7.5 空间向量及其应用

合集下载

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用空间直角坐标系的原则:规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

设 , ,空间向量的直角坐标运算:空间两点间距离: ;1:利用空间向量证明空间位置关系(同平面向量)2:利用空间向量求线线角、线面角1 )异面直线所成角 设 分别为异面直线的方向向量,则则:空间线段的中点 M (x ,y ,z )的坐标:2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则3 :利用空间向量求二面角其计算公式为:设 分别为平面 的法向量,则 与 互补或相等,操作方法:1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法:斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积,为斜面与射影所成二面角的平面角 )这个公式对于斜面为三角形, 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。

2.空间的距离点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离2)直线与平面所成的角的范围是[0, ] 。

射影转化法2方法 3)二面角的范围一般是指(0, ],解题时要注意图形的位置和题目的要求。

作二面角的平面角常有三种1)异面直线所成的角的范围是bF如右图所示,a、b 是两异面直线,n是a和b 的法向量,点 E ∈a,F∈ b ,则异面直线 a 与b 之间的距离EF n 是dn2)用法向量求点到平面的距离AB n 如右图所示,已知AB 是平面α的一条斜线,n 为平面α的法向量,则 A 到平面α的距离为d 如右图所示,已知AB 是平面α的一条斜线,n为平面α的法向量,则A到平面α的距离为d n(3)用法向量求直线到平面间的距离首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题。

第5节 空间向量及其应用

第5节 空间向量及其应用

第5节 空间向量及其应用知识梳理1.空间向量的有关概念(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积(1)两向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作OA→=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .(2)两向量的数量积:非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. 4.空间向量数量积的运算律 (1)结合律:(λa )·b =λ(a·b ); (2)交换律:a·b =b·a ;(3)分配律:a·(b +c )=a·b +a·c . 5.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.7.空间位置关系的向量表示1.在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O为平面内任意一点.2.在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x+y +z =1),O 为空间任意一点.3.向量的数量积满足交换律、分配律,即a ·b =b ·a ,a ·(b +c )=a ·b +a ·c 成立,但不满足结合律,即(a ·b )·c =a ·(b ·c )不一定成立.4.在利用MN →=xAB →+yAC →证明MN ∥平面ABC 时,必须说明M 点或N 点不在平面ABC 内.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)直线的方向向量是唯一确定的.( )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( )(3)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (4)若a ·b <0,则〈a ,b 〉是钝角.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)直线的方向向量不是唯一的,有无数多个;(2)a ⊥α;(3)若a ,b ,c 中有一个是0,则a ,b ,c 共面,不能构成空间一个基底;(4)若〈a ,b 〉=π,则a ·b <0,故不正确.2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( ) A.-12a +12b +c B.12a +12b +c C.-12a -12b +c D.12a -12b +c答案 A解析 由题意,根据向量运算的几何运算法则,BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB→)=c +12(b -a )=-12a +12b +c . 3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF→|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2.所以|EF→|=2,所以EF 的长为 2.4.(多选题)(2021·长沙质检)下列各组向量中,是平行向量的是( ) A.a =(1,2,-2),b =(-2,-4,4) B.c =(1,0,0),d =(-3,0,0) C.e =(2,3,0),f =(0,0,0) D.g =(-2,3,5),h =(16,-24,40) 答案 ABC解析 对于A ,有b =-2a ,所以a 与b 是平行向量; 对于B ,有d =-3c ,所以c 与d 是平行向量; 对于C ,f 是零向量,与e 是平行向量;对于D ,不满足g =λh ,所以g 与h 不是平行向量.5.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.55 B.53 C.255D.35答案 A解析 不妨令CB =1,则CA =CC 1=2,可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),∴BC 1→=(0,2,-1),AB 1→=(-2,2,1), ∴cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0.∴BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP→=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =________. 答案 18解析 因为OP→=34OA →+18OB →+tOC →,且P ,A ,B ,C 四点共面,所以根据空间向量共面的条件可知34+18+t =1,解得t =18.考点一 空间向量的运算及共线、共面定理1.(多选题)(2020·威海调研)如图所示,M 是四面体OABC 的棱BC 的中点,点N 在线段OM 上,点P 在线段AN 上,且AP =3PN ,ON→=23OM →,设OA →=a ,OB →=b ,OC →=c ,则下列等式成立的是( ) A.OM→=12b -12c B.AN→=13b +13c -a C.AP→=14b -14c -34aD.OP→=14a +14b +14c 答案 BD解析 对于A ,利用向量的平行四边形法则,OM→=12OB →+12OC →=12b +12c ,A 错误;对于B ,利用向量的平行四边形法则和三角形法则,得AN→=ON →-OA →=23OM →-OA →=23⎝ ⎛⎭⎪⎫12OB →+12OC →-OA →=13OB →+13OC →-OA →=13b +13c -a ,B 正确; 对于C ,因为点P 在线段AN 上,且AP =3PN ,所以AP→=34AN →=34⎝ ⎛⎭⎪⎫13b +13c -a =14b +14c -34a ,C 错误;对于D ,OP →=OA →+AP →=a +14b +14c -34a =14a +14b +14c ,D 正确,故选BD. 2.(多选题)(2021·武汉质检)下列说法中正确的是( ) A.|a |-|b |=|a +b |是a ,b 共线的充要条件 B.若AB→,CD →共线,则AB ∥CD C.A ,B ,C 三点不共线,对空间任意一点O ,若OP→=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点共面D.若P ,A ,B ,C 为空间四点,且有P A →=λPB →+μPC →(PB →,PC →不共线),则λ+μ=1是A ,B ,C 三点共线的充要条件 答案 CD解析 由|a |-|b |=|a +b |,可得向量a ,b 的方向相反,此时向量a ,b 共线,反之,当向量a ,b 同向时,不能得到|a |-|b |=|a +b |,所以A 不正确; 若AB→,CD →共线,则AB ∥CD 或A ,B ,C ,D 四点共线,所以B 不正确; 由A ,B ,C 三点不共线,对空间任意一点O ,若OP→=34OA →+18OB →+18OC →,因为34+18+18=1,可得P ,A ,B ,C 四点共面,故C 正确;若P ,A ,B ,C 为空间四点,且有P A →=λPB →+μPC →(PB →,PC →不共线),当λ+μ=1时,即μ=1-λ,可得P A →-PC →=λ(PB →+CP →),即CA →=λCB →,所以A ,B ,C 三点共线,反之也成立,即λ+μ=1是A ,B ,C 三点共线的充要条件,所以D 正确. 3.在空间四边形ABCD 中,若AB→=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →的坐标为( )A.(2,3,3)B.(-2,-3,-3)C.(5,-2,1)D.(-5,2,-1)答案 B解析 因为点E ,F 分别为线段BC ,AD 的中点,设O 为坐标原点,所以EF →=OF →-OE→,OF →=12(OA →+OD →),2所以EF→=12(OA →+OD →)-12(OB →+OC →)=12(BA →+CD →) =12[(3,-5,-2)+(-7,-1,-4)] =12(-4,-6,-6)=(-2,-3,-3).4.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP→=13VC →,VM →=23VB →,VN →=23VD →.则VA 与平面PMN 的位置关系是________. 答案 平行解析 如图所示,设VA →=a ,VB →=b ,VC→=c , 则VD→=a +c -b , 由题意知PM→=23b -13c ,PN→=23VD →-13VC →=23a -23b +13c . 因此VA→=32PM →+32PN →, ∴VA→,PM →,PN →共面.又∵VA ⊄平面PMN ,∴VA ∥平面PMN .感悟升华 1.(1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.(2)解题时应结合已知和所求观察图形,正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及四边形法则,就近表示所需向量. 2.(1)对空间任一点O ,OP→=xOA →+yOB →,若x +y =1,则点P ,A ,B 共线. (2)证明空间四点P ,M ,A ,B 共面的方法.②对空间任一点O ,OP→=OM →+xMA →+yMB →.考点二 空间向量的数量积及应用【例1】如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点. (1)求证:EG ⊥AB ; (2)求EG 的长;(3)求异面直线AG 和CE 所成角的余弦值. (1)证明 设AB→=a ,AC →=b ,AD →=c ,由题意知EG→=12(AC →+AD →-AB →)=12(b +c -a ),所以EG→·AB →=12(a ·b +a ·c -a 2)=12⎝ ⎛⎭⎪⎫1×1×12+1×1×12-1=0. 故EG→⊥AB →,即EG ⊥AB . (2)解 由(1)知EG→=-12a +12b +12c ,|EG→|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22.(3)解 AG →=12(AC →+AD →)=12b +12c , CE→=CA →+AE →=-b +12a , cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=⎝ ⎛⎭⎪⎫12b +12c ·⎝ ⎛⎭⎪⎫-b +12a ⎝ ⎛⎭⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.感悟升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角的平面角. (3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解. 【训练1】如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. (1)解 记AB →=a ,AD →=b ,AA 1→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,∴|AC →1|=6,即AC 1的长为 6.(2)证明 ∵AC 1→=a +b +c ,BD →=b -a , ∴AC 1→·BD →=(a +b +c )·(b -a ) =a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c=|b ||c |cos 60°-|a ||c |cos 60°=0. ∴AC 1→⊥BD →,∴AC 1⊥BD . (3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66. 考点三 利用空间向量证明平行、垂直【例2】如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明: (1)BE ⊥DC ; (2)BE ∥平面P AD ; (3)平面PCD ⊥平面P AD .证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0.所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD ,AB ⊂平面ABCD , 所以AB ⊥P A ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以AB ⊥平面P AD ,所以向量AB→=(1,0,0)为平面P AD 的一个法向量,而BE→·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面P AD , 所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0,不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB→=(0,1,1)·(1,0,0)=0,所以n ⊥AB →. 所以平面P AD ⊥平面PCD .感悟升华 1.利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理,如在(2)中忽略BE ⊄平面P AD 而致误. 【训练2】如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以C 为坐标原点,CB 为x 轴,CD 为y 轴,CP 为z 轴建立如图所示的空间直角坐标系C -xyz . ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4,∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP→=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面P AD 的一个法向量,则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,令y =2,得n =(-3,2,1).∵n ·CM→=-3×32+2×0+1×32=0, ∴n ⊥CM→.又CM ⊄平面P AD ,∴CM ∥平面P AD .(2)法一 由(1)知,BA→=(0,4,0),PB →=(23,0,-2),设平面P AB 的一个法向量m =(x 0,y 0,z 0), 即⎩⎪⎨⎪⎧BA →·m =0,PB →·m =0,即⎩⎨⎧4y 0=0,23x 0-2z 0=0,令x 0=1,得m =(1,0,3),又∵平面P AD 的一个法向量n =(-3,2,1), ∴m ·n =1×(-3)+0×2+3×1=0,∴m ⊥n , ∴平面P AB ⊥平面P AD .法二 如图,取AP 的中点E ,连接BE , 则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE→·DA →=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA →,∴BE ⊥DA . 又P A ∩DA =A ,P A ,DA ⊂平面P AD , ∴BE ⊥平面P AD . 又∵BE ⊂平面P AB , ∴平面P AB ⊥平面P AD .A 级 基础巩固一、选择题1.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A.P (2,3,3) B.P (-2,0,1) C.P (-4,4,0)D.P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP→·n =6-12+6=0,∴MP →⊥n , ∴点P 在平面α内,同理可验证其他三个点不在平面α内.2.已知a =(1,0,1),b =(x ,1,2),且a ·b =3,则向量a 与b 的夹角为( ) A.5π6 B.2π3C.π3D.π6答案 D解析 因为a ·b =x +2=3,所以x =1, 所以b =(1,1,2), 所以cos 〈a ,b 〉=a ·b|a ||b |=32×6=32, 又因为〈a ,b 〉∈[0,π],所以a 与b 的夹角为π6. 3.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c . 其中正确命题的个数是( ) A.0 B.1C.2D.3答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0.4.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A.a 2B.12a 2C.14a 2D.34a 2答案 C解析 如图,设AB→=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=a ,且a ,b ,c 三向量两两夹角为60°. AE→=12(a +b ),AF →=12c , ∴AE →·AF →=12(a +b )·12c=14(a ·c +b ·c )=14(a 2cos 60°+a 2cos 60°)=14a 2.5.(多选题)(2020·济南调研)已知平行六面体ABCD -A ′B ′C ′D ′,则下列四式中正确的有( ) A.AB→-CB →=AC → B.AC ′→=AB →+B ′C ′→+CC ′→ C.AA′→=CC ′→ D.AB →+BB ′→+BC →+C ′C →=AC ′→ 答案 ABC解析 如图,作出平行六面体ABCD -A ′B ′C ′D ′,可得AB →-CB →=AB →+BC →=AC →,则A 正确;AB →+B ′C ′→+CC ′→=AB →+BC →+CC ′→=AC ′→,则B 正确; C 显然正确;AB →+BB ′→+BC →+C ′C →=AB→+BC →=AC →,则D 不正确.综上,正确的有ABC.6.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( ) A.斜交 B.平行C.垂直D.MN 在平面BB 1C 1C 内答案 B解析 建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3, 则M ⎝ ⎛⎭⎪⎫a ,2a 3,a 3,N ⎝ ⎛⎭⎪⎫2a 3,2a 3,a ,MN →=⎝ ⎛⎭⎪⎫-a 3,0,2a 3. 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a ,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C . 二、填空题7.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________. 答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB→=0,得x ·0+y -z =0⇒y =z , 由m ·AC→=0,得x -z =0⇒x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.8.在空间直角坐标系O -xyz 中,已知点A (1,0,2),B (0,2,1),点C ,D 分别在x 轴,y 轴上,且AD ⊥BC ,那么|CD →|的最小值是________.答案255解析 设C (x ,0,0),D (0,y ,0), 因为A (1,0,2),B (0,2,1),所以AD→=(-1,y ,-2),BC →=(x ,-2,-1). 因为AD ⊥BC ,所以AD →·BC →=-x -2y +2=0,即x +2y =2.因为CD→=(-x ,y ,0), 所以|CD →|=x 2+y 2=(2-2y )2+y 2 =5y 2-8y +4=5⎝ ⎛⎭⎪⎫y -452+45≥255. 9.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP→=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的序号是________.答案 ①②③解析 ∵AB→·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确; 又AB ∩AD =A ,∴AP ⊥平面ABCD , ∴AP→是平面ABCD 的法向量,则③正确; ∵BD→=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误. 三、解答题10.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB .(1)证明 如图,以D 为原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0), C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0, P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a ,0).因为EF→·DC →=0,所以EF →⊥DC →,即EF ⊥CD . (2)解 设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则需FG→·CB →=0,且FG →·CP →=0,由FG→·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.所以G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 为AD 的中点.11.如图所示,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,过点E 作EF ⊥PB 于点F .求证: (1)P A ∥平面EDB ; (2)PB ⊥平面EFD .证明 以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系D -xyz . 设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a ,0,0),P (0,0,a ),C (0,a ,0), E ⎝ ⎛⎭⎪⎫0,a 2,a 2.因为底面ABCD 是正方形,所以G 为AC 的中点, 故点G 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,0,所以P A →=(a ,0,-a ),EG→=⎝ ⎛⎭⎪⎫a 2,0,-a 2, 则P A →=2EG→,故P A ∥EG .而EG ⊂平面EDB ,P A ⊄平面EDB , 所以P A ∥平面EDB .(2)依题意得B (a ,a ,0),所以PB →=(a ,a ,-a ). 又DE →=⎝ ⎛⎭⎪⎫0,a 2,a 2, 故PB →·DE →=0+a 22-a 22=0,所以PB →⊥DE →,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E , 所以PB ⊥平面EFD .B 级 能力提升12.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( )A.(1,1,1)B.⎝ ⎛⎭⎪⎫23,23,1C.⎝ ⎛⎭⎪⎫22,22,1D.⎝ ⎛⎭⎪⎫24,24,1答案 C解析 设AC 与BD 相交于O 点,连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO , 又O 是正方形ABCD 对角线交点, ∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1). 由中点坐标公式,知点M 的坐标⎝ ⎛⎭⎪⎫22,22,1.13.(多选题)(2021·重庆质检)如图,一个结晶体的形状为平行六面体ABCD -A 1B 1C 1D 1,其中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,则下列说法中正确的是( ) A.AC 1=66 B.AC 1⊥DBC.向量B 1C →与AA 1→的夹角是60° D.BD 1与AC 所成角的余弦值为63答案 AB解析 因为以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,所以AA 1→·AB →=AA 1→·AD →=AD →·AB →=6×6×cos 60°=18, (AA 1→+AB →+AD →)2=AA 1→2+AB →2+AD →2+2AA 1→·AB →+2AB →·AD →+2AA 1→·AD →=36+36+36+3×2×18=216,则|AC 1→|=|AA 1→+AB →+AD →|=66,所以A 正确; AC 1→·DB →=(AA 1→+AB →+AD →)·(AB →-AD →)=AA 1→·AB →-AA 1→·AD →+AB →2-AB →·AD →+AD →·AB →-AD→2=0,所以B 正确; 显然△AA 1D 为等边三角形,则∠AA 1D =60°.因为B 1C →=A 1D →,且向量A 1D →与AA 1→的夹角是120°,所以B 1C →与AA 1→的夹角也是120°,所以C 不正确;因为BD 1→=AD →+AA 1→-AB →,AC →=AB →+AD →,所以|BD 1→|=(AD →+AA 1→-AB →)2=62,|AC→|=(AB →+AD →)2=63,BD 1→·AC →=(AD →+AA 1→-AB →)·(AB →+AD →)=36,所以cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→|·|AC →|=3662×63=66,所以D不正确.14.如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,PD ⊥平面ABCD ,AD =1,AB =3,BC =4. (1)求证:BD ⊥PC .(2)设点E 在棱PC 上,PE →=λPC →,若DE ∥平面P AB ,求λ的值. 解 如图,在平面ABCD 内过点D 作直线DF ∥AB ,交BC 于点F ,以D 为坐标原点,DA ,DF ,DP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系,则A (1,0,0),B (1,3,0),D (0,0,0),C (-3,3,0). 设PD =a ,则P (0,0,a ),(1)证明 BD→=(-1,-3,0),PC →=(-3,3,-a ),因为BD →·PC →=3-3=0, 所以BD ⊥PC .(2)由题意知,AB →=(0,3,0),DP →=(0,0,a ),P A →=(1,0,-a ),PC →=(-3,3,-a ),因为PE→=λPC →,所以PE →=(-3λ,3λ,-aλ), DE→=DP →+PE →=(0,0,a )+(-3λ,3λ,-aλ) =(-3λ,3λ,a -aλ).设n =(x ,y ,z )为平面P AB 的法向量, 则⎩⎪⎨⎪⎧AB →·n =0,P A →·n =0,即⎩⎨⎧3y =0,x -az =0.令z =1,得x =a ,所以n =(a ,0,1), 因为DE ∥平面P AB ,所以DE→·n =0, 所以-3aλ+a -aλ=0,即a (1-4λ)=0, 因为a ≠0,所以λ=14.。

空间向量及向量的应用

空间向量及向量的应用

空间向量及向量的应用空间直角坐标系的原则:规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应。

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

设,,则:空间向量的直角坐标运算:空间两点间距离:;空间线段的中点M(x,y,z)的坐标:;1:利用空间向量证明空间位置关系(同平面向量)2:利用空间向量求线线角、线面角(1)异面直线所成角设分别为异面直线的方向向量,则(2)线面角设是直线l 的方向向量,n 是平面的法向量,则3:利用空间向量求二面角其计算公式为:设分别为平面的法向量,则θ与互补或相等,操作方法:1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

(1)异面直线所成的角的范围是]2,0(π。

转化为共面问题。

(2)直线与平面所成的角的范围是]2,0[π。

射影转化法。

(3)二面角的范围一般是指],0(π,解题时要注意图形的位置和题目的要求。

作二面角的平面角常有三种方法①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法:斜面面积和射影面积的关系公式:θcos ⋅='S S (S 为原斜面面积,S '为射影面积,θ为斜面与射影所成二面角的平面角)这个公式对于斜面为三角形,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时,如果能找得斜面面积的射影面积,可直接应用公式,求出二面角的大小。

2.空间的距离点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离。

3.空间向量的应用(1)用法向量求异面直线间的距离aE如右图所示,a 、b 是两异面直线,n 是a 和b 的法向量,点E ∈a ,F ∈b ,则异面直线 a 与b 之间的距离是nn EF d⋅=;(2)用法向量求点到平面的距离如右图所示,已知AB 是平面α的 一条斜线,n 为平面α的法向量,则 A 到平面α的距离为nn AB d ⋅=;(3)用法向量求直线到平面间的距离首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题。

空间向量应用知识点总结

空间向量应用知识点总结

空间向量应用知识点总结一、空间向量的定义和性质1. 空间向量的定义:空间中的向量是指具有大小和方向的物理量,可以在空间中表示为一个由起点和终点确定的有向线段。

2. 空间向量的几何意义:空间向量的几何意义是指用有向线段来表示向量,其方向由箭头表示,长度由线段的长度表示。

3. 空间向量的性质:空间向量与平面向量相似,具有平行、共线、相等、相反等性质,还有长度相等、共线向量的倍数、共面向量的叉乘等性质。

二、空间向量的运算1. 空间向量的加法:空间向量的加法是指两个向量相加后得到一个新的向量,其结果向量的大小和方向由两个向量的大小和方向决定。

2. 空间向量的减法:空间向量的减法是指一个向量减去另一个向量得到一个新的向量,其结果向量的大小和方向由两个向量的大小和方向决定。

3. 空间向量的数量积:空间向量的数量积是指两个向量相乘后得到一个数量,其结果是一个标量,其大小等于两个向量的模的乘积,其方向由两个向量的夹角决定。

4. 空间向量的叉积:空间向量的叉积是指两个向量相乘后得到一个新的向量,其结果向量的大小等于两个向量构成的平行四边形的面积,其方向垂直于两个向量构成的平面。

5. 空间向量的混合积:空间向量的混合积是指三个向量相乘后得到一个数量,其结果是一个标量,其大小等于三个向量构成的平行六面体的体积。

三、空间向量在物理学中的应用1. 力的合成:在物体受到多个力的作用时,可以利用空间向量的加法和减法原理,将所有的力向量进行合成或分解,从而求出合力或分力的大小和方向。

2. 力的平衡:当一个物体处于受力平衡状态时,可以利用空间向量的数量积或叉积原理,求出合力或力矩为零的条件,从而判断物体是否处于平衡状态。

3. 力的做功:当一个物体受到外力作用而发生位移时,可以利用空间向量的数量积原理,求出外力做功的大小和方向,从而判断外力对物体的能量变化情况。

4. 力的矢量描述:在分析物体的运动和力的作用时,可以通过空间向量的描述方法,将力的大小和方向用向量来表示,从而对物体的运动和受力情况进行分析。

空间向量的运用

空间向量的运用

空间向量的运用空间向量是三维空间中的一种表示方式,它可以用来描述物体的位置、方向和大小等特征。

在数学、物理学、工程学等领域中,空间向量被广泛应用于各种计算和分析问题中。

本文将介绍空间向量的基本概念和运用,并探讨其在几何、物理和工程等方面的具体应用。

一、空间向量的基本概念空间向量是由起点和终点确定的有向线段,具有大小和方向两个基本特征。

在三维空间中,空间向量通常用坐标表示,可以分为位移向量和力向量两类。

1. 位移向量:位移向量是用来描述物体在空间中移动的距离和方向,它的大小等于位移的长度,方向与位移的方向相同。

位移向量可以用起点坐标和终点坐标表示,也可以用分量表示。

2. 力向量:力向量是用来描述物体受力情况的向量,它的大小等于力的大小,方向与力的方向相同。

力向量通常用起点坐标和终点坐标表示,也可以用分量表示。

二、空间向量的运算空间向量的运算包括加法、减法、数乘等操作,这些运算可以对向量进行操作,得到新的向量。

1. 向量加法:向量加法是指将两个向量按照一定规则相加,得到一个新的向量。

向量的相加可以通过将两个向量的对应分量相加得到,或者通过平行四边形法则进行计算。

2. 向量减法:向量减法是指将一个向量减去另一个向量,得到一个新的向量。

向量的减法可以通过将两个向量的对应分量相减得到,或者通过平行四边形法则进行计算。

3. 数乘运算:数乘运算是指将一个向量乘以一个实数,得到一个新的向量。

数乘后的向量与原向量的方向相同,但大小变为原来的若干倍。

三、空间向量在几何中的运用空间向量在几何学中有许多应用,可以用来求解各种几何问题,比如计算线段长度、求解直线方程、判断点位置等。

1. 线段长度:通过计算线段的起点和终点坐标,可以得到线段的位移向量,进而计算线段的长度。

2. 直线方程:通过给定直线上的两个点或者一个点和一个方向向量,可以确定直线的方程,从而对直线进行分析和计算。

3. 判断点位置:通过已知点和一些向量信息,可以判断点的位置关系,比如点是否在直线上、是否在平面上等。

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

设血勺乃召),氓叫•乃w ),AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂)空间向量的直角坐标运算:设Q =2],砌,色3 $ =1鹉毎妇则;① 口+ b= P],曲,电 宀|俎,给禺 ・=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,© ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並:⑤ 口0Fe 鱼二 空三生=左或。

『舌寻口[三碣‘ - 冊节 处二赵;对® $⑥ 7丄匸q 口血十口曲十m 禺=0 ;空间两点间距离:丄“「1 :利用空间向量证明空间位置关系(同平面向量)2:利用空间向量求线线角、线面角(1)异面直线所成角Z • gw 设Q”分别为异面直线讥的方向向量,则则:空间线段的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则:规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则3 :利用空间向量求二面角其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等,- • «. m * n|( csfl i = |A>| = I 忘I * I 云I操作方法:1 •空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法:斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面角的平面角)这个公式对于斜面为三角形,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时如果能找得斜面面积的射影面积,可直接应用公式,求岀二面角的大小。

空间向量的应用认识空间向量的应用和几何解题方法

空间向量的应用认识空间向量的应用和几何解题方法

空间向量的应用认识空间向量的应用和几何解题方法空间向量的应用及认识空间向量的应用在数学中,空间向量是指具有大小和方向的向量,也称为三维向量。

空间向量在几何学和物理学中有广泛的应用,它们可以用于解决各种几何问题和实际应用中的物理问题。

本文将介绍空间向量及其应用,并讨论几种常见的解题方法。

一、空间向量的定义与性质空间向量是指由三个有序实数组成的有向线段。

假设有两点A和B,空间向量AB可以表示为→AB,它的大小等于线段AB的长度,方向则与线段AB的方向一致。

空间向量具有以下性质:1. 加法性质:如果有两个空间向量→AB和→BC,它们的和为→AC,即→AC = →AB + →BC。

2. 数乘性质:对于任意实数k,空间向量→AB乘以k的结果为k→AB,即k→AB = →BA。

3. 数量积性质:空间向量→AB和→AC的数量积为它们的模的乘积与它们夹角的余弦的乘积,即→AB·→AC = |→AB| × |→AC| × cosθ。

二、空间向量的应用1. 几何问题中的位置关系:空间向量可以用于判断点的位置关系。

例如,已知三个点A、B和C,可以通过向量→AB和→AC的数量积来判断它们的位置关系。

若→AB·→AC = 0,则表示点C在向量→AB 的延长线上;若→AB·→AC > 0,则表示点C在向量→AB的同侧;若→AB·→AC < 0,则表示点C在向量→AB的异侧。

2. 几何问题中的求解:空间向量可用于求解几何问题,如线段的中点坐标、平行四边形的面积等。

通过定义空间向量→AB = (x2-x1, y2-y1, z2-z1),可以得到线段AB的中点坐标为[(x1+x2)/2, (y1+y2)/2,(z1+z2)/2];平行四边形的面积可以通过向量的叉积来计算,即以两个边向量的叉积的模作为平行四边形的面积。

3. 物理学中的应用:空间向量在物理学中也有广泛的应用。

空间向量及其应用(理)89张

空间向量及其应用(理)89张

向量的坐标表示
01
空间中任意一点P可以由三维实数 坐标系中的有序实数组(x, y, z)唯 一确定。
02
向量也可以由其起点A和终点B的 坐标确定,记作向量AB。
向量的坐标运算
向量加法
设向量AB=(x1, y1, z1)和向量 BC=(x2, y2, z2),则向量AC= 向量AB+向量BC=(x1+x2, y1+y2, z1+z2)。
机器人控制
在机器人控制中,可以通过向量表示机器人的位置和姿态, 从而方便地控制机器人的运动。
THANK YOU
感谢聆听
向量的混合积与外积
向量的混合积
混合积是三个向量的乘积,表示三个向量构成的平行六面体的体积。混合积的 符号取决于三个向量的排列顺序。
外积
外积是两个向量的乘积,表示垂直于这两个向量的一个向量。外积的符号也取 决于两个向量的排列顺序。
03
向量在几何中的应用
向量在解决几何问题中的应用
利用向量表示点、线、面等几何元素,通过向量的 运算来研究几何性质。
空间向量及其应用(理)89张

CONTENCT

• 引言 • 向量的运算 • 向量在几何中的应用 • 向量的坐标表示与运算 • 向量的应用实例
01
引言
空间向量的定义与表示
空间向量
在三维空间中定义的向量,具有大小和方向。
向量表示
使用有向线段表示向量,起点为原点,终点为所表 示的点。

向量的长度或大小,用符号表示。
通过向量的数量积、向量积、混合积等运算,解决 平行、垂直、角度、长度等问题。
利用向量的投影和射影,解决点到直线的距离、点 到平面的距离等问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§7.5空间向量及其应用1.空间向量的有关概念2.空间向量中的有关定理 (1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在唯一的实数λ,使得a =λb . (2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在唯一的有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).5.空间位置关系的向量表示(1)直线的方向向量直线的方向向量是指和这条直线平行(或在这条直线上)的有向线段所表示的向量,一条直线的方向向量有无数个.(2)平面的法向量直线l⊥平面α,取直线l的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量.(3)概念方法微思考1.共线向量与共面向量相同吗?提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗?提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )c =a (b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ ) 题组二 教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2, ∴|EF →|=2,∴EF 的长为 2.题组三 易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______. 答案 18解析 ∵P ,A ,B ,C 四点共面, ∴34+18+t =1,∴t =18. 6.设μ,v 分别是两个不同平面α,β的法向量,μ=(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,μ·v =-2×3+2×(-2)+5×2=0,μ⊥v ,所以α⊥β; 当v =(4,-4,-10)时,v =-2μ,μ∥v ,所以α∥β.7.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则〈b ,c 〉=________,以b ,c 为方向向量的两直线的夹角为________. 答案 120° 60°解析 由题意得,(2a +b )·c =0+10-20=-10,即2a ·c +b ·c =-10.因为a ·c =4,所以b ·c =-18,所以cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12,所以〈b ,c 〉=120°,所以两直线的夹角为60°.空间向量的线性运算例1 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)A 1N →; (3)MP →+NC 1→.解 (1)∵P 是C 1D 1的中点,∴AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +12b +c .(2)∵N 是BC 的中点,∴A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c , 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , ∴MP →+NC 1→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫a +12c=32a +12b +32c . 思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 ∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. (2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( )A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) 答案 B解析 NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ). 共线定理、共面定理的应用例2 如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E,F,G,H四点共面;(2)求证:BD∥平面EFGH.证明(1)连接BG,则EG→=EB→+BG→→+BD→)=EB→+12(BC=EB→+BF→+EH→=EF→+EH→,由共面向量定理的推论知E,F,G,H四点共面.→=AH→-AE→(2)因为EH=12AD →-12AB → =12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .思维升华 证明三点共线和空间四点共面的方法比较跟踪训练2 如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行? 解 (1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1→)+AB → =kB 1A →+AB →=AB →-kAB 1→ =AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合, MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面, ∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内; 当0<k ≤1时,MN ∥平面ABB 1A 1.空间向量数量积及其应用例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点.(1)求证:EG ⊥AB ; (2)求EG 的长;(3)求异面直线AG 和CE 所成角的余弦值. (1)证明 设AB →=a ,AC →=b ,AD →=c , 由题意知EG →=12(AC →+AD →-AB →)=12(b +c -a ),所以EG →·AB →=12(a ·b +a ·c -a 2)=12⎝⎛⎭⎫1×1×12+1×1×12-1=0. 故EG →⊥AB →,即EG ⊥AB .(2)解 由题意知EG →=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22.(3)解 AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=⎝⎛⎭⎫12b +12c ·⎝⎛⎭⎫-b +12a ⎝⎛⎭⎫12b +12c 2·⎝⎛⎭⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝⎛⎦⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角. (3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.向量法证明平行、垂直例4 如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以C 为坐标原点,CB 为x 轴,CD 为y 轴,CP 为z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4,∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝⎛⎭⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝⎛⎭⎫32,0,32.(1)设n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎪⎨⎪⎧-y +2z =0,23x +3y =0,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD ,∴CM ∥平面P AD .(2)方法一 由(1)知,BA →=(0,4,0),PB →=(23,0,-2), 设平面P AB 的一个法向量m =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧BA →·m =0,PB →·m =0,即⎩⎪⎨⎪⎧4y 0=0,23x 0-2z 0=0,令x 0=1,得m =(1,0,3),又∵平面P AD 的一个法向量n =(-3,2,1), ∴m ·n =1×(-3)+0×2+3×1=0,∴m ⊥n , ∴平面P AB ⊥平面P AD .方法二 如图,取AP 的中点E ,连接BE , 则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA .又P A ∩DA =A ,P A ,DA ⊂平面P AD , ∴BE ⊥平面P AD .又∵BE ⊂平面P AB ,∴平面P AB ⊥平面P AD .思维升华 (1)用向量证明平行的方法①线线平行,只需证明两直线的方向向量是共线向量.②线面平行,证明直线的方向向量能用平面的两个基底表示,或证明直线的方向向量与平面的法向量垂直.③面面平行,证明两平面的法向量是共线向量. (2)用向量证明垂直的方法①线线垂直,只需证明两直线的方向向量互相垂直.②线面垂直,证明直线的方向向量与平面的法向量是共线向量. ③面面垂直,证明两平面的法向量互相垂直.跟踪训练4 如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1∥BC 且B 1C 1=12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明 由二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形,可得AA 1⊥平面BAC . 又∵AB =AC ,BC =2AB ,∴AB 2+AC 2=BC 2, ∴∠CAB =90°且CA ⊥AB , ∴AB ,AC ,AA 1两两互相垂直.以A 为坐标原点,AC ,AB ,AA 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Axyz .设AB =2,则A (0,0,0),B (0,2,0),A 1(0,0,2),C (2,0,0),C 1(1,1,2),B 1(0,2,2). (1)A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0.取y =1,则n =(0,1,0).∴A 1B 1→=2n ,即A 1B 1→∥n , ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2), 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). ∴AB 1→·m =0×1+2×(-1)+2×1=0,∴AB 1→⊥m .又AB 1⊄平面A 1C 1C ,∴AB 1∥平面A 1C 1C .1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案 B解析 由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143 C.145 D .2答案 D解析 由题意知a ·(a -λb )=0,即a 2-λa ·b =0,所以14-7λ=0,解得λ=2.3.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为( ) A.5π6 B.2π3 C.π3 D.π6 答案 D解析 ∵a·b =x +2=3,∴x =1,∴b =(1,1,2), ∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.4.(2020·北京海淀区模拟)在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ) A .0 B .1 C .2 D .3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.5.已知空间向量a ,b 满足|a |=|b |=1,且a ,b 的夹角为π3,O 为空间直角坐标系的原点,点A ,B 满足OA →=2a +b ,OB →=3a -b ,则△OAB 的面积为( ) A.52 3 B.54 3 C.74 3 D.114 答案 B 解析 |OA →|=(2a +b )2=4|a |2+|b |2+4a ·b =7,同理|OB →|=7,则cos ∠AOB =OA →·OB →|OA →||OB →|=6|a |2-|b |2+a ·b 7=1114,从而有sin ∠AOB =5314,∴△OAB 的面积S =12×7×7×5314=534,故选B.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2 C .1 D.3- 2 答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2, 故|BD →|=3- 2.7.(多选)下列各组向量中,是平行向量的是( ) A .a =(1,2,-2),b =(-2,-4,4) B .c =(1,0,0),d =(-3,0,0) C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,-24,40) 答案 ABC解析 对于A ,有b =-2a , 所以a 与b 是平行向量; 对于B ,有d =-3c , 所以c 与d 是平行向量;对于C ,f 是零向量,与e 是平行向量;对于D ,不满足g =λh , 所以g 与h 不是平行向量.8.(多选)有下列四个命题,其中不正确的命题有( )A .已知A ,B ,C ,D 是空间任意四点,则AB →+BC →+CD →+DA →=0 B .若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD →C .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量D .对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则P ,A ,B ,C 四点共面 答案 ACD解析 对于A ,已知A ,B ,C ,D 是空间任意四点, 则AB →+BC →+CD →+DA →=0,错误;对于B ,若两个非零向量AB →与CD →满足AB →+CD →=0, 则AB →∥CD →,正确;对于C ,分别表示空间向量的有向线段所在的直线是异面直线, 则这两个向量是共面向量,不正确;对于D ,对于空间的任意一点O 和不共线的三点A ,B ,C , 若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),当且仅当x +y +z =1时,P ,A ,B ,C 四点共面,故错误.9.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13VC →,VM →=23VB →,VN→=23VD →.则VA 与平面PMN 的位置关系是________. 答案 平行解析 如图,设VA →=a ,VB →=b ,VC →=c ,则VD →=a +c -b , 由题意知PM →=23b -13c ,PN →=23VD →-13VC →=23a -23b +13c . 因此VA →=32PM →+32PN →,∴VA →,PM →,PN →共面.又VA ⊄平面PMN ,∴VA ∥平面PMN .10.(2019·广州调研)已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1—→+A 1B 1—→)2=3A 1B 1→2; ②A 1C →·(A 1B 1—→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________. 答案 ①②解析 ①中,(A 1A →+A 1D 1—→+A 1B 1—→)2=A 1A →2+A 1D 1—→2+A 1B 1—→2=3A 1B 1—→2,故①正确;②中,A 1B 1—→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. 方法一 ∵CC ′⊥平面ABC 且CA ⊥CB ,∴以点C 为原点,分别以CA ,CB ,CC ′所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(图略).令AC =BC =AA ′=2,则A (2,0,0),B (0,2,0),C ′(0,0,2),A ′(2,0,2),B ′(0,2,2),E (0,2,1),D (1,1,0),(1)证明 ∴CE →=(0,2,1),A ′D —→=(-1,1,-2), ∵CE →·A ′D —→=0+2-2=0,∴CE →⊥A ′D —→,∴CE ⊥A ′D . (2)解 AC ′→=(-2,0,2),∴cos 〈CE →,AC ′→〉=CE →·AC ′→|CE →||AC ′→|=25·8=1010,即异面直线CE 与AC ′所成角的余弦值为1010. 方法二 设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0.(1)证明 CE →=b +12c ,A ′D —→=-c +12b -12a ,∴CE →·A ′D —→=-b ·c -12c 2+12b 2+14b ·c -12a ·b -14a ·c =0,∴CE →⊥A ′D —→,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=AC ′→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010. 12.如图,正方形ABCD 的边长为22,四边形BDEF 是平行四边形,BD 与AC 交于点G ,O 为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .证明 取BC 中点H ,连接OH ,则OH ∥BD , 又四边形ABCD 为正方形,∴AC ⊥BD ,∴OH ⊥AC , 故以O 为原点,建立如图所示的空间直角坐标系Oxyz ,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0). BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎪⎨⎪⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF → =(-2,-2,0)+(-1,-2,3) =(-3,-4,3),∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF . (2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →,即CF ⊥AF ,CF ⊥AE ,又AE ∩AF =A ,AE ,AF ⊂平面AEF ,∴CF ⊥平面AEF .13.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定答案 C解析 ∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.14.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案 56解析 连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a +23⎝⎛⎭⎫12b +12c -12a =16a +13b +13c . 又OG →=xOA →+yOB →+zOC →,所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________.答案 (1,1,2)解析 由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,平面PBC ⊥底面ABCD .求证:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,∵△PBC 为等边三角形,∴PO ⊥BC ,∵平面PBC ⊥底面ABCD ,平面PBC ∩底面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥底面ABCD . 以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3,∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3),∴BD →=(-2,-1,0),P A →=(1,-2,-3),∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴P A →⊥BD →,∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32. ∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3), ∴DM →·PB →=32×1+0×0+32×(-3)=0. ∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ⊂平面P AB ,PB ⊂平面P AB , ∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .。

相关文档
最新文档