函数的点对称和线对称问题
函数点对称线对称及周期总结

函数点对称线对称及周期总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII函数对称性、周期性全解析函数对称性、周期性是函数这一部分在历年高考中的一个重点,现在全部解析如下:一、同一函数的周期性、对称性问题(即函数自身)1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、对称性定义(略),请用图形来理解。
3、对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
有关函数对称性的几个重要结论

有关函数对称性的几个重要结论函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。
函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。
一函数自身的对称性[重要结论1]函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b。
证明:(必要性)设点 P(x,y)是 y=f(x)图像上任一点,∵点 P(x,y)关于点 A(a,b)的对称点P’(2a-x,2b-y)也在 y=f(x)图像上,∴ 2b-y=f(2a-x)。
即 y+f(2a-x)=2b,故 f(x)+f(2a-x)=2b,必要性得证。
(充分性)设点 P(x0,y0)是 y=f(x)图像上任一点,则 y0=f(x0)。
∵f(x)+f(2a-x)=2b,∴f(x0)+f(2a-x0)=2b,即 2b-y0=f(2a-x0)。
故点P’(2a-x0,2b-y0)也在 y=f(x)图像上,而点 P与点P’关于点 A(a,b)对称,充分性得征。
推论 1:函数 y=f(x)的图像关于原点 O对称的充要条件是 f(x)+f(-x)=0。
[重要结论 2]函数 y=f(x)的图像关于直线 x=a对称的充要条件是:f(a+x)=f(a-x),即 f(x)=f(2a-x)(证明同上)推论 2:函数 y=f(x)的图像关于 y轴对称的充要条件是 f(x)=f(-x)[重要结论 3](1)若函数 y=f(x)图像同时关于点 A(a, c)和点 B(b,c)成中心对称(a≠b),则 y=f(x)是周期函数,且 2|a-b|是其一个周期。
(2)若函数 y=f(x)图像同时关于直线 x=a和直线 x=b成轴对称(a≠b),则 y=f(x)是周期函数,且 2|a-b|是其一个周期。
函数的对称问题重点

函数的对称问题湖南彭向阳一、函数的自对称问题1.函数 y=f(x 的图象关于直线x=a 对称f(a+x=f(a-x ;特别,函数y=f(x 的图象关于y 轴对称f(x=f(-x.2.函数 y=f(x 的图象关于点(a,b 对称f(a+x+f(a-x=2b ;特别,函数y=f(x 的图象关于原点对称f(-x=-f(x.主要题型:1.求对称轴 (中心:除了三角函数y=sinx , y=cosx 的对称轴〔中心〕可以由以下结论直接写出来 (对称轴为函数取得最值时的x=,对称中心为函数与x 轴的交点外,其它函数的对称轴(中心就必须求解,求解有两种方法,一是利用对称的定义求解;二是利用图象变换求解.例 1 确定函数的图象的对称中心.解析 1 设函数的图象的对称中心为〔h, k〕,在图象上任意取一点P 〔x, y〕,它关于〔 h, k〕的对称点为Q〔 2h-x, 2k-y 〕, Q 点也在图象上,即有,由于,两式相加得,化简得〔*〕.由于 P 点的任意性,即〔 * 〕式对任意 x 都成立,从而必有 x 的系数和常数项都为 0,即h=1,k=1.所以函数的图象的对称中心为〔1,1〕.解析 2 设函数,那么g(x为奇函数,其对称中心为原点,由于,说明函数f(x 的图象是由g(x 的图象分别向右、向上平移 1 个单位得到,而原点向右、向上分别平移 1 个单位得到点 (1,1.所以函数的图象的对称中心为〔1,1〕.例 2 曲线 f(x=ax 3+bx2+cx ,当 x=1-时,f(x有极小值;当x=1+时,f(x有极大值,且在x=1 处切线的斜率为.(1 求 f(x ;(2 曲线上是否存在一点P,使得 y=f(x 的图象关于点P 中心对称?假设存在,求出点P 的坐标,并给出证明;假设不存在,请说明理由.解析 (1 =3ax2+2bx+c ,由题意知 1- 与 1+ 是 =3ax2+2bx+c=0 的根,代入解得 b=-3a, c=-6a.又 f(x 在 x=1 处切线的斜率为,所以,即3a+2b+c=,解得. 所以f(x .f(x0+x+f(x0-x=2y0 ,(2 假设存在P(x0 , y0,使得f(x 的图象关于点P 中心对称,那么即,化简得.由于是对任意实数x 都成立,所以,而 P在曲线y=f(x上.所以曲线上存在点P,使得y=f(x的图象关于点P 中心对称 .2.证明对称性:证明对称性有三种方法,一是利用定义,二是利用图象变换,三是利用前面的结论 ( 函数 y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b来解决.例 3 求证函数的图象关于点P〔 1,3 〕成中心对称.证明 1 在函数的图象上任意取一点A〔x, y〕,它关于点P〔 1,3 〕的对称点为 B〔2-x , 6-y 〕,因为,所以点 B 在函数的图象上,故函数的图象关于点P〔 1,3 〕对称 .证明2因为.由于是奇函数,所以的图象关于原点对称,将它的图象分别向右平移 1 个单位,向上平移 3 个单位,就得到函数的图象,所以的图象关于点P〔 1,3 〕对称 .所以的图象关于点 P〔 1,3 〕对称 .3.函数的对称性求函数的值或参数的值:由函数的对称性求值,关键是将对称问题转化为等式问题,然后对变量进行赋值求解. 例4 定义在R 上的函数f(x的图象关于点对称,且满足那么f(1+f(2+f(3++f(2005 的值为〔〕.A .解析由f(x 的图象关于点,即,即对称,那么说明函数,又,函数 f(x是偶函数是奇函数,也就是有,所以.所以,又,即 f(x 以 3 为周期, f(2=f(-1=1 , f(3=f(0=-2 ,所以 f(1+f(2+f(3+ +f(2005=668 〔 f(1+f(2+f(3 〕 +f(2005=f(2005=f(1=1 ,选 D.例 5 函数f(x=的图象关于点中心对称,求f(x.解析 1 设 f(x图象上任意一点A〔 x,y〕,它关于点的对称点为B,由于 A、 B 都在 f(x上,所以,相加整理得,解得 a=1.所以 f(x=.解析 2 由上面的公式有,代入化简整理得a=1.解析 3 由题意知将函数y=f(x的图象向左平移 1 个单位长度,向下平移个单位长度得y=的图象,它关于原点对称,即是奇函数,=,即 y=,它是奇函数必须常数项为0,即 a=1.二、函数的互对称问题1. y=f(x 与 y=g(x 的图象关于直线x=a 对称f(a+x=g(a-x ;2. y=f(x 与 y=g(x 的图象关于直线y=b 对称f(x+g(x=2b ;3. y=f(x 与 y=g(x 的图象关于点 (a , b 对称f(a+x+g(a-x=2b.4. y=f(x 与 y=g(x 的图象关于直线y=x 对称f(x 和 g(x 互为反函数 .记住这些结论不仅仅便于解决选择填空题,也便于解答题中的图象互相对称的函数解析式的求解问题 . 主要题型:1. 判断两个函数图象的对称关系例 6 在同一平面直角坐标系中,函数f(x=2x+1与g(x=21-x的图象关于(.A.直线x= 1 对称 B. x轴对称C.y轴对称D. 直线y=x对称解析作为一个选择题,可以取特殊点验证法,在f(x上取点(1,4,g(x上点(-1,4,而这两个点关于y 轴对称,所以选择 C.当然也可利用上面的结论解决,因为f(-x=2-x+1=g(x,所以f(x、g(x的图象关于y 轴对称,选 C.2.证明两个函数图象的对称性:一般利用对称的定义,先证明前一个函数图象上任意一点关于直线 ( 点的对称点在后一个函数的图象上,再证明后一个函数图象上任意一点关于直线( 点的对称点也在前一个函数的图象上,这两个步骤不能少.当然也可利用上面的结论来解决.例 7 函数f(x=x3-x,将y=f(x的图象沿x 轴、 y 轴正向分别平行移动t 、 s 单位,得到函数 y=g(x 的图象 . 求证: f(x和g(x的图象关于点A〔〕对称.解析由得g(x=(x-t3-(x-t+s.在 y=f(x的图象上任取一点P(x1,y1 ,设Q(x2,y2是P 关于点 A 的对称点,那么有,∴x1=t -x2, y1=s-y2.代入 y=f(x ,得 x2 和 y2 满足方程:s-y2=(t-x23-(t-x2,即y2=(x2-t3-(x2-t+s,可知点 Q(x2,y2 在 y=g(x 的图象上 .反过来,同样可以证明,在y=g(x的图象上的点关于点 A 的对称点也在y=f(x的图象上,因此,f(x和g(x的图象关于点A〔〕对称.3.由两个函数图象的对称性求参数值:首先必须根据对称性由函数求出另一函数的解析式,然后再由条件确定参数的值.例 8 f(x 是定义在上的偶函数,g(x的图象与f(x的图象关于直线x=1 对称,且当时, g(x=2a(x-2-3(x-23 ,其中为常数,假设f(x 的最大值为12,求 a 的值 .解析由于 g(x 的图象与 f(x 的图象关于直线x=1 对称,所以 f(1+x=g(1-x ,即 f(x=g(2-x.当时,,所以f(x=g(2-x= 2a(2-x-2-3(2-x-23=-2ax+3x3,因为f(x 是偶函数,所以当时,, f(x=f(-x=2ax-3x3.因为当时,=-2a+9x2 ≤ -2a+9<0,所以f(x 在上是减函数,从而f(x 在上是增函数,所以f(x 的最大值为f(1=f(-1=2a-3=12 ,即.。
高三函数对称性知识点汇总

高三函数对称性知识点汇总函数是数学中的重要概念,在高三数学学习中,函数的对称性是一个重要的知识点。
本文将对高三函数对称性的相关知识进行汇总,并介绍不同函数的对称性及其特点。
函数的对称性是指函数图像在某种变换下保持不变的性质。
在高三函数学习中,常见的函数对称性有以下几种:关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称。
一、关于x轴对称若函数图像在x轴两侧关于x轴对称,即对于函数中的每一个点(x, y),都存在另一个点(x, -y)也在函数图像上,则称函数关于x轴对称。
对于一个函数关于x轴对称的特点有:1. 函数的解析式中只含有偶次项,或不包含奇次项。
2. 函数图像关于y轴对称。
若函数图像在y轴两侧关于y轴对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, y)也在函数图像上,则称函数关于y 轴对称。
对于一个函数关于y轴对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。
2. 函数图像关于x轴对称。
三、关于原点对称若函数图像关于原点对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, -y)也在函数图像上,则称函数关于原点对称。
对于一个函数关于原点对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。
2. 函数图像关于原点对称。
当函数图像在直线L两侧对称时,我们称函数关于直线L对称。
对于关于直线对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。
2. 函数图像上关于直线L对称。
五、关于点对称若函数图像在点P两侧对称时,我们称函数关于点P对称。
对于关于点对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。
2. 函数图像关于点P对称。
综上所述,高三数学中的函数对称性知识点主要包括关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称等几种形式。
数学函数图像中的对称性问题浅析

课例研究新教师教学函数是我在高中数学的学习过程中非常重要的一部分,因为函数的应用几乎贯穿了整个高中数学学习中,它也是整个高中数学的核心内容,而高考中对于函数的考查也特别多,甚至考查的内容可能会比课本上的知识更深一点,因此我觉得能不能学好函数是在高考中数学是否能拿到高分的关键所在。
学好函数就要了解函数的概念和定义,还要熟练掌握函数的性质——单调性、周期性以及对称性。
在这里,我想主要谈一下我对函数对称性的理解。
我对于函数的对称性还是比较感兴趣的,从表面上看,函数的对称关系体现了数学之美,因为对称的图形总是比较美观的;往深里说,函数的对称性一直都是各种数学类考试的重点和热点,而且利用好函数的对称性还能很巧妙地解决数学问题。
我把函数的对称性问题进行了归纳和总结后,分成了两大类,除了常见的自身对称(奇偶函数的对称性),两函数图像对称(原函数与反函数的对称性)以外,函数图像的对称性还有一些图像关于点对称和关于直线对称的两类问题。
虽然将函数的对称性这样分成两大类更容易理解与掌握,但其实在实际的学习过程中,两函数图像关于某直线对称或关于某点成中心对称,还有函数自身的对称轴或对称中心这两种情况,我们总是容易混淆,从而造成解题失误。
事实上,这两种类型是有本质区别的,我想就这个问题总结一下相关的一些结论。
一、函数自身的对称性定理1.函数 的图像关于点对称的充要条件是。
其证明如下:(必要性)设点P (x ,y )是y=f (x )图像上任一点,∵点P (x ,y )关于点A (a ,b )的对称点P ’(2a-x ,2b-y )也在y=f (x )图像上,∴2b-y=f (2a-x ),即y+f (2a-x )=2b 故f (x )+f (2a-x )=2b ,必要性得证。
(充分性)设点P (x 0,y 0)是y=f (x )图像上任一点,则y 0=f (x 0)∵f (x )+f (2a-x )=2b ∴f (x 0)+f (2a-x 0)=2b ,即2b-y 0=f (2a-x 0)。
高中数学点线对称问题(精选.)

答案:B
2.曲线 y2=4x 关于直线 x=2 对称的曲线方程是
A.y2=8-4x
B.y2=4x-8
C.y2=16-4x
D.y2=4x-16
解析:设曲线 y2=4x 关于直线 x=2 对称的曲线为 C,在曲线 C 上任取一点 P(x,y),则 P(x,y)关
于直线 x=2 的对称点为 Q(4-x,y).因为 Q(4-x,y)在曲线 y2=4x 上,
答案:(5,6) 10.已知△ABC 的一个顶点 A(-1,-4),∠B、∠C 的平分线所在直线的方程分别为 l1:y+1=0,l2: x+y+1=0,求边 BC 所在直线的方程. 解:设点 A(-1,-4)关于直线 y+1=0 的对称点为 A′(x1,y1),则 x1=-1,y1=2×(-1)-(- 4)=2,即 A′(-1,2). 在直线 BC 上,再设点 A(-1,-4)关于 l2:x+y+1=0 的对称点为 A″(x2,y2),则有
即 (4 0)2 (5 3)2 =4 5 .
所以 ymin=4 5 .
12.直线 y=2x 是△ABC 中∠C 的平分线所在的直线,若 A、B 坐标分别为 A(-4,2)、B(3,1),求点 C 的坐标,并判断△ABC 的形状.
解:由题意,点 A 关于直线 y=2x 的对称点 A′在 BC 所在直线上,设 A′点坐标为(x1,y1),则 x1、y1 满足
y y0 ·k=-1, x x0
可求出 x′、y′.
y y0 =k· x x0 +b,
2
2
特殊地,点 P(x0,y0)关于直线 x=a 的对称点为 P′(2a-x0,y0);点 P(x0,y0)关于直线 y=关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可
【高考数学对称问题知识总结】 高考数学知识点总结

【高考数学对称问题知识总结】高考数学知识点总结各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢对称问题是高中数学的重要内容之一,在高考数学试题中常出现一些构思新颖解法灵活的对称问题,为使对称问题的知识系统化。
下面小编给大家带来高考数学对称问题知识,希望对你有帮助。
高考数学对称问题知识一、点关于已知点或已知直线对称点问题1、设点P关于点对称点为P′,x′=2a-x由中点坐标公式可得:y′=2b-y2、点P关于直线L:Ax+By+C=O 的对称点为x′=x-P′则y′=y-事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C 解此方程组可得结论。
=-1特别地,点P关于1、x轴和y轴的对称点分别为和2、直线x=a和y=a的对标点分别为和3、直线y=x和y=-x的对称点分别为和例1光线从A发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B,求射入y轴后的反射线所在的直线方程。
解:如图,由公式可求得A关于直线x-2y=0的对称点A′,B关于y轴对称点B′为,直线A′B′的方程为5x+6y-25=0`C`直线BC的方程为:5x-6y+25=0二、曲线关于已知点或已知直线的对称曲线问题求已知曲线F=0关于已知点或已知直线的对称曲线方程时,只须将曲线F=O上任意一点关于已知点或已知直线的对称点的坐标替换方程F=0中相应的作称即得,由此我们得出以下结论。
1、曲线F=0关于点的对称曲线的方程是F=02、曲线F=0关于直线Ax+By+C=0对称的曲线方程是F,y-)=0特别地,曲线F=0关于x轴和y轴对称的曲线方程分别是F 和F=0关于直线x=a和y=a对称的曲线方程分别是F=0和F=0关于直线y=x和y=-x对称的曲线方程分别是F=0和F=0除此以外还有以下两个结论:对函数y=f的图象而言,去掉y轴左边图象,保留y轴右边的图象,并作关于y轴的对称图象得到y=f的图象;保留x轴上方图象,将x轴下方图象翻折上去得到y=|f|的图象。
函数的对称性、周期性以及之间的关系

函数的对称性、周期性以及之间的关系对称性、奇偶性、周期性、单调性函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础.在研究函数图象的对称性时,一定要区分是一个图象自身的对称(称之为“自对称”),还是两个函数图象间的对称(称之为“互对称”)。
函数的对称性指的是函数的图象的对称性,通常包括点对称和直线对称,即中心对称和轴对称。
自对称一、函数的对称性关于函数图象的对称性,我们有这样两个命题。
命题1:如果函数y=f(x)的图像关于点M(m, n)对称,那么f (m +x) + f (m-x)=2n 即f(x)+f(2m-x)=2n命题2:如果函数y=f(x)的图像关于直线x=m对称,那么f (m +x) = f (m-x)即f (x) = f (2m-x)二、函数的奇偶性与对称性的联系命题1:函数y=f(x)的图像关于点M(0, 0)对称的充要条件是函数y= f (x)是奇函数,即f (x) + f (-x) = 0命题2:函数y=f(x)的图像关于点直线x=0对称的充要条件是函数y= f (x)是偶函数,即f (x) = f (-x)三、函数的周期性与对称性的联系包括点点对称、线线对称、点线对称的周期性命题:①若函数y = f (x) 图像同时关于点A (m ,c)和点B (n ,c)成中心对称(m ≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.②若函数y = f (x) 图像同时关于直线x = m 和直线x = n成轴对称(m≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.③若函数y = f (x)图像既关于点A (m ,c) 成中心对称又关于直线x =n成轴对称(m≠n),则y = f (x)是周期函数,且4| m-n|是其一个周期.(同为中心对称或同为轴对称乘2;一中心对称一轴对称乘4)四、函数的奇偶性、周期性和对称性的联系奇偶性只是特殊的点线对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的点对称和线对称问题
对称问题是中学数学中常见的一类问题,抽象函数的对称问题是其中的重要组成部分。
函数的对称问题又分为点对称问题和直线对称问题,下面,谈谈这两种对称问题。
一、点对称问题
所谓点对称问题,即:中心对称问题,其具体表现形式为:
1、若函数恒满足,则函数的图象关于点对称。
2、若函数的定义域为R,且是奇函数,则函数的图象关于点对称。
3、函数与函数的图象关于点对称。
例1、与直线关于点对称的直线的方程是()
解析:对于直线,可以看作是函数,则其关于点对称的函数为,即:,故应选(A)。
例2、定义域为R的函数恒满足,当>2时,单调递增,如果,则有,那么的值为()
解析:由,得
即:函数的图象关于点(2,0)对称。
又当>2时,单调递增,所以函数的图象在定义域为R也单调递增,且
又因,有
则、中必有一个大于2,一个小于2,设小于2,则大于2,,由单调性得
所以,应选(C)。
二、直线对称问题
所谓直线对称问题,即:轴对称问题,其具体表现形式为:
以下函数的定义域都为R
1、函数与函数的图象关于轴对称。
2、函数与函数的图象关于轴对称。
3、函数与函数的图象关于直线对称。
4、函数是偶函数,则函数的图象关于直线对称。
5、若函数对于任意的实数恒有,则函数的图象关于直线对称。
例3、若函数=任意的实数恒有,则()
解析:由对于任意的实数恒有,知二次函数的对称轴为,所以
∵抛物线开口向上,在时,单调递增
例4、函数=,若是偶函数,则的一个可能值是()
解析:由是偶函数,知函数的一条对称轴为轴。
⑵、定义域为R的函数满足下列三个条件:①,②对于任意的都有,③的图象关于轴对称,则下列结论中,正确的是()
⑶、定义域为R的函数满足为奇函数,当时,;那么,当时,的减区间是()
⑷、设定义域为R的奇函数,且的图象关于直线对称,则()。
⑸、若为奇函数,为偶函数,且,则()。
答案:⑴、(C),⑵、(B),⑶、(C),⑷、0,⑸、。
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
”。