明:1、样本回归函数01ˆˆˆy x ββ=+过点(,)x y ,即穿过数据集的中心位置;2、ˆy y =(你能证明吗?),这意味着,尽管01ˆˆββ、的取值不能保证ˆi i y y =,但01ˆˆββ、的取值能够保证ˆy的平均值与y 的平均值相等;3、虽然不能保证每一个残差都为0,但我们可以保证残差的平均值为0。

从直觉上看,01ˆˆββ、作为对01ββ、的一个良好的猜测,它们应该满足这样的性质。

01101ˆˆ2()()0ˆˆˆ()0(2)ˆ0i i ii i ii iQ y x x y x x xβββββε∂=---=∂⇒--==∑∑∑笔记:对于简单线性回归模型:01y x ββε=++,在OLS 法下,由正规方程(1)可知,残差之和为零【注意:只有拟合直线带有截距时才存在正规方程(1)】。

由正规方程(2),并结合正规方程(1)有:1ˆˆˆˆˆ0()()()0ˆ(,)0i ii i iixx x x Cov x εεεεεε=⇒-=--=⇒=∑∑∑见练习()提示无论用何种估计方法,我们都希望残差所包含的信息价值很小,如果残差还含有大量的信息价值,那么该估计方法是需要改进的!对模型01y x ββε=++利用OLS ,我们能保证(1):残差均值为零;(2)残差与解释变量x 不相关【一个变量与另一个变量相关是一个重要的信息】。

方程(1)与(2)被称为正规方程,把01ˆˆy x ββ=-带入(2),有:11ˆ[()]0()ˆ()ii iiiiiy y x x xy y x x x xββ---=-⇒=-∑∑∑上述获得01ˆˆββ、的方法就是普通最小二乘法(OLS )。

练习: (1)验证:12222()()()()ˆ()()()i i i i i i i ii i i i iy y x y y x x x x y x x x x x x x x y Nx y x Nxβ----===----⋅=-∑∑∑∑∑∑∑∑提示:定义i Z 的离差为i i z Z Z =-,则离差之和10Nii z==∑必为零。

利用这个简单的代数性质,不难得到:()()()()()()i i iiiiiiy y x x y y x y y x x y x x --=---=-∑∑∑∑笔记:定义y 与x 的样本协方差、x 的样本方差分别为:2(,)()()/()()/i i i Cov x y x x y y N Var x x x N=--=-∑∑,则1(,)ˆ()Cov x y Var x β=。

上述定义的样本协方差及其样本方差分别是对总体协方差xy δ及其总体方差2x δ的有偏估计。

相应的无偏估计是:22()()/(1)()/(1)xy i i xi s x x y y N s x x N =---=--∑∑基于前述对()Var x 与(,)Cov x y 的定义,可以验证:2()()(,)(,)Var a bx b Var x Cov a bx y bCov x y +=+=其中a ,b 是常数。

值得指出的是,在本讲义中,在没有引起混淆的情况下,我们有时也用()Var x 、(,)Cov x y 来表示总体方差与协方差,不过上述公式同样成立。

(2)假定y x βε=+,用OLS 法拟合一个过原点的直线:ˆˆyx β=,求证在OLS 法下有: 2ˆi i ix y x β=∑∑ 并验证:∑∑∑+=222ˆˆi i i y y ε笔记:1、现在只有一个正规方程,该正规方程同样表明ˆ0i ixε=∑。

然而,由于模型无截距,因此在OLS 法下我们不能保证ˆ0iε=∑恒成立。

所以,尽管ˆ0i i x ε=∑成立,但现在该式并不意味着ˆ(,)0Cov x ε=成立。

2、无截距回归公式的一个应用:01101()()()i i i i i i y x y y x x y x ββεβεεββε=++⎫⎪⇓⇒-=-+-⎬⎪=++⎭定义ii F y y =-、i i D x x =-、i i e εε=-,则1i i i F D e β=+。

按照OLS 无截距回归公式,有:122()()ˆ()i i i i i i F D y y x x D x x β--==-∑∑∑∑(3)假定y βε=+,用OLS 法拟合一水平直线,即:ˆˆyβ=,求证ˆy β=。

笔记:证明上式有两种思路,一种思路是求解一个最优化问题,我们所获得的一个正规方程同样是ˆ0iε=∑;另外一种思路是,模型y βε=+是模型y x βε=+的特例,利用ˆ0i i x ε=∑的结论,注意到此时1ix =,因此同样有ˆ0i ε=∑。

(4)对模型01y x ββε=++进OLS 估计,证明残差与ˆy样本不相关,即ˆˆ(,)0Cov y ε=。

四、 拟合程度的判断(一)方差分解及其R 2的定义可以证明,ˆˆ()()()Var y Var y Var ε=+。

证明:ˆˆˆˆˆˆ()()()2(,)y yVar y Var y Var Cov y εεε=+⇒=++ 011ˆˆˆˆˆˆˆ(,)(,)(,)0ˆˆ()()()Cov y Cov x Cov x Var y Var yVar εββεβεε=+==∴=+方差表示一个变量波动的信息。

方差分解亦是信息分解。

建立样本回归函数01ˆˆˆyx ββ=+时,从直觉上看,我们当然希望关于ˆy的波动信息能够最大程度地体现关于y 的波动信息。

因此,我们定义判定系数2ˆ()()Var yR Var y =,显然,201R ≤≤。

如果R 2大,则y 的波动信息就越能够被ˆy的波动信息所体现。

R 2也被称为拟合优度。

当21R =时,ˆ()0Var ε=,而残差均值又为零,因此着各残差必都为零,故样本回归直线与样本数据完全拟合。

(二)总平方和、解释平方和与残差平方和定义:22222()ˆˆˆ()()ˆˆˆ()i i i i i TSS y y ESS yy y y RSS εεε=-=-=-=-=∑∑∑∑∑其中TSS 、ESS 、RSS 分别被称为总平方和、解释平方和与残差平方和。

根据方差分解,必有:TSS=ESS+RSS 。

因此,2/1/R ESS TSS RSS TSS ==-(三)关于R 2的基本结论1、R 2也是y 与ˆy的样本相关系数r 的平方。

证明:222ˆˆˆˆˆˆˆ(,)()(,)()ˆˆ(,)()ˆ()()()y yCov y y Var y Cov y Var y Cov y y Var y r R Var y Var yVar y εε=+⇒=+=⇒===2、对于简单线性回归模型:01y x ββε=++, R 2是y 与x 的样本相关系数的平方。

证明:22222011201122ˆˆˆˆ(,+)(,)(,)R ˆˆˆˆ()()()(+)()()(,)xyCov y x Cov y y Cov y x Var y Var y Var y Var x Var y Var x Cov y x r ββββββ=====练习:(1)对于模型:y βε=+,证明在OLS 法下R 2=0。

(2)对于模型:01y x ββε=++,证明在OLS 法221()ˆR ()Var x Var y β=警告!软件包通常是利用公式21/R RSS TSS =-,其中2ˆi RSS ε=∑来计算R 2。

相关文档
最新文档