2静电场中的电介质
合集下载
静电场中的电介质

r0
在国际单位制中,ε的单位为法拉每米(F·m–1)。
3.电介质的击穿
如果外电场足够大,电介质分子就会摆脱分子的束缚成为 自由电子,电介质的绝缘性被破坏而成为导体,这个过程称为 电介质的击穿,这个外电场的场强称为击穿场强。下表所示为 几种电介质的相对电容率和击穿场强。
1.3 电介质中的高斯定理
1.2 电介质的极化
电介质的极化是指在外电场作用下电介质表面产生极化电 荷的现象。其中,极化电荷又称束缚电荷,是指在外电场中, 均匀介质内部各处仍成电中性,但在介质表面出现的不能离开 电介质到其他带电体,也不能在电介质内部自由移动的电荷。
1.电介质极化的机理
由于组成电介质的分子结构不同,所以在外电场中极化 的微观机理也有所不同。对于无极分子,在外电场E0的作用 下,正、负电荷的中心被电场力拉开,使得正、负电荷中心 产生相对位移(这种极化称为位移极化),形成电偶极子。
由于受到外电场E0的作用,这些电偶极子的电偶极矩P 的方向将转向与外电场E0的方向一致。这样,在垂直E0方向 的介质两端表面就会出现正负电荷,如下图所示。
无外点场时,无极分子 正负电荷中心重合
外电场作用下,正负电荷 中心分离,形成电偶极子
电介质在垂直于外电场的 两端表面出现极化电荷
对于有极分子,无外电场时,虽然每个分子都有一定的电 偶极矩,但由于分子作无规则的热运动,所以各电偶极子的电 偶极矩的取向是杂乱无章的,对外不呈现出电性,如左图所示 但有外电场E0时,每个分子都受到一个力偶矩的作用。在此力 偶矩的作用下,有极分子的电偶极矩方向将转向与外电场基本 一致的方向,这种极化称为转向极化,其结果是电介质的两端 出现等量异号的电荷,如中图和右图所示。
物理学
静电场中的电介质
在国际单位制中,ε的单位为法拉每米(F·m–1)。
3.电介质的击穿
如果外电场足够大,电介质分子就会摆脱分子的束缚成为 自由电子,电介质的绝缘性被破坏而成为导体,这个过程称为 电介质的击穿,这个外电场的场强称为击穿场强。下表所示为 几种电介质的相对电容率和击穿场强。
1.3 电介质中的高斯定理
1.2 电介质的极化
电介质的极化是指在外电场作用下电介质表面产生极化电 荷的现象。其中,极化电荷又称束缚电荷,是指在外电场中, 均匀介质内部各处仍成电中性,但在介质表面出现的不能离开 电介质到其他带电体,也不能在电介质内部自由移动的电荷。
1.电介质极化的机理
由于组成电介质的分子结构不同,所以在外电场中极化 的微观机理也有所不同。对于无极分子,在外电场E0的作用 下,正、负电荷的中心被电场力拉开,使得正、负电荷中心 产生相对位移(这种极化称为位移极化),形成电偶极子。
由于受到外电场E0的作用,这些电偶极子的电偶极矩P 的方向将转向与外电场E0的方向一致。这样,在垂直E0方向 的介质两端表面就会出现正负电荷,如下图所示。
无外点场时,无极分子 正负电荷中心重合
外电场作用下,正负电荷 中心分离,形成电偶极子
电介质在垂直于外电场的 两端表面出现极化电荷
对于有极分子,无外电场时,虽然每个分子都有一定的电 偶极矩,但由于分子作无规则的热运动,所以各电偶极子的电 偶极矩的取向是杂乱无章的,对外不呈现出电性,如左图所示 但有外电场E0时,每个分子都受到一个力偶矩的作用。在此力 偶矩的作用下,有极分子的电偶极矩方向将转向与外电场基本 一致的方向,这种极化称为转向极化,其结果是电介质的两端 出现等量异号的电荷,如中图和右图所示。
物理学
静电场中的电介质
静电场中的电介质(2)

23
[例2]如图,两个半径分别为R1和R3的同心导体球面,带电量分 别为+Q、-Q,其中间充满相对介电常数分别为r1和r2的两层各向 同性均匀电介质,它们的分界面为一半径为R2的同心球面。求此 带电体系产生电场的能量。
解: 分析电场分布,求E。
选取球形高斯面,
则
D dS D4r2 Q
S1
D 0rE
S令
D 0rE E
称为电位移矢量
介质场中的高斯定理: D dS q0
S
说明:① D是一个辅助量,真正有意义的是场强 E。
它指出,通过闭合曲面的电位移通量,等于此闭合曲面内所 含的自由电荷。
② q0指曲面内所包含的自由电荷,与极化电荷无关,
E是由空间所有的电荷产生。
10
四、电位移矢量与电场强度的比较
E E0
r
' (1 1 ) r
介质场中的高斯定理
sD dS q0
29
三、电场的能量
e
1 2
DE
W
V edV
V
1 2
D
EdV
V
1 E2dV
2
We
Q2 2C
1 2
C(
UA
UB )2
1 2
Q(
U
A
UB)
四、电容和电容器
孤立导体:
q U
C
先设q 再求C
电容器: q C 先设q 再求C
解:两层介质中有
D1 D2 0 D
0 +
+
+
+
A
+
r1
d1
E1
D 1
0 0r1
E2
学院14-2静电场中的电介质

14.2
电场中的电介质
1. 电介质对电场的影响 2. 电介质的极化 3. 电介质的高斯定理 电位移矢量
一
电介质对电场的影响
电介质: 绝缘体(insulator) 电介质: 绝缘体(insulator)
(放在电场中的)电介 放在电场中的)
+Q
+
+ + + + +
-Q
-
+
电场 质 实验 结论: 结论: 介质充满电场或介质表面为等势面时
σ σ = d1 + d2 εoεr1 εoεr 2
ε1ε2S C = q / ∆V = ε1d2 + ε2d1
• 各电介质层中的场强不同 • 相当于电容器的串联
平板电容器中充介质的另一种情况 由极板内为等势体
∆V1 = ∆V2
σ
σ1 ∆S1 ε1 A ε2
−σ
∆V 1 E1 = d
∆V2 E2 = d
+
+ +
v v v v 令: D = ε0εr E = ε E ε —介电常数 D ---电位移矢量 ---电位移矢量 v v 则: --电介质的高斯定理 D⋅ dS = ∑q0i --电介质的高斯定理 ∫
S i
εr v v ε0εr E⋅ dS =σ0∆S = q0 ∫
S
E=
E0
+σ '
- - - - - - - - - - - - - - - - -
S1
A
ε1
S2 d1
ε2
B
D ∆S1 = σ∆S1 1
D =σ 1
同理, 同理,做一个圆柱形高斯面 S2
v v ∫ D⋅ dS = ∑qi (S2内) D2 = σ
电场中的电介质
1. 电介质对电场的影响 2. 电介质的极化 3. 电介质的高斯定理 电位移矢量
一
电介质对电场的影响
电介质: 绝缘体(insulator) 电介质: 绝缘体(insulator)
(放在电场中的)电介 放在电场中的)
+Q
+
+ + + + +
-Q
-
+
电场 质 实验 结论: 结论: 介质充满电场或介质表面为等势面时
σ σ = d1 + d2 εoεr1 εoεr 2
ε1ε2S C = q / ∆V = ε1d2 + ε2d1
• 各电介质层中的场强不同 • 相当于电容器的串联
平板电容器中充介质的另一种情况 由极板内为等势体
∆V1 = ∆V2
σ
σ1 ∆S1 ε1 A ε2
−σ
∆V 1 E1 = d
∆V2 E2 = d
+
+ +
v v v v 令: D = ε0εr E = ε E ε —介电常数 D ---电位移矢量 ---电位移矢量 v v 则: --电介质的高斯定理 D⋅ dS = ∑q0i --电介质的高斯定理 ∫
S i
εr v v ε0εr E⋅ dS =σ0∆S = q0 ∫
S
E=
E0
+σ '
- - - - - - - - - - - - - - - - -
S1
A
ε1
S2 d1
ε2
B
D ∆S1 = σ∆S1 1
D =σ 1
同理, 同理,做一个圆柱形高斯面 S2
v v ∫ D⋅ dS = ∑qi (S2内) D2 = σ
大学物理(6.2.1)--静电场中的电介质

d r
P
E
0 - -+- -+- -+- -+- -+-
E E0 0 r 0 r
'
(1
1 r
)
0
,
电极化率
10/13
电介质的击穿
理想电介质中没有自由电荷,但是实际的电 介质中总是存在一定的自由电荷。可以在电场作用 下产生微弱的电流。
加在电介质上的电场强度足够大时,电介质 中的电流迅速增加,其绝缘性能被破坏,甚至电介 质可能被烧毁。这叫电介质的击穿。
热释电性:温度的变化 表面产生极化电荷
电光效应:施加电场 晶体折射率发生变化
重要应用领域:
微电子学技术、超声波技术、电子光学、激光技术 、
新材料等
3/13
※ 电介质对电场的影响
( 电介质放在电场中)
U 0 E0
+
-
+
-
+
-
+
-
+
-
+
-
+
-
σ σ
电场
U E
+++++++
- - -εr- - - -
)
0
,
Q'
εr εr
1
Q0
9/13
※ 电极化强度与电场强度的关系
充满 r 的各向同性均匀电介质的平行板电容器
P
σ
'
r 1 r
0
,
P ( r 1)0E
P (r 1)0E
第十三章(2)电介质

斜圆柱体元内的电偶极矩为
pi
P dl dS cosθ
i
介质的极化使两底面产生极
化电荷 dS
因此斜柱体元又可看成一个
电偶极子
pi
σ dSdl
i
所以
pi
dl dS
c osθ P
i
P dl dS cosθ σ dSdl
五、闭合曲面内的极化电荷
在已极化的介质内任意作一闭合面S(如图所示)
S 将把位于 S 附近的电介质分子分为两部分: 一部分在 S 内,一部分在 S 外。 电偶极矩穿过S 的分子对S内的极化电荷有贡献。
S
q0
q' q0
设在介质内闭合曲面
S附近极化强度矢量
如图示。
S
取一宏观上足够小
、微观上足够大的 斜圆柱体元。
r R sin θ x R cos θ
知该带电圆环在球心的场强为
-+
-R +
- -P
- -
θ++
o R+s+in
z
- +R d
en
P
dEz
σ(2πR sin θRdθ) 4πε0
R cosθ [(R cosθ)2 (R sin θ)2 ]3/2
知该带电圆环在球心的场强为
pi
0
有极分子在外场中同样有位i 移极化,但是取向极化
效应要比位移极化效应更强。
有极分子的极化
电介质的极化: ①位移极化 位移极化
主要是电子发生位移
E0
无极分子只有位移极化,感生电矩的方向沿外场方向。 ②取向极化
10-2静电场中的电介质-有电介质时的高斯定理解析

若为不均匀极化,介质内有极化电荷的积累。
4. 电介质极化的定量描述
(1)电极化强度 P
用来量度电介质极化状态(极化的程度和方向)
P
单位:C/m²
pi V
物理意义:大量分子电偶极矩的统计平均值. 外场越强,极化越厉害,所产生的分子电矩的 矢量和也越大。 P E 如果电介质中各点的极化强度矢量大小和方向都 相同,则该极化是均匀的,否则极化是不均匀的.
Q
+++++++
U
Q
+++++++
-------
Q
U
-------
Q
r
U0
说明:
E0
E
r E0
ห้องสมุดไป่ตู้U0
(1)相对电容率 r 1 (2)电介质内附加电场方向与原电场相反(退极化场)。
r
E0
2.电介质对电场的影响
极化电荷 (产生附加电场 E ) ↑ 相互 电介质(绝缘体) 静电场(E0) 作用 ↓ 静电场重新分布 E E0 E
n
( ) PP ( (r 1) E QQ P E Q 1) 1) E 0 r 00 r
选-1 根据电介质中的高斯定理,在电介质中电位移 矢量沿任意一个闭合曲面的积分等于这个曲面 所包围自由电荷的代数和。下列推论正确的是
A. 若通过该曲面的电位移通量为零,曲面内一
E E0 E ' 0 E0 0
q ' 和 q 的关系。 2. D 、E、 P、 P 0 E P E
静电场中的电介质
由定义
C 与 d S 0 有关
S
C ; d C
插入介质
0S q C u A uB d
C
0 r S
d
C
(2)球形电容器 已知
设+q、-q 场强分布: E 电势差:
RB
RA RB
q
r q
B A
RA
q 4 0 r 2
q q
RB
1 1 u A uB dr ( ) 2 4 0 RA RB R A 4 0 r
f
pe
pe
3;
+ E + 外 + + + +
在外电场中有极分子的固有电 矩要受到一个力矩作用,电矩方 向趋于外电场方向。但由于热运 动的存在,不会完全一致。
有极分子的取向极化!
+ E + 外 + + + +
+
两端面出现极化电荷层
电介质被极化的宏观效果
①外电场越强,极化电荷越多; ②电介质不均匀,则不仅在电介质表面会出现极 化电荷,在电介质内部也会出现极化电荷; ③对均匀电介质,在其内部任一小区域内,正负 电荷数量仍然相等,因而仍然表现出电中性。
二、电极化强度和极化电荷
单位体积内分子电偶极矩的矢量和 P
1、电极化强度(矢量)
pi
V
物理意义:描述了电介质极化强弱,反映了电介质 内分子电偶极矩排列的有序或无序程度。
在各向同性的电介质中,P 0 E
称为电介质的电极化率,它取决于电介质的性质。
2、极化电荷和自由电荷 极化电荷
E E0
++++++ r + ------- C
C 与 d S 0 有关
S
C ; d C
插入介质
0S q C u A uB d
C
0 r S
d
C
(2)球形电容器 已知
设+q、-q 场强分布: E 电势差:
RB
RA RB
q
r q
B A
RA
q 4 0 r 2
q q
RB
1 1 u A uB dr ( ) 2 4 0 RA RB R A 4 0 r
f
pe
pe
3;
+ E + 外 + + + +
在外电场中有极分子的固有电 矩要受到一个力矩作用,电矩方 向趋于外电场方向。但由于热运 动的存在,不会完全一致。
有极分子的取向极化!
+ E + 外 + + + +
+
两端面出现极化电荷层
电介质被极化的宏观效果
①外电场越强,极化电荷越多; ②电介质不均匀,则不仅在电介质表面会出现极 化电荷,在电介质内部也会出现极化电荷; ③对均匀电介质,在其内部任一小区域内,正负 电荷数量仍然相等,因而仍然表现出电中性。
二、电极化强度和极化电荷
单位体积内分子电偶极矩的矢量和 P
1、电极化强度(矢量)
pi
V
物理意义:描述了电介质极化强弱,反映了电介质 内分子电偶极矩排列的有序或无序程度。
在各向同性的电介质中,P 0 E
称为电介质的电极化率,它取决于电介质的性质。
2、极化电荷和自由电荷 极化电荷
E E0
++++++ r + ------- C
2.静电场中的电介质
自由电荷 束缚电荷
1 E dS
S
0
q
S
0
1
0
P dS
S
( 0 E P) dS q0
S S
电位移矢量定义:
D 0E P
( 0 E P) dS q0
S S
自由电荷
3、极化(束缚)电荷与极化强度的关系: 对于均匀的电介质,极化电荷集中在它的表面。电介质 产生的一切宏观效果都是通过未抵消的束缚电荷来体现。
如图,在平板电容器两极板间的介 质内沿着方向取一长度为dl,横截面为 dS的小圆柱体,在其内部极化可视为 是均匀的。
dl
' dS
' dS
P
点的总场强为:
' 退极化场 是电介质中的总电场强度。 E E E 0 E0 是自由电荷产生的电场。
' E 是极化电荷产生的退极化场
E E0 E'
' '
2.电极化强度矢量
宏观上,电介质极化程度用电极化强度矢量来描述, 其定义式为:
P lim
pi
S S S in
Pn '
P dS dS
'
极化强度力线
在任一曲面内极化电荷的负值等于极化强度的通量。
四、电介质中的高斯定理
根据介质极化和 真空中高斯定律 ' P d S q
S S
S
电位移矢量
0
' ( q q 0 ) S
1 E dS
(2)对各向同性电介质( P e 0 E)
2静电场中的导体和电介质(精)
V 实验证明,对于绝大多数各向同性的介质,极化强度 P与电场强度E成正比,即P = 0 E
V 0
P
lim
p
式中称为介质的电极化率,它与场强E无关,取决于电介质。
2.5.3
束缚电荷
电介质处于极化状态时,在电介质的端面或内部上产生极化 电荷。这些电荷不能离开电介质表面,称为束缚电荷。 如果介质不均匀,在介质内部也会由于极化而出现束缚电荷。 设单位体积分子数为n,
这类分子在外电场的作用下,分子中的正负电荷中心
将发生相对位移,形成一个电偶极子,它们的等效电偶极 矩 P 的方向都沿着电场的方向,导致介质表面上出现了电
荷。这种情况称为介质的极化。
无极性分子电介质的这种极化方式称为位移极化。
有极性分子的极化
有极性分子的正负电荷中心即使在无外电场存在时也是不 重合的,例如水分子等。由于分子热运动的无规则性 , 在物理 小体积内的平均电偶极矩为零,宏观上也不显电性。 当介质受到外电场作用时,每个分子的电偶极矩都受到一 个力矩的作用,使分子电矩转向外电场方向,这样分子固有电 矩的矢量和就不等于零了。 但由于分子的热运动,这种转向并不完全。外电场越强, 分子电矩沿着电场方向排列得越整齐。
2.4
静电场中的导体
2.4.1 导体的静电平衡
金属导体中存在大量的自由电子,它们时刻作无规则的
微观运动(“热运动”)。当自由电子受到电场力作用时,
会在热运动的基础上附加一种有规则的宏观运动,形成电流。 当导体中自由电子不作宏观运动(没有电流)时,我们说导 体达到了静电平衡的状态。
2.4.1 导体的静电平衡
D=E
2.5.5
静电场的边界条件
在两种介质的分界面上,电场强度矢量E的切线分量连续。
静电场中的电介质
故,可用介质中的高斯定理求解
SD dS Q0
选半径为r,长度为L的高斯圆柱 面
r
R2 R1
SD dS l
D2 π rl l D
2πr
E D
ε0εr 2 π ε0εrr
(R1 r R2 )
P
0 E
( r
1) 0 E
r 1 2 πrr
r
R2 R1
(2) E
2π
0
r
r
E1 2 π 0 r R1 (r R1)
q0 有关.
s内
特例: 真空——特别介质
特例: 真空——特别介质
q' 0 , P 0 , D 0E P 0E
回到:
1
E
s
dS
0
(
q0
S内 )
3. 如何求解介质中电场?
本课程只要 求特殊情况
各向同性电介质 q0 ,q' 分布具有某些对称性
(1)各向同性电介质:
P
0E
为常数
D 0E P 0E 0E 0(1 )E
模型 “电子气”
与电场的 相互作用
静电感应
电偶极子
无极分子电介质: 位移极化 有极分子电介质: 转向极化
宏观 效果
静电平衡
导体内 E 导体表面
0, 0 E表面
内部:分子偶极矩矢量
和不为零
pi 0
i
感应电荷 0E 出现束缚电荷(极化电荷)
4.极化现象的描述
1) 从分子偶极矩角度
单位体积内分子偶极矩矢量和——极化强度.
R2的薄导体圆筒组成,其间充
以相对电容率为r的电介质. 设
直导体和圆筒单位长度上的电
荷分别为+和- . 求(1)电介 质中的电场强度、电位移矢量
SD dS Q0
选半径为r,长度为L的高斯圆柱 面
r
R2 R1
SD dS l
D2 π rl l D
2πr
E D
ε0εr 2 π ε0εrr
(R1 r R2 )
P
0 E
( r
1) 0 E
r 1 2 πrr
r
R2 R1
(2) E
2π
0
r
r
E1 2 π 0 r R1 (r R1)
q0 有关.
s内
特例: 真空——特别介质
特例: 真空——特别介质
q' 0 , P 0 , D 0E P 0E
回到:
1
E
s
dS
0
(
q0
S内 )
3. 如何求解介质中电场?
本课程只要 求特殊情况
各向同性电介质 q0 ,q' 分布具有某些对称性
(1)各向同性电介质:
P
0E
为常数
D 0E P 0E 0E 0(1 )E
模型 “电子气”
与电场的 相互作用
静电感应
电偶极子
无极分子电介质: 位移极化 有极分子电介质: 转向极化
宏观 效果
静电平衡
导体内 E 导体表面
0, 0 E表面
内部:分子偶极矩矢量
和不为零
pi 0
i
感应电荷 0E 出现束缚电荷(极化电荷)
4.极化现象的描述
1) 从分子偶极矩角度
单位体积内分子偶极矩矢量和——极化强度.
R2的薄导体圆筒组成,其间充
以相对电容率为r的电介质. 设
直导体和圆筒单位长度上的电
荷分别为+和- . 求(1)电介 质中的电场强度、电位移矢量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何描述电介质的极化状态?
电介质的极化有什么规律?
U
U0
r
E E0 / r
为什么插入电介质 会使电场减弱?
U U0 / d d r
2 电场对电介质的极化
电介质这类物质中,没有自由电子, 不导电, 也称为绝缘体。 电介质分子可分为有极和无极两类: (1)分子中的正电荷等效中心 与负电荷等效中心 重合的称为无极分子(如H2、 CH4、CO2) 无极分子在电场中, 正负电荷中心会被 拉开一段距离,产生 感应电偶极矩,这 称为位移极化。 无极分子
E
q q
p ql
感应电偶极矩
(2)分子中的正电荷等效中心 与负电荷等效中心 不重合的称为有极分子(如 HCl、H2O、NH3 )
有极分子在电场中, 固有电偶极矩会转向 电场的方向,这称为 转向极化。 说明: 有极分子 q
q q
E
l
q
固有电偶极矩
(1)静电场中,有极分子也有位移极化, 但主要是转向极化;
2 静电场中的电介质
1电介质对电场的影响
实验:插入电介质后,电压变小
U
U0
r
Q Q
Q Q
相对介电常数 (相对电容率)
r>1……介质的
E0
d
E
r
U0
U
状态而改变,无量纲, 可实验测定。
r 随介质种类和
例如:
空气 r=1, 云母 r=4~7
水(20℃, 1atm) r=80, 钛酸钡 r=103—104。
(2)由于热运动, 不是都平行于 E 。 P 分子 电场越强, P 的排列越整齐。 分子
总之,不管哪种电介质,极化机制虽然不同, 放到电场中都有极化现象,都会出现极化电荷 (也叫束缚电荷)。 例如左图的左右表面 E 上就有极化电荷。 正是这些极化电荷 的电场削弱了电介 质中的电场。