高三数学10月月考试题 理 (3)

合集下载

四川省成都市第七中学2025届高三上学期10月月考数学试题

四川省成都市第七中学2025届高三上学期10月月考数学试题

四川省成都市第七中学2025届高三上学期10月月考数学试题一、单选题1.已知集合{A x y ==,{}21x B y y ==+,则A B =I ( )A .(]1,2B .(]0,1C .[]1,2D .[]0,2 2.已知复数z 满足23i z z +=+,则3iz +=( )A .12i +B .12i -C .2i +D .2i -3.已知向量a r ,b r 满足222a b a b -=-=rr r r ,且1b =r ,则a b ⋅=r r ( )A .14 B .14- C .12 D .12-4.如图为函数y =f x 在[]6,6-上的图象,则()f x 的解析式只可能是( )A .())ln cos f x x x =B .())ln sin f x x x =C .())ln cos f x x x =D .())ln sin f x x x =5.已知()()cos f x x a x =+为奇函数,则曲线()y f x =在点()()π,πf 处的切线方程为( ) A .ππ0x y +-= B .ππ0x y -+= C .π0x y -+= D .0x y += 6.在体积为12的三棱锥A BCD -中,AC AD ⊥,BC BD ⊥,平面ACD ⊥平面BCD ,π3ACD ∠=,π4BCD ∠=,若点,,,A B C D 都在球O 的表面上,则球O 的表面积为( )A .12πB .16πC .32πD .48π7.若sin()cos 2sin()αβααβ+=-,则tan()αβ+的最大值为( )A B C D8.设2024log 2023a =,2023log 2022b =,0.2024log 0.2023c =,则( )A .c a b <<B .b c a <<C .b a c <<D .a b c <<二、多选题9.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件:11a >,202420251,a a >20242025101a a -<-,下列结论正确的是( ) A .20242025S S <B .202420261a a <C .2024T 是数列{}n T 中的最大值D .数列{}n T 无最大值10.一个不透明的盒子中装有大小和质地都相同的编号分别为1,2,3,4的4个小球,从中任意摸出两个球.设事件1A =“摸出的两个球的编号之和小于5”,事件2A =“摸出的两个球的编号都大于2”,事件3A =“摸出的两个球中有编号为3的球”,则( ) A .事件1A 与事件2A 是互斥事件B .事件1A 与事件3A 是对立事件C .事件1A 与事件3A 是相互独立事件D .事件23A A I 与事件13A A ⋂是互斥事件 11.已知6ln ,6e n m m a n a =+=+,其中e n m ≠,则e n m +的取值可以是( ) A .e B .2e C .23e D .24e三、填空题12.若1sin 3α=-,则()cos π2α-=. 13.设n S 是数列{}n a 的前n 项和,点()()*,n n a n N ∈在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为.14.已知点()2,0A ,()1,4B ,M ,N 是y 轴上的动点,且满足4MN =,AMN V 的外心P 在y 轴上的射影为Q ,则点P 的轨迹方程为,PQ PB +的最小值为.四、解答题V的内角A,B,C的对边分别为a,b,c,且15.设ABC()()()b a ABC BACc ABC C+∠-∠=∠-,BC,AC边上的两条中线AD,BE相交sin sin sin sin于点P.∠;(1)求BACV的面积.(2)若AD=BE=2,cos DPE∠=ABC16.如图,在三棱锥D-ABC中,△ABC是以AB为斜边的等腰直角三角形,△ABD是边长为2的正三角形,E为AD的中点,F为DC上一点,且平面BEF⊥平面ABD.(1)求证:AD⊥平面BEF;(2)若平面ABC⊥平面ABD,求平面BEF与平面BCD夹角的余弦值.17.为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:附表:2()()()()()n ad bc a b c d a c b d χ-=++++. (1)根据小概率值0.05α=的2χ独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为X ,每天看电子产品超过一小时的人数为Y ,求()P X Y =的值.18.已知函数()()ln 1f x x =+.(1)求曲线y =f x 在3x =处的切线方程.(2)讨论函数()()()F x ax f x a =-∈R 的单调性;(3)设函数()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.证明:存在实数m ,使得曲线y =g x 关于直线x m =对称.19.已知椭圆C 的对称中心在坐标原点,以坐标轴为对称轴,且经过点)和⎛- ⎝⎭. (1)求椭圆C 的标准方程; (2)过点()2,0M 作不与坐标轴平行的直线l 交曲线C 于A ,B 两点,过点A ,B 分别向x 轴作垂线,垂足分别为点D ,E ,直线AE 与直线BD 相交于P 点.①求证:点P 在定直线上;②求PAB V 面积的最大值.。

四川省绵阳中学2024-2025学年高三上学期10月月考数学试题

四川省绵阳中学2024-2025学年高三上学期10月月考数学试题

四川省绵阳中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知全集R U =,集合{}2230M x x x =--≤和{}21,Z N x x k k ==-∈的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个 2.围棋是中国传统棋种,蕴含着中华文化丰富内涵,围棋棋盘横竖各有19条线,共有19×19=361个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限3613M ≈.科学家们研究发现,可观测宇宙中普通物质的原子总数8010N ≈.则下列各数中与M N 最接近的是( )(参考数据:lg30.48≈) A .9310 B .8310 C .7310 D .53103.lg(tan 1)y x =-的定义域为( )A .ππππ,24x k x k k ⎧⎫+>>+∈⎨⎬⎩⎭Z B .πππ,π,42x x k x k k ⎧⎫>+≠+∈⎨⎬⎩⎭Z C .ππ,4x x k k ⎧⎫>+∈⎨⎬⎩⎭Z D .ππ,42k x x k ⎧⎫>+∈⎨⎬⎩⎭Z 4.设0.302a =.,0.20.3b =,0.2log 2c =,则( )A .c b a >>B .c a b >>C .b a c >>D .a b c >>5.设函数3()f x x x =,则不等式()()332log 3log 0f x f x +-<的解集是( )A .1,2727⎛⎫ ⎪⎝⎭B .10,27⎛⎫ ⎪⎝⎭ C .()0,27 D .()27,+∞6.下列选项可以使得1144xy -≤≤成立的一个充分不必要条件的是( ) A .221x y += B .2241x y += C .1x y += D .1y x= 7.函数()f x 的导函数()(1)(ln 1)f x x x ax '=-+-,若函数()f x 仅在1x =有极值,则a 的取值范围是( )A .21e a ≤- B .21e a <-或1a = C .21e a ≤-或1a = D .1a =8.存在三个实数1a ,2a ,3a 使其分别满足下述两个等式:(1)1232a a a =-;(2)1230a a a ++=,其中M 表示三个实数1a ,2a ,3a 中的最小值,则( )A .M 的最小值是2-B .M 的最大值是2-C .M 的最小值是D .M 的最大值是-二、多选题9.已知定义在R 上的奇函数()f x ,其周期为4,当(0,2)x ∈时,()22x f x =-,则( ) A .(2024)0f =B .()f x 的值域为(2,2)-C .()f x 在(2,2)-上单调递增D .()f x 在[4,4]-上有9个零点10.已知函数()214()log 21f x x ax =-+,下列说法正确的是( )A .()f x 关于x a =对称B .()f x 的值域为R ,当且仅当1a ≥或1a ≤-C .()f x 的最大值为1,当且仅当a =D .()f x 有极值,当且仅当1a <11.关于函数()cos sin2f x x x =,下列说法中正确的是( )A .图象关于直线π4x =对称B .()f x 为偶函数C .2π为()f x 的周期D三、填空题12.已知α顶点在坐标原点,始边与x 轴非负半轴重合,其终边上一点P 的坐标为11,23⎛⎫ ⎪⎝⎭,则sin 2α的值为13.甲说:()2ln 23y x ax =-+在(,1]-∞上单调递减,乙说:存在实数x 使得2210x ax -+>在1,22⎡⎤⎢⎥⎣⎦成立,若甲、乙两人至少有一人说的话是对的,则a 的取值范围是 14.已知不等式11e 2x a ax b -+-≥对任意的实数x 恒成立,则b a的最大值为.四、解答题15.已知函数3212()232a f x x x ax +=-+. (1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.16.已知函数()πsin 26f x x ⎛⎫=++ ⎪⎝⎭,将函数()f x 的图象向右平移π2个单位长度,再将所得函数图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()y g x =的图象. (1)求()g x 的解析式;(2)若关于x 的方程()g x k =-在区间π5π,186⎡⎤-⎢⎥⎣⎦上有且只有两个实数解,求实数k 的取值范围.17.已知ππ42α≤≤,3ππ2β≤≤,4sin 25α=,cos()αβ+= (1)求225sin 8sin cos 11cos 82222πsin 2ααααα++-⎛⎫- ⎪⎝⎭的值(2)求角βα-的值.18.已知函数()3ln 2(1)2x f x x x x=++--. (1)证明:曲线()y f x =是中心对称图形;(2)若()()214f m f m -+<,求实数m 的取值范围.19.已知函数()()()2ln 1cos 2g x x x =--+--,函数()f x 与()g x 的图像关于1x =-对称,.(1)求()f x 的解析式;(2)()1f x ax -≤在定义域内恒成立,求a 的值;(3)求证:2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑,*N n ∈.。

2024-2025学年四川省成都市高三上学期10月月考数学质量检测试卷(含解析)

2024-2025学年四川省成都市高三上学期10月月考数学质量检测试卷(含解析)

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应位置2024-2025学年四川省成都市高三上学期10月月考数学质量检测试卷.1. 已知集合{}1,2,4A =,2{N |20}B x x x =Î+-£,则A B =U ( )A. {}2,1,0,1,2,4-- B. {}0,1,2,4C. {}1,2,4 D. {}1【答案】B 【解析】【分析】根据一元二次不等式的解法,求得{}0,1B =,结合集合并集的概念与运算,即可求解.【详解】由不等式220x x +-£,可得(2)(1)0≤x x +-,解得21x -££,所以集合{}{N |21}0,1B x x =Î-££=,又因为{}1,2,4A =,可得{}0,1,2,4A B È=.故选:B.2. 2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如图,则( )A. 盛李豪的平均射击环数超过10.6B. 黄雨婷射击环数的第80百分位数为10.65C. 盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D.黄雨婷射击环数的极差小于盛李豪射击环数的极差【答案】C 【解析】【分析】根据图表数据可直接判断选项A ,利用第80百分位数的解法直接判断选项B ,根据图表的分散程度即可判断选项C ,根据极差的求法直接判断选项D.【详解】由题知,盛李豪的射击环数只有两次是10.8环,5次10.6环,其余都是10.6环以下,所以盛李豪平均射击环数低于10.6,故A 错误;由于140.811.2´=,故第80百分位数是从小到大排列的第12个数10.7,故B 错误;由于黄雨婷的射击环数更分散,故标准差更大,故C 正确;黄雨婷射击环数的极差为10.89.7 1.1-=,盛李豪的射击环数极差为10.810.30.5-=,故D 错误.故选:C3. 已知0.10.6a =,0.6log 0.3b =,0.6log 0.4c =,则a ,b ,c 的大小关系为( )A. b c a >> B. a b c >>C. c b a >> D. a c b>>【答案】A 【解析】【分析】由对数函数的底数小于1得到函数单调递减,判断出b ,c 的大小关系,又判断出b ,c 大于1,a 小于1,从而得出结论.【详解】由于0.6log y x =(0,)+¥单调递减,故0.60.60.6log 0.3log 0.4log 0.61b c =>=>=,又∵0.100.60.61a =<=,∴b c a >>.故选:A.4. 已知实数a ,b ,c 满足a b c >>,且0a b c ++=,则下列说法正确的是( )A. 22ab cb > B.222a cc a+³C. ||||a b > D. 0ab bc +>【答案】C 【解析】【分析】根据已知等式可确定0,0a c ><,结合不等式性质和作差法依次判断各个选项即可.【详解】由题,0,0a c ><,取1,0,1a b c ===-,则22ab cb =,故A 错误;在2522a c c a +=-,故B 错误;0ab bc +=,故D 错误;因为22()()()0a b a b a b c a b -=+-=-->,所以22a b >,即||||a b >,故C 正确.故选:C.5. “函数2()ln(22)f x x ax =-+的值域为R ”的一个充分不必要条件是( )A. [B. (C. ()-¥+¥U D. )+¥【答案】D 【解析】【分析】根据对数函数的性质,先分析出对数的真数部分能取得所有的正数,然后根据二次函数与其对应二次方程的关系,求出a 的范围即可求解.【详解】因为函数2()ln(22)f x x ax =-+的值域为R ,设222y x ax =-+,则二次函数y 需要取到一切正数,对应于方程2220x ax -+=中,0D ³,即2480a -³,解得a ³或a £,从而)+¥是“函数2()ln(22)f x x ax =-+的值域为R ”的充分不必要条件.故选:D6. 核燃料是重要的能量来源之一,在使用核燃料时,为了冷却熔化的核燃料,可以不断向反应堆注入水,但会产生大量放射性核元素污染的冷却水,称为核废水.核废水中含有一种放射性同位素氚,它有可能用辐射损伤细胞和组织,影响生物的繁殖和生态平衡.已知氚的半衰期约为12年,则氚含量变成初始量的110000大约需要经过( )年.(lg 20.3010»)A. 155 B. 159C. 162D. 166【答案】B 【解析】【分析】根据题意列出等量关系,借助换底公式和题目给出的参考量得出结果.【详解】设氚含量变成初始量的110000大约需要经过t 年,则1211()210000t =,121log 1210000t =,即48159lg 2t =»年,故选:B.7. 若函数()y f x =的图象如图1所示,则如图2对应的函数可能是( )A. (12)y f x =-B. 1(1)2y f x =-C. (12)y f x =--D. 1(1)2y f x =--【答案】A 【解析】【分析】根据函数定义域求出新函数定义域判断B,D;取特殊值判断C,根据函数平移伸缩变换判断A.【详解】由()y f x =的定义域为(1,)-+¥知,1(1)2y f x =-中111,42x x ->-<,不符合图2,故排除B ,D ;对于C ,当12x =时,(0)0y f =->,不满足图2,故C 错误;将函数()y f x =图关于y 轴对称,得到()y f x =-的图,向右平移1个单位得到(1)y f x =-的图,最后纵坐标不变,横坐标变为原来的一半,得到函数(12)y f x =-的图可能为图2.故选:A.8. 已知函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î,则方程()(3)2f x f x +-=的所有根之和为( )A. 0 B. 3C. 6D. 9【答案】C【解析】的【分析】将方程根的问题转化为函数()y f x =和2(3)y f x =--的图象交点横坐标问题,数形结合即可判断交点个数,再根据对称性求解和即可解答.【详解】方程()(3)2f x f x +-=的根为函数()y f x =和2(3)y f x =--的图象交点横坐标,由函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î得,()31,3,23232,3,x x x y f x x -ì<ï=--=íï-³î如下图所示,两函数图象共有4个交点,且因为()(3)2f x f x +-=,所以函数()y f x =与函数2(3)y f x =--的图象关于点3(,1)2中心对称,故方程()(3)2f x f x +-=的所有根之和为6.故选:C.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分, 部分选对的得部分分,有选错的得0分,.9. 已知函数()f x 的定义域为R ,()()()22f x y f x f y +=+,则( )A. ()00f = B. ()11f =C. ()f x 是奇函数 D. ()f x 在R 上单调递增【答案】AC 【解析】【分析】通过赋值法及特例逐项判断即可.【详解】由()()()22f x y f x f y +=+知,当0x y ==时, ()()030f f =,即()00f =,故A 正确;取()f x x =-,则()f x 满足条件()()()22f x y f x f y +=+,但()11f =-,且()f x 是在R 上单调递减,故B ,D错误;当,x t y t =-=时,()()()2f t f t f t =-+,即()()f t f t -=-,故C 正确.故选:AC.10. 已知复数12,z z 的共轭复数分别为21,z z ,则下列命题为真命题的是( )A. 1212z z z z +=+B. 1212z z z z ×=×C. 若120z z ->,则12z z >D. 若2221212z z z z +=+,则21210z z z z +××=【答案】ABD 【解析】分析】设出1i z a b =+,2i z c d =+,,,,R a b c d Î,结合共轭复数及模长定义与复数运算法则逐项计算可判断A 、B 、D ;举出反例可判断C.【详解】设1i z a b =+,2i z c d =+,且,,,R a b c d Î,则1i z a b =-,2i z c d =-;对A :12i i ()i z z a b c d a c b d +=+++=+++,12()i a c z b d z +=+-+所以12()i a c z b d z -=+++,所以1212z z z z +=+,故A 正确;对B :12i)(i)()i (()z z a b c d ac bd bc ad ++=--+=,12i)(i)()i (()z z a b c d ac bd bc ad --=--+=,故B 正确;对C :当1212i,2i z z =+=时,满足1210z z -=>,但不能得出12z z >,故C 错误;对D :2121212121211221212()()()()z z z z z z z z z z z z z z z z z z +=++=++=+++22121212z z z z z z =+++,故11220z z z z +=,故D 正确.故选:ABD.11. 设函数()()()ln f x x a x b =++,则下面说法正确的是( )A. 当0,1a b ==时,函数()f x 在定义域上仅有一个零点B. 当0,0a b ==时,函数()f x 在(1,)+¥上单调递增C. 若函数()f x 存在极值点,则a b£【D. 若()0f x ³,则22a b +的最小值为12【答案】ABD 【解析】【分析】代入0,1a b ==得到()f x 解析式,结合对数运算可得A 正确;求导分析单调性可得B 正确;当a b £时求导分析,当a b >利用换元法二次求导数分析可得C 错误;由复合函数同增异减得到()f x 的单调性,再结合二次函数取值可得D 正确;【详解】对于A ,当0,1a b ==时,()ln(1)f x x x =+,由()0f x =得,0x =,函数()f x 在定义域上仅有一个零点,故A 正确;对于B ,当0a b ==时,函数()ln f x x x =,当1x >时,()ln 10f x x ¢=+>,故函数()f x 在(1,)+¥上单调递增,故B 正确;对于C ,()ln()ln()1x a a bf x x b x b x b x b+-¢=++=+++++,当a b £时,函数()f x ¢在定义域上单调递增,且当x b ®-时,()f x ¥¢®-,当x ®+¥时,()f x ¥¢®+,此时函数()f x ¢存在零点0x ,即函数()f x 在0(,)b x -上单调递减,在0(,)x +¥上单调递增,故此时函数()f x 存在极值点,当a b >时,设()ln()1a b g x x b x b-=++++,则()2212()()a b x b a g x x b x b x b -+-=-=+++¢,令()0g x ¢=,则2x a b =-,故函数()f x ¢在(,2)b a b --上单调递减,在(2,)a b -+¥上单调递增,故()()2ln()2f x f a b a b ¢³¢-=-+,故当21e b a b <<+时,函数()f x ¢存在零点,函数()f x 存在极值点,综上,当函数()f x 存在极值点时,21eb a b <<+或a b £,故C 错误;对于D ,()()ln 0x a x b ++³恒成立,当()0f x =时,x a =-或1x b =-,当且仅当两个零点重合时, 即1a b -=-,因为y x a =+为增函数,设()()1ln ln 1y x b x a =+=++,则1y 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,所以函数()f x 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,满足()()ln 0x a x b ++³, 则22212212a b b b +=-+³,当12b =时取“=”,故D 正确,故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12. 若函数2()23f x x kx =++在[1,2]上单调,则实数k 的取值范围为_____.【答案】8k £-或4k ³-【解析】【分析】运用二次函数的单调性知识,结合对称轴可解.【详解】函数2()23f x x kx =++的对称轴为04k x =-,故当24k -³或14k-£时,函数()f x 在[1,2]上单调,即8k £-或4k ³-,故答案为:8k £-或4k ³-.13.若()y f x =是定义在R 上的奇函数,()(2)f x f x =-,(1)2f =,则(1)(2)(3)(2025)f f f f +++=L ________.【答案】2【解析】【分析】根据题意,推得(4)()f x f x +=,得到()y f x =的周期为4,再求得(1),(2),(3),(4)f f f f 的值,结合周期性,即可求解.【详解】因为函数()y f x =是定义在R 上的奇函数,故()()f x f x -=-,又因为()(2)f x f x =-,所以(2)()f x f x -=--,故(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,即()y f x =的周期为4,由于()y f x =为定义在R 上的奇函数,且(1)2f =,可得(0)0f =,(2)(0)0f f ==,(3)(1)(1)2f f f =-=-=-,所以(1)(2)(3)(4)0f f f f +++=,则(1)(2)(3)(2025)f f f f +++=L 506[(1)(2)(3)(4)](1)2f f f f f ´++++=.故答案为:2.14. 若过点()1,b 作曲线e x y x =的切线有且仅有两条,则b 的取值范围是______.【答案】25[0,e)e ìü-íýîþU 【解析】【分析】由题意,设切点000(,e )xx x ,利用相切性质得到关于0,b x 的关系式0200(1)e xb x x =-+,将切线条数问题转化为关于0x 的方程解的个数问题求解,再分离参数转化为函数2()(1)e x g x x x =-+的图象与直线y b =的交点个数问题,构造函数研究函数的单调性与最值,数形结合求b 的范围即可.【详解】设切点为000(,e )xx x ,()(1)e x f x x ¢=+,故切线方程为00000e (1)e ()x x y x x x x -=+-,将()1,b 代入切线方程得00000e(1)e (1)x x b x x x -=+-,0200(1)e x b x x \=-+,过点()1,b 作曲线e x y x =的切线有且仅有两条,则关于0x 的方程0200(1)e xb x x =-+有两解,可转化为直线y b =与函数2(1)e x y x x =-+的图象有两个交点.令2()(1)e x g x x x =-+,则2()(2)e (1)(2)e x x g x x x x x ¢=--=--+,当2x <-时,()0f x ¢<,()f x 在(),2¥--单调递减;当2<<1x -时,()0f x ¢>,()f x 在()2,1-单调递增;当1x >时,()0f x ¢<,()f x 在(1,+∞)单调递减;故()g x 的单调减区间(,2),(1,)-¥-+¥,增区间是(2,1)-.当x ®-¥时,()0g x ®,当x ®+¥时,()g x ®-¥,且25(1)e,(2)e g g =-=-,当y b =与()y g x =有且仅有两个交点时,25[0,e)e b ìüÎÈ-íýîþ,故答案为:25[0,e)e ìüÈ-íýîþ.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()1ln 1kxf x x -=-为奇函数.(1)求实数k 值;(2)若函数()()2xg x f x m =-+,且()g x 在区间[]2,3上没有零点,求实数m 的取值范围.【答案】(1)1-(2)(,4ln 3)(8ln 2,)m Î-¥--+¥U 【解析】【分析】(1)根据奇函数定义建立方程,解得1k =±,检验即可求解;(2)利用导数研究函数的单调性可知()g x 在[2,3]上单调递减,根据零点的概念建立不等式,解之即可求解.【小问1详解】因为()1ln1kxf x x -=-是奇函数,所以()()f x f x -=-, 即11ln ln ln 1111kx kx x x kx x --+=-=----, 所以1111kx x kxx +=----,故22211k x x -=-,则1k =±,当1k =时,111xx -=--显然不成立;经验证:1k =-符合题意;所以1k =-;【小问2详解】由1()ln21x x g x m x +=-+-,22()2ln 21x g x x ¢=---, 当[2,3]x Î时,()0g x ¢<,故()g x 在[2,3]上单调递减.的的故()[ln 28,ln 34]g x m m Î-+-+.因为()g x 在区间[]2,3上没有零点,所以ln 280m -+>或ln 340m -+<,解得4ln 3m <-或8ln 2m >-,即(,4ln 3)(8ln 2,)m Î-¥--+¥U .16. 已知三棱锥D ABC -,D 在平面ABC 上的射影为ABC V 的重心O ,15AC AB ==,24BC =.(1)证明:BC AD ^;(2)E 为AD 上靠近A 的三等分点,若三棱锥D ABC -的体积为432,求二面角E CO B --的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得AM BC ^、OD ^平面ABC ,根据线面垂直的性质可得OD BC ^,结合线面垂直的判定定理和性质即可证明;(2)建立如图空间直角坐标系,利用三棱锥的体积公式求得12OD =,由空间向量的线性运算求得()4,0,4OE =uuu r,结合空间向量法求解面面角即可.【小问1详解】如图所示,连结AO 并延长交BC 于M ,因为O 为△ABC 的重心,所以M 是BC 的中点,又因为AC AB =,所以由等腰三角形三线合一可得AM BC ^, 因为D 在平面ABC 上的射影为O ,所以OD ^平面ABC , 又ÌBC 平面ABC ,所以OD BC ^,又,,AM OD O AM OD =ÌI 平面AMD ,所以^BC 平面AMD , 又AD Ì平面AMD ,所以BC AD ^,【小问2详解】由(1)知AM BC ^,OD ^面ABC ,过M 作z 轴平行于OD ,则z 轴垂直于面ABC ,如图,以,MA MB 为x 轴,y 轴,建立空间直角坐标系,在ABC V 中,15AC AB ==,24BC =由(1)知,AM BC ^,故9AM ==,得11082ABC S AM BC =×=V , 所以三棱锥A-BCD 的体积为 1110843233ABC S OD OD ×=´´=V ,则12OD =因为O 为△ABC 的重心,故133OM AM ==,则()()()()()0,12,0,0,12,0,3,0,0,9,0,0,3,0,12C B O A D -,()()()6,0,0,6,0,12,3,12,0OA AD OC ==-=--uuu r uuu r uuu r因为E 为AD 上靠近A 的三等分点,所以()12,0,43AE AD ==-uuu r uuu r,故()14,0,43OE OA AD =+=uuu r uuu r uuu r设(),,n x y z =r 为平面ECO 的一个法向量,则4403120n OE x z n OC x y ì×=+=ïí×=--=ïîuuu r r uuu rr ,取4x =,则1,4y z =-=-,故()4,1,4n =--r,易得()0,0,1m =r是平面COB 的一个法向量, 设二面角E CO B --的平面角为q ,则q 为钝角,所以cos cos ,m n m n m n q ×=-=-==r r r rr r 所以二面角E CO B --的余弦值为 【点睛】17. 某小区有3000名居民,想通过验血的方法筛选乙肝病毒携带者,假设携带病毒的人占%a .为减轻工作量,随机地按n 人一组分组,然后将各组n 个人的血样混合在一起化验.若混合血样呈阴性,说明这n 个人全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.(1)若0.2,20,a n ==试估算该小区化验的总次数;(2)若0.9a =,且每人单独化验一次花费10元,n 人混合化验一次花费9n +元,求当n为何值时,每个居民化验的平均费用最少.注:假设每位居民的化验结果呈阴性还是阳性相互独立.当00.01p <<时,(1)1n p np -»-.【答案】(1)270 (2)10【解析】【分析】(1)设每组居民需化验的次数为X ,确定其取值,分别求概率,进而可得期望,即得;(2)设每组n 人总费用为Y 元,结合条件计算,然后表示出结合基本不等式即得.【小问1详解】设每组需要检验的次数为X ,若混合血样为阴性,则1X =,若混合血样呈阳性,则21X =, 所以20(1)(10.002)P X ==-,20(21)1(10.002)P X ==--, 所以202020()1(10.002)21[1(10.002)]2120(10.002)E X =´-+´--=-´-2120(1200.002) 1.8»-´-´=一共有300020150¸=组,故估计该小区化验的总次数是1.8150270´=.【小问2详解】设每组n 人总费用为Y 元,若混合血样呈阴性,则9Y n =+;若混合血样呈阳性,则119Y n =+,故(9)(10.009)n P Y n =+=-,(119)1(10.009)n P Y n =+=--()(9)0.991(119)(10.991)11100.9919n n n E Y n n n n =+×++×-=-´+每位居民的化验费用为()11100.99199911100.9911110(10.009)n n E Y n n n n n n n-´+==-´+»-´-+=911100.091 2.8n n -++³+=元 当且仅当90.09n n=,即10n =时取等号,故10n =时,每个居民化验的平均费用最少.18. 在平面直角坐标系xOy 中,已知()1,1A ,()1,1B -,动点P 满足OP mOA nOB =+uuu r uuu r uuu r,且1mn =.设动点P 形成的轨迹为曲线C .(1)求曲线C 的标准方程;(2)过点()2,2T 的直线l 与曲线C 交于M ,N 两点,试判断是否存在直线l ,使得A ,B ,M ,N 四点共圆.若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)22144x y -=(2)不存在直线l 符合题意,理由见解析【解析】【分析】(1)设(),P x y ,则由OP mOA nOB =+uuu r uuu r uuu r,可得x m n =+,y m n =-,再结合1mn =,消去,m n ,即可得曲线C 的标准方程,(2)判断直线l 的斜率存在,设l :()22y k x =-+,设()11,M x y ,()22,N x y ,将直线方程代入曲线C 的方程,化简后利用根与系数的关系,结合中点坐标公式表示出MN 的中点H 的坐标,利用弦长公式表示出MN ,表示出线段MN 的中垂线方程,求出其与与x 轴的交点坐标为4,01k Q k æöç÷+èø,而AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,从而由2222224MNQA QM QH HM QH ==+=+列方程求解即可.【小问1详解】设(),P x y ,则(),OP x y =uuu r,()1,1OA =uuu r ,()1,1OB =-uuu r ,因为OP mOA nOB =+uuu r uuu r uuu r,所以()()()(),1,11,1,x y m n m n m n =+-=+-,所以x m n =+,y m n =-,所以2x y m +=,2x yn -=,又122x y x y mn +-=×=,整理得22144x y -=,即曲线C 的标准方程为22144x y -=;【小问2详解】易知当l 的斜率不存在时,直线l 与曲线C 没有两个交点,所以直线l 的斜率存在,设l :()22y k x =-+,将直线l 与曲线C 联立,得22(2)2144y k x x y =-+ìïí-=ïî,消去y ,整理得()22212(22)4880kxk k x k k ----+-=,因为()()22224(22)4148832(1)0k k kkk k D =----+-=->且210k -¹,所以1k <且1k ¹-,设()11,M x y ,()22,N x y ,则1241k x x k +=+,21224881k k x x k -+=-,所以MN 的中点22,11kH k k æöç÷++èø,且1x M N =-=,将1241k x x k +=+,21224881k k x x k -+=-代入上式,整理得4MN =当0k ¹时,线段MN 的中垂线方程为1l :12214111k y x x k k k k k æö=--+=-+ç÷+++èø,令y =0,解得41k x k =+,即1l 与x 轴的交点坐标为4,01k Q k æöç÷+èø,当k =0时,线段MN 的中垂线为y 轴,与x 轴交于原点,符合Q 点坐标,因为AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,所以2222224MNQA QM QH HM QH ==+=+,所以()2222281442211111(1)(1)k k k k k k k k k +-æöæöæö-+=++ç÷ç÷ç÷++++-èøèøèø,整理得32622100k k k -++=,即()22(1)3450k k k +-+=,因为1k <且1k ¹-,所以上述方程无解,即不存在直线l 符合题意.19. 在高等数学中,我们将()y f x =在0x x =处可以用一个多项式函数近似表示,具体形式为:()()()()()()()()()200000002!!n nf x f x f x f x f x x x x x x x n ¢¢=+¢-+-+×××+-+×××(其中()()n f x 表示()f x 的n 次导数*3,N n n ³Î),以上公式我们称为函数()f x 在0x x =处的泰勒展开式.当00x =时泰勒展开式也称为麦克劳林公式.比如e x 在0x =处的麦克劳林公式为:22111e 12!3!x n x x x x n =++++++L L !,由此当0x ³时,可以非常容易得到不等式223111e 1,e 1,e 1,226x x x x x x x x x ³+³++³+++L 请利用上述公式和所学知识完成下列问题:(1)写出sin x 在0x =处的泰勒展开式.(2)若30,2x æö"Îç÷èø,sin e 1a xx >+恒成立,求a 的范围;(参考数据5ln 0.92»)(3)估计5ln3的近似值(精确到0.001)【答案】(1)1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ; (2)1a ³; (3)0.511【解析】【分析】(1)求导,根据题意写出sin x 在0x =处的泰勒展开式;(2)结合sin x 在0x =处的泰勒展开式,构造函数证明3310,,sin 26x x x x æö"Î>-ç÷èø,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,求导得到函数单调性,证明出30,,()02x g x æö"Î>ç÷èø,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,满足要求,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不合要求,从而得到答案;(3)求出ln(1)x +和ln(1)x -的泰勒展开式,得到35122ln 2135x x xx x +=+++-L ,令14x =,估计5ln3的近似值.【小问1详解】()sin cos x x ¢=,()cos sin x x ¢=-,()sin cos x x ¢-=-,()cos sin x x ¢-=,其中cos 01,sin 00==,sin x 在0x =处的泰勒展开式为:1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,【小问2详解】因为1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,由sin x 在0x =处的泰勒展开式,先证3310,,sin 26x x x x æö"Î>-ç÷èø,令3211()sin ,()cos 1,()sin 62f x x x x f x x x f x x x =-+¢=-+¢¢=-,()1cos f x x ¢¢¢=-,易知()0f x ¢¢¢>,所以()f x ¢¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢¢>¢¢=,所以()f x ¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢>¢=,所以()f x 在30,2æöç÷èø上单调递增,所以()(0)0f x f >=,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,易得1(1)(2)2()1x x x g x x --+¢=+,所以()g x 在(0,1)上单调递增,在31,2æöç÷èø上单调递减,而3155(0)0,ln 02162g g æö==->ç÷èø,所以30,,()02x g x æö"Î>ç÷èø恒成立,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,所以sin e 1a x x >+成立,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不符合题意. 综上所述,1a ³.【小问3详解】因为1154ln ln,1314+=-转化研究1ln 1x x +-的结构,23456ln(1)23456x x x x x x x +=-+-+-+L ,23456ln(1)23456x x x x x x x -=-------L ,两式相减得35122ln 2135x x x x x +=+++-L ,取1,4x =得35512121ln 2((0.5108343454=´+´+´+»L ,所以估计5ln 3的近似值为0.511(精确到0.001).【点睛】麦克劳林展开式常常用于放缩法进行比较大小,常用的麦克劳林展开式如下:()21e 12!!n x n x x x o x n +=+++++L ,()()()352122sin 13!5!21!n n n x x x x x o x n ++=-+-+-++L ,()()()24622cos 112!4!6!2!nn n x x x xx o x n =-+-++-+L ,()()()2311ln 11231n n n x x xx x o x n +++=-+-+-++L ,()2111n n x x x o x x =+++++-L ,()()()221112!nn n x nx x o x -+=+++。

广西南宁市第二中学2025届高三上学期10月月考数学试题(含答案)

广西南宁市第二中学2025届高三上学期10月月考数学试题(含答案)

广西南宁市第二中学2025届高三上学期10月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知复数z=1+ii,其中i为虚数单位,则|z|=A. 12B. 22C. 2D. 22.已知向量a=(1,3),b=(t,1),若(a−b)//b,则实数t的值为( )A. 13B. 3C. −1D. −1或23.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是( )A. 98B. 99C. 99.5D. 1004.已知圆柱和圆锥的高相等,底面半径均为2,若圆柱的侧面积是圆锥的侧面积的2倍,则圆柱的表面积为( )A. 8πB. 12πC. 16πD. 24π5.设等差数列{a n}的前n项和为S n,若S10−S3=35,a3+a10=7,则{a n}的公差为( )A. 1B. 2C. 3D. 46.若函数f(x)=x3+e x−ax在区间[0,+∞)上单调递增,则实数a的取值范围是( )A. [0,1)B. (0,1]C. [1,+∞)D. (−∞,1]7.已知f(x)=sin(x+π2),g(x)=cos(x−π2),则下列结论中不正确的是( )A. 函数y=f(x)g(x)的最小正周期为πB. 函数y=f(x)g(x)的最大值为12C. 函数y=f(x)g(x)的图象关于点(π4,0)成中心对称D. 将函数f(x)的图象向右平移π2个单位后得到函数g(x)的图象8.已知函数f(x)的定义域为R,f(x)−1为奇函数,f(x+2)为偶函数,则f(1)+f(2)+⋯+ f(16)=( )A. 0B. 16C. 22D. 32二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.对于直线l:(m−2)x+y−2m+1=0与圆C:x2+y2−6x−4y+4=0,下列说法正确的是( )A. l 过定点(2,3)B. C 的半径为9C. l 与C 可能相切D. l 被C 截得的弦长最小值为2710.已知0<β<α<π4,且sin (α−β)=13,tan α=5tan β,则( )A. sin αcos β=56 B. sin βcos α=112C. sin 2αsin 2β=536D. α+β=π611.已知f(x)=2x 3−3x 2+(1−a)x +b ,则下列结论正确的是( )A. 当a =1时,若f(x)有三个零点,则b 的取值范围是(0,1)B. 当a =1且x ∈(0,π)时,f(sin x)<f(sin 2x)C. 若f(x)满足f(1−x)=2−f(x),则a−2b =2D. 若f(x)存在极值点x 0,且f(x 0)=f(x 1),其中x 0≠x 1,则2x 0+x 1=32三、填空题:本题共3小题,每小题5分,共15分。

数学丨黑龙江省哈尔滨市第三中学2025届高三10月月考数学试卷及答案

数学丨黑龙江省哈尔滨市第三中学2025届高三10月月考数学试卷及答案

哈三中2024—2025学年度上学期高三学年十月月考数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A.B. C.D.8.已知平面向量,,,满足,且,,则的最小值为()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。

北京市中学2024-2025学年高三上学期10月月考数学试卷含答案

北京市中学2024-2025学年高三上学期10月月考数学试卷含答案

北京35中2025届10月月考数学(答案在最后)2024.10本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}212,340,ZA x xB x x x x =-≤≤=--<∈,则A B = ()A.{}0,1B.{}11x x -≤<C.{}0,1,2 D.{}12x x -<≤【答案】C 【解析】【分析】计算{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}{}2340,Z 14,Z 0,1,2,3B x x x x x x x =--<∈=-<<∈=,{}12A x x =-≤≤,{}0,1,2A B = .故选:C.2.已知223,tan2,log 3a b c -===,则()A.a b c >>B.a c b >>C.b c a >>D.c a b>>【答案】D 【解析】【分析】确定19a =,0b <,1c >,得到答案.【详解】2139a -==,tan20b =<,22log 3log 21c >==,故c a b >>.故选:D.3.下列函数中既是奇函数,又在区间(0,1)上单调递减的是A.3()f x x = B.()lg ||f x x = C.()f x x=- D.()cos f x x=【答案】C【解析】【分析】判断四个选项中的函数的奇偶性和在()0,1上的单调性,得到答案.【详解】选项A 中,()3f x x =,是奇函数,但在()0,1上单调递增,不满足要求;选项B 中,()lg f x x =,是偶函数,不满足要求,选项C 中,()f x x =-,是奇函数,在()0,1上单调递减,满足要求;选项D 中,()cos f x x =,是偶函数,不满足要求.故选:C.【点睛】本题考查判断函数的奇偶性和单调性,属于简单题.4.在621x x -⎛⎫ ⎪⎝⎭的展开式中,常数项是()A.20-B.15- C.15D.30【答案】C 【解析】【分析】利用二项展开式的通项公式可求常数项.【详解】621x x -⎛⎫ ⎪⎝⎭的展开式的通项公式为()()623616611rrrr r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令360r -=,则2r =,故常数项为()2236115T C =-=,故选:C.【点睛】本题考查二项展开中的指定项,注意利用通项公式帮助计算,本题为基础题.5.已知函数||||()x x f x e e -=-,则函数()f x ()A.是偶函数,且在(0,+∞)上单调递增B.是奇函数,且在(0,+∞)上单调递减C.是奇函数,且在(0,+∞)上单调递增D.是偶函数,且在(0,+∞)上单调递减【答案】A 【解析】【分析】由偶函数的定义判断函数()f x 的奇偶性,结合指数函数的单调性判断函数()f x 的单调性.【详解】∵||||()x x f x e e -=-∴||||||||()()x x x x f x e e e e f x -----=-=-=,∴函数||||()x x f x e e -=-为偶函数,当(0,)x ∈+∞时,1()=x x xxf x e e e e -=--,∵函数x y e =在(0,+∞)上单调递增,函数1x y e=在(0,+∞)上单调递减,∴()e e x x f x -=-在(0,+∞)上单调递增,即函数||||()x x f x e e -=-在(0,+∞)上单调递增.故选:A.6.阅读下段文字:“为无理数,若a b ==ba 为有理数;若则取无理数a =,b =,此时(22ba ====为有理数.”依据这段文字可以证明的结论是()A.是有理数B.C.存在无理数a ,b ,使得b a 为有理数 D.对任意无理数a ,b ,都有b a 为无理数【答案】C 【解析】【分析】根据给定的条件,提取文字信息即可判断作答.【详解】这段文字中,没有证明AB 错误;这段文字的两句话中,都说明了结论“存在无理数a ,b ,使得b a 为有理数”,因此这段文字可以证明此结论,C 正确;这段文字中只提及存在无理数a ,b ,不涉及对任意无理数a ,b ,都成立的问题,D 错误.故选:C 7.若点5π5πsin,cos 66M ⎛⎫⎪⎝⎭在角α的终边上,则tan2α=()A.33 B.33-C.D.【答案】C 【解析】【分析】根据三角函数定义得到tan α=.【详解】5π5πsin ,cos 66M ⎛⎫ ⎪⎝⎭,故5πcos6tan 5πsin6α==,22tan 23tan21tan 13ααα-===--故选:C.8.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间()1,+∞上存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】把函数()f x 拆解为两个函数,画出两个函数的图像,观察可得.【详解】当0a <时,作出ln ,ay x y x==-的图像,可以看出0a <时,函数()f x 在区间()1,+∞上存在零点,反之也成立,故选C.【点睛】本题主要考查以函数零点为载体的充要条件,零点个数判断一般通过拆分函数,通过两个函数的交点个数来判断零点个数.9.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:/m s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q成正比.当1v m /s =时,鲑鱼的耗氧量的单位数为900.当2m /s v =时,其耗氧量的单位数为()A.1800 B.2700C.7290D.8100【答案】D 【解析】【分析】设3log 100Qv k =,利用当1v m /s =时,鲑鱼的耗氧量的单位数为900求出k 后可计算2m /s v =时鲑鱼耗氧量的单位数.【详解】设3log 100Q v k =,因为1v m /s =时,900Q =,故39001log 2100k k ==,所以12k =,故2m /s v =时,312log 2100Q =即8100Q =.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.10.已知各项均为整数的数列{}n a 满足()*12121,2,3,n n n a a a a a n n --==>+≥∈N ,则下列结论中一定正确的是()A.520a >B.10100a <C.151000a >D.202000a <【答案】C 【解析】【分析】依题意根据数列的递推公式可分别判断各选项,再利用各项均为整数即可判断只有C 选项一定正确.【详解】根据题意可知3123a a a >+=,又数列的各项均为整数,所以3a 最小可以取4,即34a ≥;同理可得4236a a a >+≥,所以4a 最小可以取7,即47a ≥;同理53411a a a >+≥,所以5a 最小可以取12,即512a ≥,即520a <可以成立,因此可得A 不一定正确;同理易得645619,20a a a a >+≥≥;756732,33a a a a >+≥≥;867853,54a a a a >+≥≥;978987,88a a a a >+≥≥;108910142,143a a a a >+≥≥,即10100a <不成立,B 错误;又1191011231,232a a a a >+≥≥;12101112375,376a a a a >+≥≥;131********,609a a a a >+≥≥;14121314985,986a a a a >+≥≥,151314151595,1596a a a a >+≥≥,即可得151000a >一定成立,即C 正确;显然若32000a =,则202000a <明显错误,即D 错误.故选:C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数1ii+的虚部为________.【答案】-1【解析】【详解】试题分析:1ii 1i+=-+,所以其虚部为-1考点:复数的虚部12.函数()f x =的定义域为R ,请写出满足题意的一个实数a 的值______.【答案】1-(答案不唯一)【解析】【分析】根据函数的定义域求解即可.【详解】因为()f x =R ,所以20x a -≥在R 上恒成立,即2a x ≤,由于20x ≥在R 上恒成立,故实数a 的取值范围为(],0-∞.故答案为:1-(答案不唯一).13.已知数列{}n a 的通项公式为12n n a -=,{}n b 的通项公式为12n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =____;n S 的最小值为____.【答案】①.1-②.2-【解析】【分析】(1)由题可得1212n n n n a b c n -+==+-,根据等比数列及等差数列的求和公式可得n S ,利用数学归纳法可得3n ≤时,0n c <,4n ≥时,0n c >,进而即得.【详解】由题可知1212n n n a b n -+=+-,所以()()()()()423441712112325271122S +-++-++-++-+-==--=,()()()()1212112112321221122n n n n n n n S n -+--+-++-+++-=-=---= ,令1212n n c n -=+-,则123450,1,1,1,7c c c c c ==-=-==,当4n ≥时,0n c >,即1221n n ->-,下面用数学归纳法证明当4n =时,1221n n ->-成立,假设n k =时,1221k k ->-成立,当1n k =+时,()()()122222121123211k k k k k k -=⋅>-=+-+->+-,即1n k =+时也成立,所以4n ≥时,0n c >,即1221n n ->-,所以3n ≤时,0n c <,4n ≥时,0n c >,由当3n =时,n S 有最小值,最小值为3322132S =--=-.故答案为:1-;2-.14.已知函数()e ,,x x x af x x x a⎧<=⎨-≥⎩,()f x 的零点为__________,若存在实数m 使()f x m =有三个不同的解,则实数a 的取值范围为__________.【答案】①.0②.11,e ⎛⎫- ⎪⎝⎭【解析】【分析】利用导函数判断函数单调性,利用求解极值的方法画出函数的大致图象,分析运算即可得出结果.【详解】令()e xg x x =,可得()()1e xg x x +'=,由()0g x '=可得1x =-,当(),1x ∞∈--时,()0g x '<,此时()g x 在(),1∞--上单调递减,当()1,x ∞∈-+时,()0g x '>,此时()g x 在()1,∞-+上单调递增,因此()g x 在1x =-处取得极小值,也是最小值,即()()min 11eg x g =-=-,又()00g =,且0x <时,()10eg x -≤<,当0x >时,>0,令()h x x =-,其图象为过原点的一条直线,将()(),g x h x 的大致图象画在同一直角坐标系中如下图所示:当0a <时,如下图,在[),+∞a 上()()f x h x x ==-的零点为0,当0a =时,如下图,在[)0,∞+上()()f x h x x ==-的零点为0当0a >时,如下图,在(),a ∞-上()()e xf xg x x ==的零点为0,综上可知,()f x 的零点为0;当1a ≤-时,如下图所示,曲线()f x 与直线y m =至多有两个交点,当11ea -<<时,如下图所示,曲线()f x 与直线y m =至多有三个交点,当1ea ≥时,如下图所示,曲线()f x 与直线y m =至多有两个交点;综上可知,若使()f x m =有三个不同的解,则实数a 的取值范围为11,e ⎛⎫- ⎪⎝⎭.故答案为:0;11,e ⎛⎫- ⎪⎝⎭15.已知函数()()e 111xf x k x =----,给出下列四个结论:①当0k =时,()f x 恰有2个零点;②存在正数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有2个零点;④对任意()0,k f x <只有一个零点.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】把函数()f x 的零点个数问题,转化为函数e 1xy =-与函数()11y k x =-+的交点个数,作出图象分类讨论可得结论.【详解】令()()e 1110xf x k x =----=,得()e 111xk x -=-+,函数()f x 的零点个数,即为方程()e 111xk x -=-+的根的个数,方程()e 111xk x -=-+根的个数,即为e 1xy =-与函数()11y k x =-+的交点个数,又函数()11y k x =-+是过定点(1,1)A 的直线,作出e 1xy =-的图象如图所示,当0k =直线()11y k x =-+与函数e 1xy =-有一个交点,故()()e 111xf x k x =----有一个零点,故①错误;当()11y k x =-+在第一象限与函数e 1xy =-相切时,函数()()e 111xf x k x =----有一个零点,故②正确;函数()11y k x =-+绕着A 顺时针从1y =转到1x =时,两图象只有一个交点,故0k <时,函数()()e 111xf x k x =----只有一个零点,故③错误,④正确.故答案为:②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于,A B 两点.点A 的纵坐标是45,点B 的横坐标是513-.(1)求cos2α的值;(2)求()sin βα-的值.【答案】(1)725-(2)5665.【解析】【分析】(1)利用三角函数定义可得4sin 5α=,再由二倍角公式计算可得7cos225α=-;(2)利用同角三角函数之间的基本关系以及两角差的正弦公式计算可得结果.【小问1详解】由题可知,锐角α和钝角β的终边分别与单位圆交于,A B 两点;点A 的纵坐标是45,点B 的横坐标是513-,所以45sin ,cos 513αβ==-.即可得27cos212sin 25αα=-=-.【小问2详解】由于22sin cos 1αα+=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以23cos 1sin 5αα=-=,同理由于2π12,π,sin 1cos 213βββ⎛⎫∈=-= ⎪⎝⎭,所以()56sin sin cos cos sin 65βαβαβα-=-=.17.某校举办知识竞赛,已知学生甲是否做对每个题目相互独立,做对,,A B C 三道题目的概率以及做对时获得相应的奖金如表所示.题目A B C做对的概率451214获得的奖金/元204080规则如下:按照,,A B C 的顺序做题,只有做对当前题目才有资格做下一题.[注:甲最终获得的奖金为答对的题目相对应的奖金总和.](1)求甲没有获得奖金的概率;(2)求甲最终获得的奖金X 的分布列及期望;(3)如果改变做题的顺序,最终获得的奖金期望是否相同?如果不同,你认为哪个顺序最终获得的奖金期望最大?(不需要具体计算过程,只需给出判断)【答案】(1)15(2)分布列见解析,40(元)(3)不同,按照,,A B C 的顺序获得奖金的期望最大,理由见解析.【解析】【分析】(1)甲没有获得奖金,则题目A 没有做对,从而求得对应的概率;(2)易知X 的可能取值为0,20,60,140,再根据题目的对错情况进行分析求解概率与分布列,求出期望值;(3)可以分别求出每种顺序的期望,然后比较得知.【小问1详解】甲没有获得奖金,则题目A 没有做对,设甲没有获得奖金为事件M ,则()41155P M =-=.【小问2详解】分别用,,A B C 表示做对题目,,A B C 的事件,则,,A B C 相互独立.由题意,X 的可能取值为0,20,60,140.41412(0)()1;(20)()155525P X P A P X P AB ⎛⎫===-====⨯-= ⎪⎝⎭;4134111(60)()1;(140)()52410524101P X P ABC P X P ABC ===⨯⨯-===⨯⎛⎫ ⎪⎝=⎭=⨯.所以甲最终获得的奖金X 的分布列为X02060140P 1525310110()12310206014040551010E X =⨯+⨯+⨯+⨯=(元).【小问3详解】不同,按照,,A B C 的顺序获得奖金的期望最大,理由如下:由(2)知,按照,,A B C 的顺序获得奖金的期望为40元,若按照,,A C B 的顺序做题,则奖金X 的可能取值为0,20,100,140.141(0)1;(250)1554435P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;41411(100)1;(140)5105421011142P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为110201001403613110550⨯+⨯+⨯+⨯=元;若按照,,B A C 的顺序做题,则奖金X 的可能取值为0,40,60,140.1114(0)1;(400)1212125P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;143141(60)1;(140)254102541011P X P X ==⨯⨯-===⨯⎛⨯ ⎝=⎫⎪⎭.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元;若按照,,B C A 的顺序做题,则奖金X 的可能取值为0,40,120,140.1111(0)1;(480)122432P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(120)1;(140)24024510141145P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元,若按照,,C A B 的顺序做题,则奖金X 的可能取值为0,80,100,140.1314(0)1;(800)1414245P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1141(100)1;(140)10452104111452P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为1080100140284101311200⨯+⨯+⨯+⨯=元,若按照,,C B A 的顺序做题,则奖金X 的可能取值为0,80,120,140.1311(0)1;(880)144214P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(100)1;(140)40425101411425P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为5311108010014026.401048⨯+⨯+⨯+⨯=元,显然按照,,A B C 的顺序获得奖金的期望最大.18.已知()2cos sin ,f x ax x x x a =++∈R .(1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在区间ππ,22⎡⎤-⎢⎣⎦上为增函数,求实数a 的取值范围.【答案】(1)2y =(2)[)1,+∞.【解析】【分析】(1)利用导数的几何意义即可求得切线方程;(2)将()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数转化为sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,构造函数()sin cos g x x x x =-并求导得出其单调性,求出最大值可得实数a 的取值范围.【小问1详解】当0a =时,()2cos sin f x x x x =+,易知()2sin sin cos cos sin f x x x x x x x x'=-++=-可得()()00,02f f ='=,所以切线方程为2y =.【小问2详解】易知()sin cos f x a x x x=+'-由函数()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数,可得′≥0在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,即sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,令()()ππsin cos ,sin ,,22g x x x x g x x x x ⎡⎤=-=∈-⎢⎣'⎥⎦法一:令()sin 0g x x x '==,得0x =,()(),g x g x '的变化情况如下:x π,02⎛⎫- ⎪⎝⎭0π0,2⎛⎫ ⎪⎝⎭()g x '+0+()g x所以()g x 为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.法二:当π02x -<<时,sin 0,sin 0x x x <>;当π02x ≤<时,sin 0,sin 0x x x ≥≥.综上,当ππ22x -<<时,()()0,g x g x '≥为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.19.现有一张长为40cm ,宽为30cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形ABCD 的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为cm x ,高为y cm ,体积为()3cm V .(1)求出x 与y 的关系式;(2)求该铁皮盒体积V 的最大值.【答案】(1)21200,0304x y x x-=<≤;(2)34000cm .【解析】【分析】(1)由题意得到244030x xy +=⨯,化简得到212004x y x -=,并由实际情境得到030x <≤;(2)表达出()()3112004V x x x =-,求导得到其单调性,进而得到最大值.【小问1详解】因为材料利用率为100%,所以244030x xy +=⨯,即212004x y x -=;因为长方形铁皮ABCD 长为40cm ,宽为30cm ,故030x <≤,综上,212004x y x-=,030x <≤;【小问2详解】铁皮盒体积()()222312*********x V x x y x x x x -==⋅=-,()()21120034V x x '=-,令()0V x '=,得20,x =()(),V x V x '的变化情况如下:x ()0,2020()20,30()V x +0-()V x '()V x 在()0,20上为增函数,在()20,30上为减函数,则当20x =时,()V x 取最大值,最大值为()3311200202040040cm ⨯⨯-=.20.已知函数1e ()x f x x-=.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)当211x x >>时,判断21()()f x f x -与2122x x -的大小,并说明理由.【答案】(1)230x y +-=;(2)单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞;(3)212122()()f x x x f x -->,理由见解析.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程.(2)利用导数求出函数()f x 的单调区间.(3)构造函数2()(),1g x f x x x=->,利用导数探讨函数单调性即可判断得解.【小问1详解】函数1e ()x f x x -=,求导得12(1)e ()xx f x x---=',则()12f '=-,而(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)y x -=--,即230x y +-=.【小问2详解】函数()f x 的定义域为(,0)(0,)-∞+∞ ,且12(1)e ()x x f x x---=',当1x <-时,()0f x '>,当10x -<<或0x >时,()0f x '<,所以()f x 的单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞.【小问3详解】当211x x >>时,212122()()f x x x f x -->,证明如下:令2()(),1g x f x x x =->,求导得12(1)e 2()x x g x x-'--+=,令1()(1)e 2,1x h x x x -=--+>,求导得1()e 0x h x x -='>,函数()h x 在(1,)+∞上单调递增,则()(1)0h x h >=,即()0g x '>,函数()g x 在(1,)+∞上为增函数,当211x x >>时,21()()g x g x >,所以212122()()f x x x f x -->.21.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈= ;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m = 则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>;(III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.【答案】(I )不存在,理由见解析;(II )详见解析;(III )33.【解析】【分析】(I )根据“伴随数列”的定义判断出正确结论.(II )利用差比较法判断出{}n b 的单调性,由此证得结论成立.(III )利用累加法、放缩法求得关于m a 的不等式,由此求得m 的最大值.【详解】(I )不存在.理由如下:因为*413579751b N ++++-=∈-,所以数列1,3,5,7,9不存在“伴随数列”.(II )因为*11,11,1n n n n a a b b n m n N m ++--=≤≤-∈-,又因为12m a a a <<< ,所以10n n a a +-<,所以1101n n n n a a b b m ++--=<-,即1n n b b +<,所以12···m b b b >>>成立.(III )1i j m ∀≤<≤,都有1j i i j a a b b m --=-,因为*i b N ∈,12m b b b >>> ,所以*i j b b N -∈,所以*11204811m m a a b b N m m --==∈--.因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-.而()()()()()()111221111m m m m m a a a a a a a a m m m ----=-+-++-≥-+-++- ()21m =-,即()2204911m -≥-,所以()212048m -≤,故46m ≤.由于*20481N m ∈-,经验证可知33m ≤.所以m 的最大值为33.【点睛】本小题主要考查新定义数列的理解和运用,考查数列单调性的判断,考查累加法、放缩法,属于难题.。

江西省多校联考2024-2025学年高三上学期10月月考试题 数学含答案

江西省多校联考2024-2025学年高三上学期10月月考试题 数学含答案

江西省10月份高三联考数学(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,2,3}A =,{},B x y x A y A =+∈∈,则A B = ()A .{2}B .{3}C .{2,3}D .{1,2,3}2.在复数范围内,方程49x =的解的个数为()A .1B .2C .3D .43.已知双曲线22:1y C x m-=的离心率大于实轴长,则m 的取值范围是()A .(3,)+∞B .)+∞C .(0,3)D .4.若220m n -≠,cos()2m αβ-=,cos()2n αβ+=,则tan tan αβ=()A .m n m n-+B .m n m n+-C .2m n m n -+D .2m n m n+-5.函数2()(31)e xf x x =-的最小值为()A .433e--B .133e 2--C .0D .24e--6.已知向量,,a b c ,满足1a = ,2b = ,3c = ,π,,3a b a b c 〈〉=〈+〉=,则a b + 在c 方向上的投影向量为()A .3cB .143c C .6c D .76c 7.现有6个人计划在暑期前往江西省的南昌、九江、赣州、萍乡四个城市旅游,每人都要从这四个城市中选择一个城市,且每个城市都有人选择,则至少有2人选择南昌的选法种数为()A .420B .660C .720D .12008.已知函数()f x 满足()()()22x yf x y f x f y +=+++,且(1)1f =,则(1000)f =()A .99922995+B .99922996+C .100022995+D .100022996+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()sin 2f x x =,2()cos 2g x x =,则()A .()f x 与()g x 的值域相同B .()f x 与()g x 的最小正周期相同C .曲线()y f x =与()y g x =有相同的对称轴D .曲线()y f x =与()y g x =有相同的对称中心10.如图,现有一个底面直径为10cm ,高为25cm 的圆锥形容器,已知此刻容器内液体的高度为15cm ,忽略容器的厚度,则()A .此刻容器内液体的体积与容器的容积的比值为35B .容器内液体倒去一半后,容器内液体的高度为cm2C .当容器内液体的高度增加5cm 时,需要增加的液体的体积为3185πcm 3D .当容器内沉入一个棱长为11.已知抛物线2:4E y x =的焦点为F ,过点F 且斜率为的直线与E 交于A ,B 两点,其中点A 在第一象限.若动点P 在E 的准线上,则()A .AP BP ⋅的最小值为0B .当PAB △为等腰三角形时,点PC .当PAB △的重心在x 轴上时,PAB △的面积为924D .当PAB △为钝角三角形时,点P 的纵坐标的取值范围为,,84⎛⎫⎛⎫-∞-+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭三、填空题:本题共3小题,每小题5分,共15分.12.若()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =-+,则(2)f -=______.13.已知A ,B ,C ,D 四点都在球O 的球面上,且A ,B ,C 三点所在平面经过球心,AB =π3ACB ∠=,则点D 到平面ABC 的距离的最大值为______,球O 的表面积为______.14.若x ,y ,z 均为正数,且2(2)1x x y z +=,则83x yz 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数321()43f x x ax x =+-.(1)当1a =-时,求曲线()y f x =在点(3,(3))f 处的切线方程.(2)试问是否存在实数a ,使得()f x 在[]1,a 上单调递增?若存在,求a 的取值范围;若不存在,请说明理由.16.(15分)贵妃杏是河南省灵宝市黄河沿岸地区的一种水果,其果实个大似鹅蛋,外表呈橙黄色,阳面有晕.贵妃杏口感甜美,肉质实心鲜嫩多汁,营养丰富,是河南省的知名特产之一.已知该地区某种植园成熟的贵妃杏(按个计算)的质量M (单位:克)服从正态分布()2,N μσ,且(96106)0.7P M ≤≤=,(9496)0.1P M ≤≤=.从该种植园成熟的贵妃杏中选取了10个,它们的质量(单位:克)为101,102,100,103,99,98,100,99,97,101,这10个贵妃杏的平均质量(单位:克)恰等于μ克.(1)求μ.(2)求(100104)P M <≤.(3)甲和乙都从该种植园成熟的贵妃杏中随机选取1个,若选取的贵妃杏的质量大于100克且不大于104克,则赠送1个贵妃杏;若选取的贵妃杏的质量大于104克,则赠送2个贵妃杏.记甲和乙获赠贵妃杏的总个数为X ,求X 的分布列与数学期望.17.(15分)如图,在四棱锥P ABCD -中,PA ⊥底面,ABCD BC ∥平面,PAD BC AB ⊥.(1)证明:平面PAD ⊥平面PAB .(2)若AD AB =,PA BC =,且异面直线PD 与BC 所成角的正切值为32,求平面PAB 与平面PCD 所成二面角的正弦值.18.(17分)已知点()11,0F -,2(1,0)F ,动点M 满足12123MF MF F F +=,动点M 的轨迹为记为E .(1)判断E 与圆22:8O x y +=的位置关系并说明理由.(2)若P 为E 上一点,且点P 到x 轴的距离(0,1)d ∈,求12PF F △内切圆的半径的取值范围.(3)若直线:(1)l y k x =-与E 交于C ,D 两点,1A ,2A 分别为E 的左、右顶点,设直线1AC 的斜率为()110k k ≠,直线2A D 的斜率为()220k k ≠,试问122212k k k k +是否为定值?若是,求出该定值;若不是,请说明理由.19.(17分)在n 个数码1,2,…,(,2)n n n ∈≥N 构成的一个排列12n j j j 中,若一个较大的数码排在一个较小的数码的前面,则称它们构成逆序,这个排列的所有逆序的总个数称为这个排列的逆序数,记为()12n j j j τ ,例如,(12)0τ=,(4132)4τ=.(1)比较()613245τ与(15432)τ的大小;(2)设数列{}n a 满足()211(22)(15432)2n n n na n a n n τ++-+=+,12a =,求{}n a 的通项公式;(3)设排列122(,5)n j j j n n ∈≥N 满足()211,2,,10,29,28,,2n n n n i j i i =+-=-- ,()11,12,,210n i j i i ==- ,()122n n b j j j τ= ,21020n n b c +=,证明:56n c c c +++≥ 3840(4)[(214)ln 2124]2402nn n --++-.江西省10月份高三联考数学参考答案1.C 依题意可得{2,3,4,5,6}B =,则{2,3}A B = .2.D由49x =,得()()22330x x+-=,得x =或x =3.A由题意得2m >>,解得3m >.4.A 因为cos()cos cos sin sin 2m αβαβαβ-=+=,cos()cos cos sin sin 2n αβαβαβ+=-=,所以cos cos m n αβ=+,sin sin m n αβ=-,所以sin sin tan tan cos cos m nm nαβαβαβ-==+.5.B2()(61)e x f x x '=+,令()0f x '<,得16x <-,令()0f x '>,得16x >-,所以2()(31)e xf x x =-的最小值为11331131e e 622f --⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭.6.C 因为1a = ,2b = ,3c = ,π,3a b 〈〉=,所以a b +=== a b + 在c 方向上的投影向量为()||||a b c c c c +⋅⋅=2π||||cos 3||926a b c c c c c +==⨯ .7.B将6人分成4组,分配方案有两种:1,1,2,2和1,1,1,3.那么至少有2人选择南昌的选法种数为22133364263322C C C C A 110A 660A ⎛⎫+== ⎪⎝⎭.8.D令1y =,得(1)()(1)22()23x x f x f x f f x +=+++=++,则(1)()23xf x f x +-=+,则2999(2)(1)23,(3)(2)23,,(1000)(999)23f f f f f f -=+-=+-=+ ,将以上各式相加得()9992999212(1000)(1)22239993(10001)12f f --=++++⨯=+⨯-- 100022995=+,所以10001000(1000)22995(1)22996f f =++=+.9.ABC()sin 2[0,1]f x x =∈,1cos 4()[0,1]2xg x +=∈,则()f x 与()g x 的值域相同,A 正确.()f x与()g x 的最小正周期均为2ππ42=,B 正确.曲线()y f x =与()y g x =的对称轴方程均为π()4k x k =∈Z ,C 正确.曲线()y f x =没有对称中心,曲线()y g x =有对称中心,D错误.10.BCD 此刻容器内液体的体积与容器的容积的比值为3152725125⎛⎫= ⎪⎝⎭,A 错误.设容器内液体倒去一半后液体的高度为cm h ,则31152h ⎛⎫= ⎪⎝⎭,解得2h =,B 正确.因为15103252⨯=,155104252+⨯=,所以当容器内液体的高度增加5cm 时,需要增加的液体的体积为π53⨯⨯()223185π3344cm 3+⨯+=,C 正的正方体铁块时,设容器内液体的高度为cm H,体积233π31546πcm 3V =⨯⨯+=,则346π45π15H ⎛⎫= ⎪⎝⎭,15H ===,D 正确.11.AC依题意可得(1,0)F ,直线AB的方程为1)y x =-,代入24y x =,消去y 得22520x x -+=,解得12x =,212x =,因为点A在第一象限,所以(2,A,1,2B ⎛ ⎝.E 的准线方程为1x =-,设(1,)P m -,则(3,AP m =--,3,2BP m ⎛=-+ ⎝,所以2294022AP BP m m ⎛⎫⋅=+--=-≥ ⎪ ⎪⎝⎭ ,A 正确.当PAB △为等腰三角形时,要使得点P 的纵坐标最大,则AB AP =,即1222++=,且m >,解得2m +=,B 错误.PAB △的重心坐标为1212,33m ⎛⎫+- ⎪+ ⎪ ⎪⎝⎭,即1,23m ⎛⎫+ ⎪ ⎪⎝⎭,当PAB △的重心在x 轴上时,203m+=,得m PAB =△的面积为111224⎛⎫⨯+⨯=⎪⎝⎭,C 正确.当A ,B ,P三点共线时,m =-由0AP BP ⋅≥ ,得APB ∠为锐角或直角,当ABP ∠为直角或BAP ∠为直角时,0AB BP ⋅= 或0AB AP ⋅= ,得8m =-或4m =,当PAB △为钝角三角形时,点P 的纵坐标的取值范围为(,8⎛⎫-∞--- ⎪ ⎪⎝⎭,4⎛⎫+∞ ⎪ ⎪⎝⎭,D 错误.12.-2因为(2)02022f =+=+=,所以(2)(2)2f f -=-=-.13.4;64π设球O 的半径为R ,由正弦定理得28sin ABR ACB==∠,则4R =,则点D 到平面ABC 的距离的最大值为4,球O 的表面积为24π64πR =.14.127(方法一)由2(2)1x x y z +=,得3221x z x yz +=,不妨令32a x z =,2b x yz =,0a >,0b >,则2834a b x yz =,且1a b +=,所以283(1)4a a x yz -=.令2(1)()(01)4a a f a a -=<<,则(23)()4a a f a -'=,令()0f a '>,得20,3a ⎛⎫∈ ⎪⎝⎭,令()0f a '<,得2,13a ⎛⎫∈ ⎪⎝⎭,所以max 21()327f a f ⎛⎫== ⎪⎝⎭,即83x yz 的最大值为127.(方法二)由2(2)1x x y z +=,得3321x z x z x yz ++=.由,,0)3a b c a b c ++≥>,得1≥则83127x yz ≤,当且仅当32x z x yz =,即x y =时,等号成立,故83x yz 的最大值为127.15.解:(1)当1a =-时,321()43f x x x x =--,则2()24f x x x '=--,所以(3)1f '=-,因为(3)12f =-,所以曲线()y f x =在点(3,(3))f 处的切线方程为12(3)y x +=--,即9y x =--(或90x y ++=).(2)假设存在实数a ,使得()f x 在[]1,a 上单调递增,则2()240f x x ax '=+-≥对[1,]x a ∈恒成立,即22xa x ≥-对[1,]x a ∈恒成立.当[1,]x a ∈时,22x y x =-为增函数,则max 22132122x x ⎛⎫-=-= ⎪⎝⎭,所以32a ≥,又1a >,所以a 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.16.解:(1)1011021001039998100999710110010μ+++++++++==.(2)因为100μ=,所以(104106)(9496)0.1P M P M ≤≤=≤≤=,所以0.70.1(100104)0.32P M -<≤==.(3)设1人获赠贵妃杏的个数为Y ,则(0)0.5P Y ==,(1)0.3P Y ==,(2)0.2P Y ==.依题意可得X 的可能取值为0,1,2,3,4,(0)0.50.50.25P X ==⨯=,(1)0.50.320.3P X ==⨯⨯=2(2)0.30.50.220.29P X ==+⨯⨯=,(3)0.30.220.12,(4)0.20.20.04P X P X ==⨯⨯===⨯=则X 的分布列为X 01234P0.250.30.290.120.04所以()10.320.2930.1240.04 1.4E X =⨯+⨯+⨯+⨯=.17.(1)证明:PA ⊥ 底面ABCD ,PA BC ∴⊥.BC AB ⊥ ,PA AB A = ,BC ∴⊥平面PAB .BC ∥ 平面PAD ,平面PAD 平面ABCD AD =,BC AD ∴∥,AD ∴⊥平面PAB .又AD ⊂平面,PAD ∴平面PAD ⊥平面PAB .(2)解:BC AD ∥ ,∴直线PD 与直线BC 所成的角为PDA ∠.PA ⊥ 底面ABCD ,3,tan 2PA PA AD PDA AD ∴⊥∴∠==,即PA =32AD .设AD 为2个单位长度,以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则(0,0,0),(0,2,0)A D ,(2,3,0)C ,(0,0,3)P ,(2,1,0)CD ∴=-- ,(0,2,3)DP =-设平面PCD 的法向量为(,,)n x y z = ,则20,230,n CD x y n DP y z ⎧⋅=--=⎪⎨⋅=-+=⎪⎩取3x =-,则6,4y z ==,得(3,6,4)n =-.易知平面PAB 的一个法向量为(0,2,0)AD =,则cos ,AD 〈 66161||||261AD n n AD n ⋅〉===⨯.故平面PAB 与平面PCD 所成二面角的正弦值为56161.18.解:(1)因为12121236MF MF F F F F +==>,所以E 是以1F ,2F 为焦点,且长轴长为6的椭圆.设E 的方程为22221(0)x y a b a b +=>>,则26a =,可得3a =,又1c =,所以2228b a c =-=,联立22198x y +=与228x y +=,得0x =,2y =±,所以E 与圆22:8O x y +=相切.(2)12PF F △的周长1212628l PF PF F F =++=+=,12PF F △的面积121(0,1)2S F F d d =⋅=∈,所以12PF F △内切圆的半径2110,44S r d l ⎛⎫==∈ ⎪⎝⎭,故12PF F △内切圆的半径的取值范围为10,4⎛⎫ ⎪⎝⎭.(3)联立221, 98(1),x y y k x ⎧+=⎪⎨⎪=-⎩得()()22228918980k x k x k +-+-=,易知0∆>,且21221889k x x k +=+,()21229889k x x k -=+.设()()1122,,C x y D x y ,则121212,33y yk k x x ==+-,所以()()()()()()1212112122212112123133331333y x k x x k x x x x k y x k x x x x x x -----+===+-+-+-.(方法一)由21221889k x x k +=+,()21229889k x x k-=+,得()121259x x x x =+-,所以()()1212112212121259332461593348122x x x x k x x k x x x x x x +---++-===+--+-+-.(方法二)因为()()12122121212232343x x x x x k k x x x x x -+++=-++-,所以()()()()()()22222222221222222222229898543895423289898998981838918434898989k k k k k x x k k k k k k k k k k x xk kk ---++-++++++==----+-+-++++2222221848218936962489k x k k x k--++==--++.所以1222121221125k k k k k k k k ==++,故122212k k k k +为定值,且定值为25.19.(1)解:在排列613245中,与6构成逆序的有5个,与3构成逆序的有1个,与1,2,4,5构成逆序的均有0个,所以(613245)516τ=+=;在排列15432中,与5构成逆序的有3个,与4构成逆序的有2个,与3构成逆序的有1个,与1,2构成逆序的均有0个,所以(15432)3216τ=++=.故(613245)(15432)ττ=.(2)解:由(1)知()211(22)62n n n na n a n n ++-+=+,所以()()12121(22)622n nn n na n a nn nn ++++-=++,即116(1)22n n n n a a n n ++-=+⋅.因为12a =,所以数列2n n a n ⎧⎫⎨⎬⋅⎩⎭是首项为1,公差为6的等差数列,所以16(1)652n n a n n n =+-=-⋅,则()2652n n a n n =-⋅.(3)证明:因为()211,2,,10,29,28,,2n n n n i j i i =+-=-- ,所以在排列122n j j j 中,排在前面的10个数依次为2n ,21n -,22n -,…,29n -,排在后面的10个数依次为10,9,8,…,1,所以()()1222122210(9810)n n n nj j j τ=-+-++-++++++ (220)10101010n -+++ 个所以()()2122210(9810)10220202210n n n n n n b =-+-++-++++++-=⨯- ,则210220n n n b c +==.设函数3840()4ln (32)f x x x x x =+-≥,则22223840443840(60)(64)()1x x x x f x x x x x --+-'=--==,当3264x ≤<时,()0f x '<,当64x >时,()0f x '>,所以min 3840()(64)644ln 6412424ln 264f x f ==+-=-,所以38404ln 12424ln 2x x x +-≥-,当且仅当64x =时,等号成立.取2(5)n x n =≥,则384024ln 212424ln 22n n n +-≥-,即384024ln 212424ln 2(5)2m n n n ≥-+-≥所以56561114ln 2(56)3840(12424ln 2)(4)222n n c c c n n ⎛⎫+++≥⨯+++-++++--⎪⎝⎭,即515611222(5)(4)ln 23840(12424ln 2)(4)112n n c c c n n n +-+++≥+--⨯+--- 3840(4)[(214)ln 2124]2402n n n =--++-.。

2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题(含解析)

2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题(含解析)

2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则(){}(){}3510,ln 1A x x B x y x =∈-<<==+Z A B = A. B. {}0,1,2{}0,1C .D.{}1,2{}1,0,1,2-2. 已知,且,其中是虚数单位,则( ),a b ∈R 3i12ii a b -=++i a b +=A. B. C. D. 22-4-6-3. 已知定义域为的函数不是偶函数,则()R ()f x A. B. ()(),0x f x f x ∀∈-+≠R ()(),0x f x f x ∀∈--≠R C.D.()()000,0x f x f x ∃∈-+≠R ()()000,0x f x f x ∃∈--≠R 4. 已知一组数据的平均数是3,方差为4,则数据123421,21,21,21x x x x ++++的平均数和方差分别是( )1234,,,x x x x A. B. C. D.1,11,233,243,225. 已知递增的等差数列的前项和为,则(){}n a n 1625,19,70n S a a a a +==8S =A. 70B. 80C. 90D. 1006. 在中,,若ABC V 212BA BC BC⋅= ,则( )123125,,334477a AB AC b AB AC c AB AC=+=+=+A.B.C.D.b a c>>b c a>>a c b>>c a b>>7. 已知函数在区间内既有最大值,又有最小值,则π()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭π0,2⎡⎫⎪⎢⎣⎭的取值范围是( )ωA.B. C.D.2,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎤⎛⎫⋃+ ⎪⎥⎝⎦⎝⎭8,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎫⎛⎫⋃+ ⎪⎪⎝⎭⎝⎭8. 不等式对所有的正实数,恒成立,则的最大值为()t+≤x y t A. 2D. 1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,已知为圆锥的底面的直径,,C 为底面圆周上一点,弧的长度AB SO 2SA =BC 是弧的长度的2倍,异面直线与所成角的余弦值为,则().AC SB AC 14A. 圆锥SO B. 圆锥的侧面积为SO 2πC. 直线与平面所成的角大于SO SAC 30︒D. 圆锥的外接球的表面积为SO 16π310. 已知抛物线的焦点分别为,若分别为上的点,2212:4,:8C y x C y x ==12,F F ,A B 12,C C 且直线平行于轴,则下列说法正确的是()AB x A. 若,则B. 若,是等腰三角形1AF AB ⊥12AB =43AB =2F AB C. 若,则四边形是矩形 D. 四边形可能是菱形1BF BA ⊥12F F AB 12F F AB 11.设,定义在上的函数满足,且0a >R ()f x ()1f a =,则()()()()()(),,x y f x y f x f a y f y f a x ∀∈+=-+-R A. B. ()00f =()()2f a x f x -=C.为偶函数D.()f x ()20251f a =三、填空题:本题共3小题,每小题5分,共15分.12. 的展开式中,含的项的系数为________.(用数字作答)6(12)(13)x x -+2x 13. 在平面直角坐标系中,若角的终边过点,角的终边与角的终边关于xOy α(3,4)--βα轴对称,则______.x sin()αβ-=14.已知椭圆的左焦点为,若关于直线的对称点()2222:10x y C a b a b +=>>1F 1F 2y x =恰好在上,且直线与的另一个交点为,则______.A C 1AF CB 11||||BF AF =四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知的内角所对的边分别为.ABC V ,,A B C ,,,sin cos )a b c b A a B c =-(1)求角A 的大小;(2)求的最大值.222sin sin sin A B C +16. 如图,在四棱锥中,平面ABCD ,,,P ABCD -PD ⊥2PD CD ==1AD AB ==,,点M 是棱PC 的中点.AB DA ⊥//AB CD (1)求证:平面PAD ;//BM (2)求平面PAB 与平面BMD 所成锐二面角的余弦值.17. 中国体育代表团在2024年巴黎奥运会上取得了优异的成绩.为了解学生对奥运会的了解情况,某校组织了全校学生参加的奥运会知识竞赛,从一、二、三年级各随机抽取100名学生的成绩(,各年级总人数相等),统计如下:年级[0,60)[60,100]一年级4060二年级2575三年级1090学校将测试成绩分为及格(成绩不低于60分)和不及格(成绩低于60分)两类,用频率估计概率,所有学生的测试成绩结果互不影响.(1)从一、二年级各随机抽一名学生,记表示这两名学生中测试成绩及格的人数,求X 的分布列和数学期望;X (2)从这三个年级中随机抽取两个年级,并从抽取的两个年级中各随机抽取一名学生,求这两名学生测试成绩均及格的概率.18. 已知双曲线的两条渐近线方程为为2222:1(0,0)x y C a b a b -=>>20,x y A ±=上一点.C(1)求双曲线的方程;C (2)若过点的直线与仅有1个公共点,求的方程;A l C l (3)过双曲线的右焦点作两条互相垂直的直线,,且与交于两点,记C F 1l 2l 1lC ,M N的中点与交于两点,记的中点为.若,求点到直线MN 2,B l C ,P Q PQ D (0,G G 的距离的最大值.BD 19. 已知函数(其中).312()(1)21xx f x ax b x -=++-+,a b ∈R (1)当时,证明:是增函数;0,0a b >=()f x (2)证明:曲线是中心对称图形;()y f x =(3)已知,设函数,若对任0a ≠312()e ()(1)(1)21xx x g x f x b x b -=+-+-+-+()0g x ≥意的恒成立,求的最小值.x ∈R b aa -2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则(){}(){}3510,ln 1A x x B x y x =∈-<<==+Z A B = A. B. {}0,1,2{}0,1C.D.{}1,2{}1,0,1,2-【正确答案】A【分析】解不等式化简集合,求出函数的定义域化简集合,再利用交集的定义求出求解A B 即得.【详解】依题意,,{{}{}1,0,1,2,1A x x B x x =∈<<=-=>-所以.{}0,1,2A B = 故选:A2. 已知,且,其中是虚数单位,则( ),a b ∈R 3i12ii a b -=++i a b +=A. B. C. D. 22-4-6-【正确答案】D【分析】根据题意,由复数的运算代入计算,结合复数相等列出方程,即可得到结果.【详解】由可得,即,3i12i i a b -=++()()3i i 12i a b -=++()()3i 221ia b b -=-++所以,解得,则.2213a b b =-⎧⎨+=-⎩42a b =-⎧⎨=-⎩6a b +=-故选:D3. 已知定义域为的函数不是偶函数,则( )R ()f x A. B. ()(),0x f x f x ∀∈-+≠R ()(),0x f x f x ∀∈--≠R C.D.()()000,0x f x f x ∃∈-+≠R ()()000,0x f x f x ∃∈--≠R 【正确答案】D【分析】根据偶函数的概念得是假命题,再写其否定形式即可得()(),0x f x f x ∀∈--=R 答案.【详解】定义域为的函数是偶函数,R ()f x ()(),0x f x f x ⇔∀∈--=R 所以不是偶函数.()f x ()()000,0x f x f x ⇔∃∈--≠R 故选:D .4. 已知一组数据的平均数是3,方差为4,则数据123421,21,21,21x x x x ++++的平均数和方差分别是( )1234,,,x x x x A. B. C. D.1,11,233,243,22【正确答案】A【分析】根据题意,由平均数与方差的性质列出方程,代入计算,即可求解.【详解】设数据的平均数和方差分别是,,1234,,,x x x x x 2s 则数据的平均数是,方差是,123421,21,21,21x x x x ++++()21x +24s 所以,解得,,解得,()213x +=1x =244s=21s =即数据的平均数和方差分别是.1234,,,x x x x 1,1故选:A5. 已知递增的等差数列的前项和为,则(){}n a n 1625,19,70n S a a a a +==8S =A. 70B. 80C. 90D. 100【正确答案】D【分析】设等差数列的公差为d ,由题意结合等差数列的通项公式求出即可结合等{}n a 1,a d 差数列前n 项和公式计算得解.()112n n n S na d -=+【详解】设等差数列的公差为d ,{}n a 则由题得,解得,()()1111519,4700a a d a d a d d ++=⎧⎪++=⎨⎪>⎩132d a =⎧⎨=⎩所以.8878231002S ⨯=⨯+⨯=故选:D.6. 在中,,若ABC V 212BA BC BC⋅= ,则( )123125,,334477a AB AC b AB AC c AB AC=+=+=+ A.B.C.D.b a c>>b c a>>a c b>>c a b>>【正确答案】B【分析】先由求出即,接着由余弦定理结合数量积的运算212BA BC BC⋅= |AB |=|AC |b c =律计算得,再由平面向量模的求法即可计算比较得解.2222b a AB AC -⋅=【详解】设的角A 、B 、C 的对边为a 、b 、c ,ABC V 因为,所以,212BA BC BC ⋅= ()()212AB AC AB AC AB-⋅-=-所以,故,2221122AB AC AB AC AB AC AB-⋅=⋅+-+ 22AB AC = 所以,即,|AB |=|AC |b c =所以,222222cos 22b c a b a AB AC bc A bc bc +--⋅==⨯=所以22221214433999a AB AC AB AB AC AC⎛⎫=+=+⋅+ ⎪⎝⎭,2222221424299299b a c b b a -=+⋅+=-22222222223193193213441681616821616b a b AB AC AB AB AC AC c b b a -⎛⎫=+=+⋅+=+⋅+=- ⎪⎝⎭ ,222222222225420254202251077494949494924949b a c AB AC AB AB AC AC c b b a -⎛⎫=+=+⋅+=+⋅+=- ⎪⎝⎭,因为,所以,即.210394916>>222b c a >> b c a >>故选:B.7. 已知函数在区间内既有最大值,又有最小值,则π()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭π0,2⎡⎫⎪⎢⎣⎭的取值范围是( )ωA.B. C.D.2,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎤⎛⎫⋃+ ⎪⎥⎝⎦⎝⎭8,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎫⎛⎫⋃+ ⎪ ⎪⎝⎭⎝⎭【正确答案】C【分析】由条件求出的范围,结合正弦函数的性质列不等式可求结论.π6x ω+【详解】因为,,π02x ≤<0ω>所以, ()πππ31666x ωω≤+<+由已知,,()π331π62ω+>所以,83ω>所以的取值范围是.ω8,3∞⎛⎫+ ⎪⎝⎭故选:C.8. 不等式对所有的正实数,恒成立,则的最大值为()t+≤x y t A. 2D. 1【正确答案】D【分析】由题意可得,令,则有mint ≤0m =>1m =,结合基本不等式求得,于是有,从而得答案.2112m =21m ≥1m ≥【详解】解:因为,,xy 0>所以,则有,t ≤mint ≤令,则m =>1m =所以,2111122m ==+≤+=当且仅当时,等号成立,x y =所以,,211m≤21m ≥又,所以,0m >1m ≥,1≥1,所以,1t ≤即的最大值为1.t 故选:D.方法点睛:对于恒成立问题,常采用参变分离法,只需求出分离后的函数(代数式)的最值即可得解.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,已知为圆锥的底面的直径,,C 为底面圆周上一点,弧的长度AB SO 2SA =BC 是弧的长度的2倍,异面直线与所成角的余弦值为,则().AC SB AC 14A. 圆锥SOB. 圆锥的侧面积为SO 2πC. 直线与平面所成的角大于SO SAC 30︒D. 圆锥的外接球的表面积为SO 16π3【正确答案】ABD【分析】A 选项,作出辅助线,设底面圆的半径为,根据异面直线的夹角余弦值和余弦定r 理得到,从而得到圆锥的体积;B 选项,根据侧面积公式求出答案;C 选项,作出辅助1r =线,得到直线与平面所成角的平面角为,并求出其正切值,得到SO SAC OST ∠;D 选项,找到外接球球心,并根据半径相等得到方程,求出外接球半径,得30OST ∠<︒到外接球表面积.【详解】A 选项,连接并延长交圆于点,连接,CO P ,AP BP 因为为圆锥的底面的直径,弧的长度是弧的长度的2倍,AB SO BC AC 故四边形为矩形,,则,ACBP ππ,36CAB ABP CBA BAP ∠=∠=∠=∠=//BP AC 异面直线与所成角等于异面直线与所成角,SB BP SB AC 因为,所以,2SA =2SB SP ==设底面圆的半径为,则,r BP r =故,解得,2222441cos 244SB BP SP r SBP SB BP r +-+-∠===⋅1r =则由勾股定理得,SO ===故圆锥的体积为A 正确;SO 21π3r SO ⋅⋅=B 选项,圆锥的侧面积为,B 正确;SO π2πrl =C 选项,取的中点,连接,则⊥,⊥,AC T ,ST OT OT AC ST AC 又,平面,故⊥平面,OT ST T = ,OT ST ⊂SOT AC SOT 过点作⊥于点,由于平面,则⊥,O OE ST E OE ⊂SOT OE AC 又,平面,故⊥平面,ST AC T = ,ST AC ⊂SAC OE SAC 故即为直线与平面所成的角,OST ∠SO SAC 其中,则,πsin 3OT CO ==1tan 2OT OST OS ∠===由于,且在上单调递增,故,C 错误;1tan 302︒=>tan y x =π0,2⎛⎫ ⎪⎝⎭30OST ∠<︒D 选项,由对称性可知,外接球球心在上,连接,Q OSQC 设圆锥的外接球半径为,则,SO R OQ SO R R =-=由勾股定理得,即,解得,222OC OQ QC +=)221R R +=R =故圆锥的外接球的表面积为,D 正确.SO 2216π4π4π3R =⨯=故选:ABD方法点睛:解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径10. 已知抛物线的焦点分别为,若分别为上的点,2212:4,:8C y x C y x ==12,F F ,A B 12,C C 且直线平行于轴,则下列说法正确的是()AB x A. 若,则B. 若,是等腰三角形1AF AB ⊥12AB =43AB =2F AB C. 若,则四边形是矩形 D. 四边形可能是菱形1BF BA ⊥12F F AB 12F F AB 【正确答案】ABC【分析】不妨设,则,,对于A ,由题意A (x 1,y ), B (x 2,y )(y >0)21248y x x ==120x x >>求出和即可求解;对于B ,由题意得,进而可求出两点11x =212x =|AB |1243-=x x ,A B 坐标,从而求出和即可判断;对于C ,由题意先得,接着求出,进而求2F A 2F B21x =1x 出,轴即可得解;对于D ,先假设四边形是菱形,再推出矛盾12AB F F =2AF x ⊥12F F AB 即可得解.【详解】由题意得,不妨设,()()121,0,2,0F F A (x 1,y ), B (x 2,y )(y >0)则,,21248y x x ==120x x >>对于A ,因为,又直线平行于轴,所以轴,1AF AB ⊥AB x 1AF x ⊥所以,故, 11x =2212,82y y x ====如图,故,故A 正确;1212AB x x =-=对于B ,若,则,所以,解得,43AB =1243-=xx 224483y y -=y =所以,84,33A B ⎛⎛ ⎝⎝所以 ,,2103F A ==2103F B ==所以,,所以是等腰三角形,故B 正确;22F A F B=|F 2A |+|AB |>|F 2B |2F AB 对于C ,若,又直线平行于轴,所以轴,1BF BA⊥AB x 1BFx ⊥所以,故,21x =2124y y x ====故,轴,所以四边形是矩形,故C 正确;12121AB x x F F =-==2AF x ⊥12F F AB 对于D ,若四边形是菱形,则,即即,12F F AB 121AB F F==121x x -=22148y y -=所以,所以,y =((2,,1,A B 所以可得,则四边形不是菱形,矛盾,21F A F B AB==≠12F F AB 所以四边形不是菱形,故D 错误.12F F AB 故选:ABC.11.设,定义在上的函数满足,且0a >R ()f x ()1f a =,则()()()()()(),,x y f x y f x f a y f y f a x ∀∈+=-+-R A.B.()00f =()()2f a x f x -=C.为偶函数 D.()f x ()20251f a =【正确答案】ABD【分析】对于A ,令,又,即可求得;对于B ,令,,0x a y ==()1f a =()00f =y a =再由,即可推得;对于C ,令,可得()()1,00f a f ==()()2f a x f x -=y x =-,从而为奇函数;对于D ,可推得,即()()0f x f x +-=()f x ()()4f x a f x +=的周期为,则.()f x 4a ()()()202550641f a f a a f a =⨯+==【详解】对于A ,令,得,,0x a y ==()()()()()00f a f a f a f f =+因为,所以,故A 正确;()1f a =()00f =对于B ,令,代入可得,y a =()()()()()0f x a f x f f a f a x +=+-因为,所以,()()1,00f a f ==()()f x a f a x +=-从而,故B 正确;()()2f a x f x -=对于C ,令,代入得,y x =-()()()()()0f f x f a x f x f a x =++--又因为对,恒成立且不恒为0,x ∀∈R ()()f a x f a x +=-所以,从而为奇函数,()()0f x f x +-=()f x 又不恒等于0,故C 错误;()f x 对于D ,因为,()()()2f x a f x f x +=-=-所以,()()()42f x a f x a f x +=-+=所以为的周期,4a ()f x 所以,故D 正确.()()()202550641f a f a a f a =⨯+==故选:ABD .三、填空题:本题共3小题,每小题5分,共15分.12. 的展开式中,含的项的系数为________.(用数字作答)6(12)(13)x x -+2x【正确答案】99【分析】先求二项式的展开式的通项,再由乘法法则求出的展开式6(13)x +6(12)(13)x x -+中含的项即可得解.2x 【详解】由题意得的展开式的通项为,6(13)x +()166C 33C rr r r rr T x x +==所以的展开式中,含的项为,6(12)(13)x x -+2x 2221112663C 23C 99x x x x -⋅=所以展开式中含的项的系数为.2x 99故答案为.9913. 在平面直角坐标系中,若角的终边过点,角的终边与角的终边关于xOy α(3,4)--βα轴对称,则______.x sin()αβ-=【正确答案】##24250.96【分析】由条件,根据三角函数定义可求,,根据对称性可求,,sin αcos αsin βcos β结合两角差正弦公式求结论.【详解】因为角的终边过点,α(3,4)--所以,,4sin 5α==-3cos 5α==-又角的终边与角的终边关于轴对称,βαx 所以,,4sin 5β=3cos 5β=-所以.24sin()sin cos cos sin 25αβαβαβ-=-=故答案为.242514.已知椭圆的左焦点为,若关于直线的对称点()2222:10x y C a b a b +=>>1F 1F 2y x =恰好在上,且直线与的另一个交点为,则______.A C 1AF CB 11||||BF AF =【正确答案】##0.215【分析】求出点关于直线对称点的坐标,进而求出,再结1(,0)F c -2y x =A 12||,||AF AF 合椭圆定义及勾股定理求出即可.1||BF 【详解】设关于直线的对称点,由,解得1(,0)F c -2y x =11(,)A x y 111112222y x cy x c⎧=-⎪+⎪⎨-⎪=⋅⎪⎩,113545c x c y ⎧=⎪⎪⎨⎪=-⎪⎩即,令椭圆右焦点,则,34(,55c c A -2(,0)Fc 1||AF ==,而点在椭圆上,由,得2||AF ==AC 122AF AF a +=,a =设,则,显然的中点都在直线上,1||BF m =2||2BF a m m =-=-112,AF F F 2y x =则平行于直线,从而,在中,2AF 2y x =21AF AF ⊥2Rt ABF,222()))m m +=-解得,所以.m =11|1|5||BF AF =故15思路点睛:椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用勾股定理、正弦定理、余弦定理、,得到a ,c 的关12|||2PF PF a =+|系.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知的内角所对的边分别为.ABC V ,,A B C ,,,sin cos )a b c b A a B c =-(1)求角A 的大小;(2)求的最大值.222sin sin sin A B C +【正确答案】(1);2π3A =(2).32【分析】(1)由题意结合正弦定理和即可求解.sin sin cos cos sin C A B A B =+(2)先由(1)结合余弦定理得,接着由正弦定理角化边得222a b c bc =++,再结合基本不等式即可求解.22222sin 1sin sin A bcB C bc =+++【小问1详解】因为,,sin cos )b A a B c =-()sin sin sin cos cos sin CA B A B A B =+=+所以由正弦定理得)sin sin sin cos sin cos cos sin sin B A A B C A B A B A B A B=-=,又,故,所以即,B ∈(0,π)sin 0B≠sin A A =tan A =又,所以.()0,πA ∈2π3A =【小问2详解】由(1),所以由余弦定理得,2π3A =222222cos a b c bc A b c bc =+-=++所以由正弦定理得,222222222222sin 311sin sin 2A a b c bc bc B C b c b c b c ++===+≤=++++当且仅当时等号成立.b c =所以的最大值为.222sin sin sin A B C +3216. 如图,在四棱锥中,平面ABCD ,,,P ABCD -PD ⊥2PD CD ==1AD AB ==,,点M 是棱PC 的中点.AB DA ⊥//AB CD (1)求证:平面PAD ;//BM (2)求平面PAB 与平面BMD所成锐二面角的余弦值.【正确答案】(1)证明见解析(2【分析】(1)取PD 的中点E ,连接ME ,AE ,根据E 是PD 的中点,得到,//EM AB ,从而四边形ABME 是平行四边形,得到,再利用线面平行的判定定理EM AB =//AE BM 证明;(2)以D 为坐标原点,DA ,DC ,DP 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,求得平面BDM 的一个法向量,平面PAB 的一个法向量,设n =(x,y,z )(),,m a b c= 平面PAB 与平面BMD 所成锐二面角的大小为θ,由求解.()cos ,n m cos n m n mθ⋅==【小问1详解】证明:取PD 的中点E ,连接ME ,AE ,因为E 是PD 的中点,M 是PC 的中点,所以,,又,,//EM DC 112EM DC ==//AB CD 1AB =所以,,//EM AB EM AB =所以四边形ABME 是平行四边形,所以,//AE BM 又平面PAD ,平面PAD ,所以平面PAD .AE ⊂BM ⊄//BM 【小问2详解】解:因为平面ABCD ,DA ,平面ABCD ,PD ⊥DC ⊂所以,,又,,所以.PD AD ⊥PD DC ⊥AB DA ⊥//AB CD AD DC ⊥以D 为坐标原点,DA ,DC ,DP 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示.则,所以.()()()()()0,0,0,0,0,2,1,0,0,1,1,0,0,2,0D P A B C ()0,1,1M 设平面BDM 的一个法向量,又,,n =(x,y,z )()1,1,0DB =()0,1,1DM =所以0,0,n DB x y n DM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩令,解得,,1x =1y =-1z =所以平面BMD 的一个法向量.n =(1,−1,1)设平面PAB 的一个法向量,又,,(),,m a b c= ()1,0,2AP =-()0,1,0AB =所以20,0.m AP a c m AB b ⎧⋅=-+=⎪⎨⋅==⎪⎩令,解得,,2a =0b =1c =所以平面PAB 的一个法向量,()2,0,1m =设平面PAB 与平面BMD 所成锐二面角的大小为θ,所以.()cos ,n m cos n m n m θ⋅====即平面PAB 与平面BMD17. 中国体育代表团在2024年巴黎奥运会上取得了优异的成绩.为了解学生对奥运会的了解情况,某校组织了全校学生参加的奥运会知识竞赛,从一、二、三年级各随机抽取100名学生的成绩(,各年级总人数相等),统计如下:年级[0,60)[60,100]一年级4060二年级2575三年级1090学校将测试成绩分为及格(成绩不低于60分)和不及格(成绩低于60分)两类,用频率估计概率,所有学生的测试成绩结果互不影响.(1)从一、二年级各随机抽一名学生,记表示这两名学生中测试成绩及格的人数,求X 的分布列和数学期望;X (2)从这三个年级中随机抽取两个年级,并从抽取的两个年级中各随机抽取一名学生,求这两名学生测试成绩均及格的概率.【正确答案】(1)答案见解析(2)111200【分析】(1)写出所有可能得取值,然后分别求出其对应概率,列出表格,即可得到分布X 列,再由期望的公式代入计算,即可得到结果;(2)根据题意,由互斥事件概率公式代入计算,即可得到结果.【小问1详解】一年级学生及格的频率为,不及格的频率为,6031005=4021005=二年级学生及格的频率为,不及格的频率为,7531004=2511004=三年级学生及格的频率为,不及格的频率为,90910010=10110010=的所有可能取值为,X 0,1,2,3则,,()21105410P X ==⨯=()312391545420P X ==⨯+⨯=,()33925420P X ==⨯=所以的分布列为:X X12P110920920所以的期望为X ()1992701210202020E X =⨯+⨯+⨯=【小问2详解】由题意可知,抽到一、二年级,一、三年级,二、三年级的概率都是,13所以抽到的两名学生测试成绩均及格的概率为.13313913911135435103410200P =⨯⨯+⨯⨯+⨯⨯=18. 已知双曲线的两条渐近线方程为为2222:1(0,0)x y C a b a b -=>>20,x y A ±=上一点.C (1)求双曲线的方程;C (2)若过点的直线与仅有1个公共点,求的方程;A l C l (3)过双曲线的右焦点作两条互相垂直的直线,,且与交于两点,记C F 1l 2l 1lC ,M N 的中点与交于两点,记的中点为.若,求点到直线MN 2,B l C ,P Q PQD (0,G G 的距离的最大值.BD 【正确答案】(1)2214x y -=(2),.220x y -+-=220x y ++-=220y --=(3【分析】(1)列出关于的方程,代入计算,即可求解;,a b (2)分直线斜率存在于不存在讨论,然后联立直线与双曲线方程,代入计算,即可得到结果;(3)分直线斜率存在于不存在讨论,分别联立直线与双曲线方程以及直线与双曲线方程,1l 2l结合韦达定理代入计算,即可得到直线过定点,从而得到结果.BD 【小问1详解】由题意可得,,解得,所以双曲线的方程为.2212811b a a b ⎧=⎪⎪⎨⎪-=⎪⎩21a b =⎧⎨=⎩C 2214x y -=【小问2详解】当直线斜率存在时,设直线的方程为,ll (1y k x -=-代入可得,2214x y -=()(()22214814110k x k k ⎡⎤-----+=⎢⎥⎣⎦当时,即时,直线与双曲线的渐近线平行,只有一个公共点,2140k -=12k =±l即直线的方程为,;l 220x y -+-=220x y ++-=当时,,2140k -≠()()()2222Δ6411614110k k ⎡⎤=-+--+=⎢⎥⎣⎦即,可得与双曲线相切,)210-=k =l 直线;l 220y --=显然,当直线斜率不存在时,直线与双曲线有两个公共点,不满足;l l 综上所述,与双曲线仅有1个公共点的直线有3条:C ,.220x y -+-=220x y ++-=220y --=【小问3详解】当直线的斜率不存在时,则与重合,又,即,1l B F 2415c =+=c =所以,,此时直线的方程为,)F()0,0D BD 0y =则到的距离为0;G BD 当直线的斜率为0时,则与重合,,,1l DF )D ()0,0B 此时直线的方程为,则到的距离为0;BD 0y =G BD 当直线的斜率存在且不为0时,设的方程为,1l 1l(y k x =-设,()()()()11223344,,,,,,,M xy N x y P x y Q x y 直线的方程为,2l (1y x k =-联立可得,(2214x y y k x ⎧-=⎪⎨⎪=⎩()2222142040k x x k -+--=,()()()()22222Δ4142041610k kk=----=+>由韦达定理可得,则12x x +=122x x +=所以,121222y y x x k k ++⎛=== ⎝所以,B 联立可得,(22141x y y x k ⎧-=⎪⎪⎨⎪=-⎪⎩222420140x x k k ⎛⎫---= ⎪⎝⎭,22224201Δ4141610k k k -⎛⎫⎛⎫⎛⎫=---=+> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由韦达定理可得,则,34x x+==342x x +=所以,所以,1212y y k +=-=D则()()2422334414BDk k k k k k --===--+,,()()()2423134141k k kk k -+-==--()2221,140,40kk k ≠-≠-≠所以直线的方程为,BD ()2341k y x k ⎛-=-⎝即,()2413k y kx-=--所以,即,()2413k y kx -=-+()2413k y k x ⎛-=-- ⎝故直线过定点,BD ⎫⎪⎪⎭当时,直线与双曲线的渐近线平行,故与双曲线只有一个交点,舍去;2410k -=1l当时,直线与双曲线的渐近线平行,故与双曲线只有一个交点,舍去;240k -=2l 当时,的方程为,21k =,BDBD x =过点;⎫⎪⎪⎭综上所述,直线过定点.BD ⎫⎪⎪⎭所以点到直线.GBD=关键点点睛:本题主要考查了直线与双曲线的位置关系,难度较大,解答本题的关键在于分类讨论直线的斜率存在以及不存在,然后得到直线恒过定点,从而解答.BD 19. 已知函数(其中).312()(1)21xx f x ax b x -=++-+,a b ∈R (1)当时,证明:是增函数;0,0a b >=()f x (2)证明:曲线是中心对称图形;()y f x =(3)已知,设函数,若对任0a ≠312()e ()(1)(1)21xx x g x f x b x b -=+-+-+-+()0g x ≥意的恒成立,求的最小值.x ∈R b aa -【正确答案】(1)证明见解析; (2)证明见解析;(3).1-【分析】(1)根据给定条件,求出函数的导数,再判断导数值为正即可.(2)利用中心对称的定义,计算推理即得.(3)求出函数及其导数,再按分类讨论并求出的最小值,建立不等()g x 0,0a a <>()g x 式,构造函数,利用导数求出最小值即得.【小问1详解】函数的定义域为R ,当时,,()f x 0,0a b >=1122()22121x x x f x ax ax--=+=-+++求导得,所以是增函数.122ln2()0(21)x x f x a -'=+>+()f x 【小问2详解】依题意,(2)()f x f x -+2331122(2)(1)(1)2121x x x x a x b x ax b x ---=+-+-+++-++,()11222211221xx x a a --=++=+++所以曲线关于点对称,曲线是中心对称图形.()y f x =(1,1)a +()y f x =【小问3详解】依题意,,其定义域为,求导得,()e 1xg x ax b =-+-R ()x g x e a '=-当时,在上单调递增,0a <()0,()g x g x >'R 当时,,的取值集合为,0x <0e 1x<<1ax b -+-(,1)b -∞-因此当时,函数的取值集合为,不符合题意;0x <()g x (,)b -∞当时,由,得在上单调递增;0a >()0g x '>ln ,()x a g x >(ln ,)a +∞由,得在上单调递减,()0g x '<ln ,()x a g x <(,ln )a -∞函数在处取得最小值,且,()g x ln x a =min ()(ln )ln 1g x g a a a a b ==-+-由对任意的恒成立,得,即成立,()0g x ≥x ∈R ln 10a a a b -+-≥ln 1b a a a ≥-++因此,设,2ln 11ln 2b a a a a a a a a --++≥=+-221111()ln 2,()a a a a a a a a ϕϕ-=+-=='-当时,,当时,,01a <<()0a ϕ'<1a >()0a ϕ'>函数在上递减,在上递增,()a ϕ(0,1)(1,)+∞则,即,当且仅当时取等号,min()(1)1a ϕϕ==-1b aa -≥-1,0ab ==所以的最小值为.b aa -1-结论点睛:函数的定义域为D ,,()y f x =x D ∀∈①存在常数a ,b 使得,则函数()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=图象关于点对称.()y f x =(,)a b ②存在常数a 使得,则函数图象关于直()(2)()()f x f a x f a x f a x =-⇔+=-()y f x =线对称.x a =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省绵阳南山中学2017届高三数学10月月考试题 理
1、试题说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间
120分钟.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.第II 卷的22、23、24小题是选考内容,务必先选后做.考试范围:绵阳一诊考试内容.
第Ⅰ卷(选择题,共60分)
注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是
符合题目要求的.
1.若集合{
}Z x x y y M ∈==,|2
,{}
R x x x N ∈≥-=,63|,全集R U =,P 是N 的补集,则
P M 的真子集个数是( )
.A 15
.B 7
.C 16
.D 8
2.已知()3sin f x x x π=-,命题:(0,),()02
p x f x π
∀∈<,则( )
.A p 是假命题;:(0,
),()02p x f x π
⌝∀∈≥ .B p 是真命题; 00:(0,),()02
p x f x π
⌝∃∈≥ .C p 是真命题; :(0,),()02p x f x π⌝∀∈> .D p 是假命题; 00:(0,),()02
p x f x π
⌝∃∈≥ 3.“0>x ” 是“
11
1
<+x ”的( )条件 .A 充分不必要 .B 必要不充分 .C 充要条件 .D 既不充分也不必要
4. ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,1,2a b ==,则AD =( )
11.33A a b - 22.33B a b - 33.55C a b - 44.55
D a b - 5.函数2
||
()2x f x x =-的图像为( )
6.函数的图象如下图所示,为了得到
的图像,可以将
的图像( )
向右平移个单位长度向右平移个单位长度
向左平移个单位长度向左平移个单位长度
7.设的大小关系( )
8.若函数在上有且只有一个零点,则实数的取值范围为( )
9.定义在上的奇函数,,且对任意不等的正实数
,都满足:,则不等式
的解集为( )
10.某厂生产的甲、乙两种产品每件可获利润分别为30元、20元,生产甲产品每件需用A原料2 kg、
B原料4 kg,生产乙产品每件需用A原料3 kg、B原料2 kg.A原料每日供应量限额为60 kg,B
原料每日供应量限额为80 kg.要求每天生产的乙种产品不能比甲种产品多超过10件,则合理安
排生产可使每日获得的利润最大为( )
元700元400元
650元
11.已知是定义在上的奇函数,当时,
,则函数在上的所有零点之和等于( )
8 9
10
12.定义在上的函数满足,且当时,
,则等于( )
第Ⅱ卷(非选择题,共90分)
注意事项:
必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答。

作图时可先用铅笔会出,确认后再用0.5毫米黑色墨迹签字笔描清楚。

答在试题卷、草稿纸上无效。

本卷包括必考题和选考题两部分。

第13题~第21题为必考题,每个试题考生都必须作答。

第22题~24题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分,共20分.
13.若向量,且,则等于 .
14.已知幂函数的图象关于轴对称,且在(0,+∞)上是减函数,
则的值为________.
15.已知数列的通项公式是,若对所有的,都有
成立,则实数的取值范围是________.
16.下列命题中:
(1)若满足,满足,则

(2)函数的图象恒过定点,若在
上,其中,则的最小值是;
(3)设是定义在上,以1为周期的函数,若在
上的值域为,则在区间上的值域为;
(4)函数图象的对称中心为;
其中真命题序号为.
三、解答题:本大题共6小题,前5个题每个12分,选做题10分,共70分.解答应写出文字说明、
证明过程或演算步骤.前五题各12分.
17.(本小题满分12分)
已知向量,,函数
(Ⅰ)求函数的解析式及其单调递增区间;
(Ⅱ)当时,求函数的值域.
18.(本小题满分12分)
已知数列的前项和为,,且 (为正整数).
(Ⅰ)求数列的通项公式;
(Ⅱ)若对任意正整数,恒成立,求实数的最大值.
19.(本小题满分12分)
已知定义在区间上的两个函数和,其中
,.
(Ⅰ)求函数的最小值;
(Ⅱ)若对任意、,恒成立,求的取值范围.
20.(本小题满分12分)
在中,角的对边分别为,且满足.
(Ⅰ)若,求此三角形的面积;
(Ⅱ)求的取值范围.
21.(本小题满分12分)
已知函数(为实常数)。

(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知且,求证: .
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。

作答时用2B 铅笔在答题卡上把所选题目题号涂黑。

22.(本小题满分10分)选修4-1:几何证明选讲
如图,中,,经过点,与
相切于,与相交于,若
,求的半径.
23.(本小题满分10分)选修4-4:坐标系与参数方程
已知直线,圆.
(1)当时,求的交点的直角坐标;
(2)过坐标原点作的垂线,垂足为,
为的中点,当变化时,求点轨迹的参数方程,并指出它是什么曲线.
24.( 本小题满分10分)选修4-5:不等式选讲
已知函数
(1)当时,求不等式的解集;
(2)设,且当时,,求的取值范围.
2017届10月月考参考答案
13.14.1 15.(-3,+∞) 16.(2)(3)(4)
17.(1)
由得
单调递增区间为,
(2)当时,则, 故的值域是
18. (1)a n =a 1q
n -1
=(13)n -1(n ∈N *
);(2)由(1)知,S n =a 11-q n
1-q

1-
13
n
1-13
=32[1-(13
)n
]. 又对∀n ∈N *
恒有32k ≤32 [1-(13)n ]得k ≤1-(13)n .∵数列{1-(13)n }单调递增,
∴当n =1时,数列中的最小项为23,∴必有k ≤23,即实数k 的最大值为2
3
.
19.(1)
(2),当时,,
又在区间上单调递增(证明略),故.
由题设,得,故或
解得为所求的范围.
20.解:(1)△ABC 的面积S =1
2
ac sin B =10 3.
(2)3sin A +sin ⎝ ⎛⎭⎪⎫C -π6=2sin ⎝
⎛⎭⎪⎫A +π6∈(]1,2.
21(Ⅰ)在时递增;在时递减。

(II ).
① 当
时,,在上递减,
无极值;
22.解 过B 点作BE ∥AC 交圆于点E ,连接AE ,BO 并延长交AE 于F ,由题意∠ABC
=∠ACB =∠AEB ,
又BE ∥AC ,∴∠CAB =∠ABE ,则AB =AC 知,∠ABC =∠ACB =∠AEB =∠BAE , 则AE ∥BC ,四边形ACBE 为平行四边形.∴BF ⊥AE.又BC 2
=CD ×AC =2,
∴BC =2,BF =AB 2-AF 2

14
2.设OF =x ,则⎩⎪⎨⎪⎧
x +r =14
2,x 2
+22
2
=r 2

解得r =214
7
.
23.解 (1)当α=π3
时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2
=1,联立方程组
⎩⎨⎧
y =3x -1,x 2+y 2
=1,
解得C 1与C 2的交点坐标为(1,0),(12,-3
2
).
(2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2
α,-cos αsin α), 故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧
x =1
2
sin 2
α,y =-1
2sin αcos α
(α为参
数).
P 点轨迹的普通方程为(x -14)2+y 2=116.故P 点轨迹是圆心为(1
4
,0),半径为14
的圆.
24.(1)(0,2),(2)。

相关文档
最新文档