上海市2020届高三数学试题分类汇编:统计与概率、推理(含解析)
2020年上海秋季高考数学逐题解析版(校对2

2020年全国统一高考数学试卷(上海秋季卷)一、填空题:本题共15小题,1-6题4分,7-12题5分,共54分。
1.已知集合,,求 .={124}A ,,={234}B ,,=A B 【答案】:{24},【解析】: 与取交集,共有元素为和.A B 242.计算: .1lim31n n n →∞+=-【答案】:13【解析】: .11111lim lim lim 1131333()33n n n n n n n n n →∞→∞→∞+++===---3.已知复数(为虚数单位),则 .12i z=-i z =【解析】:z ==4.已知行列式,则行列式 .126300a cd b =a cd b=【答案】:2【解析】:因为 .126300a cd b =所以.11300622a c c ad b b d⋅-⋅+=故.2a cd b=5.已知,则 .()3f x x =()1fx -=【答案】:13x()x ∈R 【解析】: 考察反函数知识点,由 可得,注意.3x y =13y x =x ∈R 6.已知、、1、2的中位数为,平均数为,则 .a b 34ab =【答案】:36【解析】:由平均数为,可得,由中位数为,可知和中有一个是413a b +=3a b 4,另一个是.97.已知,则的最大值为 .20230x y y x y +⎧⎪⎨⎪+-⎩≥≥≤2z y x =-【答案】:1-【解析】:画出可行域,带入点.()11,8.为不等于零的等差数列,且,求.{}n a 1109a a a +=12910+a a a a ++= 【答案】:278【解析】:在等差数列中由,得,所以:1109a a a +=1a d =-.1291101+93627+98a a a a d a a d +++==9.从个人中选个人值班,第一天641个人,第二天1个人,第三天2个人,共有多少种排法 .【答案】:180【解析】:.112654C C C 180=10.已知椭圆:,第二象限有一点,点与右焦点22143y x +=P P F所在直线与椭圆交于一点,,且点与点关于轴对称,求Q 1PF FQ ⊥Q 1Q x PQ 的直线方程 .【答案】:1y x=-【解析】:,且点与点关于轴对称,知斜率为,所以1PF FQ ⊥Q 1Q x PF 1-PF方程为.1y x =-11.设,若存在定义域的函数既满足“对于任意,的值为或a ∈R R ()f x 0x ∈R 0()f x 20x 0x ”又满足“关于的方程无实数解”,则的取值范围为 x ()f x a =a 【答案】:且0a ≠1a ≠【解析】:题目转换为是否存在实数,使得存在函数满足“对于任意,a ()f x 0x ∈R 0()f x 的值为或”又满足“关于的方程无实数解”构造函数:20x 0x x ()f x a =,则方程,只有0,1两个实数解.2,(),x x af x x x a ≠⎧=⎨=⎩()f x a =12.设,已知平面向量两两不相同,,且对于任意的k ∈*N 1212,,,, k a a b b b 12||1a a -=,及,,求的最大值 1,2i =1,2,,j k = }{1,2i j a b -∈k 【答案】:6【解析】:设,这,因为,所以对于任意的1122,OA a OA a == 12||1A A =}{1,2i j a b -∈有,做,则我们有1,2,,j k = }{11,2j a b -∈ }{21,2j a b -∈ j j OB b = 1j A B 等于1或者2,且等于1或者2,所以点在以,2j A B ,(1,2,,)j B j k = i A ()1,2i =为圆心半径为1或者2的圆上,如图所示,总共有6个点满足条件.二、选择题:本题共4小题,每小题5分,共20分。
2020年高考数学试题分项版—统计概率(原卷版)

2020年高考数学试题分项版——统计概率(原卷版)一、选择题1.(2020·全国Ⅰ理,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x2.(2020·全国Ⅰ理,8)⎝⎛⎭⎫x +y2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10 C .15 D .203.(2020·全国Ⅱ理,3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名4.(2020·全国Ⅲ理,3)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i =14pi =1,则下面四种情形中,对应样本的标准差最大的一组是()A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.25.(2020·新高考全国Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种6.(2020·新高考全国Ⅰ,12)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着p i 的增大而增大C .若p i =1n(i =1,2,…,n ),则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )7.(2020·北京,3)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .108.(2020·新高考全国Ⅱ,6)3名大学生利用假期到2个山村参加扶贫工作,每名大学生只去1个村,每个村至少1人,则不同的分配方案共有( ) A .4种 B .5种 C .6种 D .8种9.(2020·新高考全国Ⅱ,9)我国新冠肺炎疫情防控进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数增量大于复工指数的增量C .第3天至第11天复工复产指数均增大都超过80%D .第9天至第11天复产指数增量大于复工指数的增量10.(2020·天津,4)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为( )A .10B .18C .20D .3611.(2020·全国Ⅰ文,4)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B.25 C.12 D.4512.(2020·全国Ⅰ文,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x13.(2020·全国Ⅱ文,3)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k -j =3且j -i =4,则称a i ,a j ,a k 为原位大三和弦;若k -j =4且j -i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .1514.(2020·全国Ⅱ文,4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名15.(2020·全国Ⅲ文,3)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A .0.01B .0.1C .1D .10 二、填空题1.(2020·全国Ⅱ理,14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种. 2.(2020·全国Ⅲ理,14)⎝⎛⎭⎫x 2+2x 6的展开式中常数项是________.(用数字作答) 3.(2020·天津,11)在⎝⎛⎭⎫x +2x 25的展开式中,x 2的系数是________. 4.(2020·天津,13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.5.(2020·江苏,3)已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是________. 6.(2020·江苏,4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.7.(2020·浙江,12)二项展开式(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 4=________,a 1+a 3+a 5=________.8.(2020·浙江,16)盒中有4个球,其中1个红球,1个绿球,2 个黄球,从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P (ξ=0)=________,E (ξ)=________. 三、解答题1.(2020·全国Ⅰ理,19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.2.(2020·全国Ⅱ理,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.3.(2020·全国Ⅲ理,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),4.(2020·新高考全国Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),5.(2020·新高考全国Ⅱ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),6.(2020·北京,18)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案二的概率估计值记为p0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)7.(2020·江苏,23)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示).8.(2020·全国Ⅰ文,17)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?9.(2020·全国Ⅱ文,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.10.(2020·全国Ⅲ文,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),。
2020年上海市高三数学一模分类汇编:概率、统计

支付金额(元)
支付方式
大于2000
使用
18人
29人
23人
使用
10人
24人
21人ቤተ መጻሕፍቲ ባይዱ
依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月 、 两种支付方式
都使用过的概率为
上海市2020〖人教版〗高三数学复习试卷排列组合和概率理

上海市2020年〖人教版〗高三数学复习试卷排列组合和概率理创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校1.【⋅全国】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A、12种B、10种C、9种D、8种2.【⋅全国】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为()3.【⋅全国】为了解某地区的中生视力情况,拟从该地区的中生中抽取部分学生进行调查,事先已了解到该地区、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A、简单随机抽样B、按性别分层抽样C、按学段分层抽样D、系统抽样4. 【⋅全国】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)12(B)13(C)14(D)165.【全国1高考理第5题】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A .81B .83C .85D .87 【热点深度剖析】从这三年高考来看,对这一热点的考查,主要考查分类计数原理、分步计数原理,排列组合,等可能事件的概率,古典概型,几何概型,条件概率,相互独立事件的概率、互斥事件的概率. 高考题一道考查正态分布,也是基础题,清晰正态分布的分辨能力和公式是解题的关键;另一个题是组合数,属于基础题,高考考查抽样方法与古典概型,属于基础题;高考题主要考查古典概型,利用排列组合知识求古典概型的概率属于基础题.高考对这一部分知识的考查单独的考题会以选择题、填空题的形式出现,一般在试卷的靠前部分,属于中低难度的题目,难度较低,分清事件是什么事件是解题的关键;排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;从高考试题的形式来看,排列组合和概率往往结合在一起考查,且以概率为主,单纯考察排列组合较少,试题难度不大,为中低档题,预测高考,排列、组合及排列与组合的综合应用仍是高考的重点,同时应注意排列、组合与概率、分布列等知识的结合,特别是几何概型有可能考查,重点考查学生的运算能力与逻辑推理能力.【重点知识整合】1.排列数m n A 中1,n m n m ≥≥∈N 、、组合数m n C 中,1,0,n m n m n m ≥≥≥∈、N .(1)排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21n n A n n n n ==--⋅(2)组合数公式()(1)(1)!()(1)21!!m mn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01n C =. (3)排列数、组合数的性质:①m n m n n C C -=;②111m m m n n n C C C ---=+;③11k k n n kC nC --=;④1121++++=++++r n r n r r r r r r C C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++. 2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉)(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)(5)多排问题单排法(6)多元问题分类法(7)有序问题组合法(8)选取问题先选后排法(9)至多至少问题间接法(10)相同元素分组可采用隔板法4、分组问题:要注意区分是平均分组还是非平均分组,平均分成n 组问题别忘除以n !5.随机事件A 的概率0()1P A ≤≤,其中当()1P A =时称为必然事件;当()0P A =时称为不可能事件P(A)=0;6.等可能事件的概率(古典概率): P(A)=n m .理解这里m 、n的意义.7、互斥事件:(A 、B 互斥,即事件A 、B 不可能同时发生).计算公式:P (A +B )=P (A )+P (B ).8、对立事件:(A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生).计算公式是:P (A )+ P(B)=1;P ( )A =1-P (A );9、独立事件:(事件A 、B 的发生相互独立,互不影响)P(A •B)=P(A) • P(B) .提醒:(1)如果事件A 、B 独立,那么事件A 与B 、A 与B 及事件A 与B 也都是独立事件;(2)如果事件A 、B 相互独立,那么事件A 、B 至少有一个不发生的概率是1-P (A ⋅B )=1-P(A)P(B);(3)如果事件A 、B 相互独立,那么事件A 、B 至少有一个发生的概率是1-P ( )A ⋅B =1-P( )A P( )B .10、独立事件重复试验:事件A 在n 次独立重复试验中恰好发生了.....k 次.的概率()(1)k k n k n n P k C p p -=-(是二项展开式[(1)]n p p -+的第k +1项),其中p 为在一次独立重复试验中事件A发生的概率.提醒:(1)探求一个事件发生的概率,关键是分清事件的性质.在求解过程中常应用等价转化思想和分解(分类或分步)转化思想处理,把所求的事件:转化为等可能事件的概率(常常采用排列组合的知识);转化为若干个互斥事件中有一个发生的概率;利用对立事件的概率,转化为相互独立事件同时发生的概率;看作某一事件在n次实验中恰有k次发生的概率,但要注意公式的使用条件.(2)事件互斥是事件独立的必要非充分条件,反之,事件对立是事件互斥的充分非必要条件;(3)概率问题的解题规范:①先设事件A=“…”, B=“…”;②列式计算;③作答.11.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型:(1)有限性:在一次试验中,可能出现的不同的基本事件只有有限个;(2)等可能性:每个基本事件的发生都是等可能的.古典概型中事件的概率计算如果一次试验的等可能基本事件共有n个,随机事件A包含了其中m个等可能基本事件,那么事件A发生的概率为P(A)=m.n 12.几何概型区域A为区域Ω的一个子区域,如果每个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型.几何概型的概率P(A)=μA,其中μAμΩ表示构成事件A的区域长度(面积或体积).μΩ表示试验的全部结果所构成区域的长度(面积或体积).13、解决概率问题要注意“四个步骤,一个结合”:①求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件n 次独立重复试验 即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复.【应试技巧点拨】1.求排列应用题的主要方法:(1)对无限制条件的问题——直接法;(2)对有限制条件的问题,对于不同题型可采取直接法或间接法,具体如下: ①每个元素都有附加条件——列表法或树图法;②有特殊元素或特殊位置——优先排列法;③有相邻元素(相邻排列)——捆绑法;④有不相邻元素(间隔排列)——插空法;2.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.3.解排列、组合的综合应用问题,要按照“先选后排”的原则进行,即一般是先将符合要求的元素取出(组合),再对取出的元素进行排列,常用的分析方法有:元素分析法、位置分析法、图形分析法.要根据实际问题探索分类、分步的技巧,做到层次清楚,条理分明.4.事件A 的概率的计算方法,关键要分清基本事件总数n 与事件A 包含的基本事件数m .因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么?它包含的基本事件有多少.回答好这三个方面的问题,解题才不会出错.5.几何概型的两个特点:一是无限性,即在一次试验中,基本事件的个数可以是无限的;二是等可能性,即每一个基本事件发生的可能性是均等的.因此,用几何概型求解的概率问题和古典概型的思路是相同的,同属于“比例解法”.即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占的总面积(总体积、长度)”之比来表示.6.求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解.一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”“至多”等问题往往用这种方法求解.注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.牢记公式()()1n k k k n n P k C p p -=-,0,1,2,,k n =,并深刻理解其含义.7.解答条件概率问题时应注意的问题(1)正确理解事件之间的关系是解答此类题目的关键.(2)在求()p AB 时,要判断事件A 与事件B 之间的关系,以便采用不同的方法求()p AB .其中,若B A ⊆,则()()p AB p B =),从而()()()P B p B A P A =. 8.解答离散型随机变量的分布列及相关问题的一般思路(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.【考场经验分享】1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.分类时要做到不重不漏.对于复杂的计数问题,可以分类、分步综合应用.2.解决排列、组合问题可遵循“先组合后排列”的原则,区分排列、组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”.3.要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果.4.几何概型求解时应注意:(1)对于一个具体问题能否应用几何概型概率公式计算事件的概率,关键在于能否将问题几何化;也可根据实际问题的具体情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于该坐标系中的一个点,使得全体结果构成一个可度量区域.(2)由概率的几何定义可知,在几何概型中,“等可能”一词应理解为对应于每个试验结果的点落入某区域内的可能性大小仅与该区域的几何度量成正比,而与该区域的位置与形状无关.5.如果题设条件比较复杂,且备选答案数字较小,靠考虑穷举法求解,如果试题难度较大并和其他知识联系到一起,感觉不易求解,一般不要花费过多的时间,可通过排除法模糊确定,一般可考虑去掉数字最大与最小的答案 本部分内容的基础是概率,高考试题中无论是以古典概型为背景的分布列,还是以独立重复试验为背景的分布列,都要求计算概率.解此类问题的一个难点是正确的理解题意,需特别注意.【名题精选练兵篇】1. 【吉安市一中高三上学期第二次阶段考试】某进行模拟考试有80个考室,每个考室30个考生,每个考生座位号按1~30号随机编排,每个考场抽取座位号为15号考生试卷评分,这种抽样方法是( )A. 简单随机抽样B. 系统抽样C. 分层抽样D. 分组抽样2. 【襄阳市第五高三第一学期11月质检】高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,已知甲乙相邻,则甲丙相邻的概率为( )A .13B .23C .12D .16 3. 设随机变量ξ服从正态分布2N 1σ(,),若P 2)0.8ξ<=(,则(01)P ξ<<的值为( )A .0.2B .0.3C .0.4D .0.64. 【贵阳市普通高中高三上学期期末监测】若任取x ,]1,0[∈y ,则点),(y x P 满足21x y ≤的概率为( ) A.22 B.31 C.21 D.32 5. 【龙岩市非一级达标校高三上学期期末检查】甲、乙两位同学在高二5次月考的数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是x 甲、x 乙,则下列正确的是( )A .x x <乙甲,甲比乙成绩稳定B .x x >乙甲,乙比甲成绩稳定C .x x >乙甲,甲比乙成绩稳定D .x x <乙甲,乙比甲成绩稳定6. 【北京市丰台区高三上学期期末考试】11月,北京成功举办了亚太经合组织第二十二次领导人非正式会议,出席会议的有21个国家和地区的领导人或代表.其间组委会安排这21位领导人或代表合影留念,他们站成两排,前排11人,后排10人,中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人或代表所站的位置不做要求,那么不同的排法共有(A )1818A 种(B )218218A A 种(C )281031810A A A 种(D )2020A 种 7.【宝鸡市九校高三联合检测】已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是( )A.12π- B.13π- C.16π- D.112π-8. 已知集合A =2{20}x x x --<,1{lg}1x B x y x -==+,在区间(3,3)-上任取一实数x ,则x A B ∈⋂的概率为A .18B .14C .13D .112 9.已知函数3221()13f x x ax b x =+++,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为 A.79 B.13 C.59 D.2310.【遂宁市高三第二次诊断】从3名语文老师、4名数学老师和5名英语老师中选派5人组成一个支教小组,则语文、数学和英语老师都至少有1人的选派方法种数是( )A .590B .570C .360D .21011.【兰州市高三诊断】从数字1、2、3、4、5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为A .15B .25 C .35 D .4512.在圆22(2)(2)4x y --+=内任取一点,则该点恰好在区域50303x x y x ⎧⎪⎨⎪⎩+2y -≥-2+≥≤内的概率为( )A .18π B .14π C .12π D .1π13.【长望浏宁四县高三3月调研】如图,矩形ABCD 的四个顶点的坐标分别为A (0,—1),B (π,—1),C (π,1),D (0,1),正弦曲线x x f sin )(=和余弦曲线x x g cos )(=在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( ). A .π21+ B .π221+ C .π1 D .π21 14.【稳派新课程高三2月】如图,大正方形的面积是34,四个全等三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( )A.171B.172C.173D.174 15.【高三教学质量检测一】周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估计做对第二道题的概率为( )A .0.80B .0.75C .0.60D .0.4816. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为.【名师测试篇】1.某小区准备在小区活动广场建造如图所示的休闲区域,中心区域E 将建造一个喷泉,现要求在其余四个区域中种上不同颜色的花卉,现有四种不同颜色的花卉可供选择.要求每一个区域种一种颜色的花卉,相邻区域所种的颜色不同,则不同的种花卉的方法种数为( )A .64B .72C .84D .962.在小语种自主招生考试中,某学校获得5个推荐名额,其中韩语2名,日语2名,俄语1名.并且日语和韩语都要求必须有女生参加.学校通过选拔定下3女2男共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .26种3.如图,设抛物线()210y ax a =-+>的顶点为A ,与x 轴正半轴的交点为B ,设抛物线与两坐标轴正半轴围成的区域为M ,随机往M 内投一点P ,则点P 落在AOB ∆内的概率是( ) A.56 B.45 C.34D.234. 从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如右茎叶图:根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①;②.5.若a 和b 是计算机在区间(0,2)上产生的随机数,那么函数2()lg(44)f x ax x b =++的值域为R (实数集)的概率为( )A .12ln 24+B .32ln 24-C .1ln 22+D .1ln 22- 6.在平面直角坐标系中,已知点P (4,0),Q (0,4),A ,B 分别是x 轴和y 轴上的动点,若以MN 为直径的圆C 与直线PQ 相切,当圆C 的面积最小时,在四边形APQB 内任取一点,则这点落在圆C 外的概率为。
上海市2020届高三数学一轮复习典型题专项训练:统计与概率

上海市2020届高三数学一轮复习典型题专项训练统计与概率一、统计1、(2019届浦东新区高三二模)已知6个正整数,它们的平均数是5,中位数是4,唯一众数是3,则这6个数方差的最大值为(精确到小数点后一位)2、(长宁区2019届高三一模)有一批种子,对于一颗种子来说,它可能1天发芽,也可能2天发芽,⋅⋅⋅⋅⋅⋅⋅,下表是不同发芽天数的种子数的记录:≥发芽天数 1 2 3 4 5 6 7 8种子数8 26 22 24 12 4 2 0统计每颗种子发芽天数得到一组数据,则这组数据的中位数是()A. 2B. 3C. 3.5D. 43、(2019届上海延安中学9月月考)1、1、3、3、5这五个数的中位数是___4、(上海交通大学附属中学2019届高三3月月考)某学校高三年级学生完成并提交的社科类课题论文有54篇,人文类课题论文60篇,其他论文39篇,为了了解该校学生论文完成的质量情况,若按分层抽样从该校的所有完成并提交的论文中抽取51篇进行审核,则抽取的社科类课题论文有__________篇5、(曹杨第二中学2019届高三下3月月考)某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽取一个容量为n的样本,其中样本中A型产品有16件,那么此样品的容量n=6、(曹杨二中2019届高高三上学期期末)一组数据为2,11,9,8,10,则这组数据的方差为________7、(黄浦区2018高三二模)已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是人.8、(崇明区2019届高三三模)某校三个年级中,高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽取55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为_____9、(华东师范大学第二附属中学2019届高三5月模拟)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9。
高中数学经典概率与统计(解析版)

概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。
2020年上海市高考数学试卷(秋季)(全网最专业解析 )

2020年上海市秋季高考数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1A =,2,4},集合{2B =,4,5},则A B = .2.计算:1lim31n n n →∞+=- .3.已知复数12(z i i =-为虚数单位),则||z = .4.已知函数3()f x x =,()f x '是()f x 的反函数,则()f x '= . 5.已知x 、y 满足202300x y x y y +-⎧⎪+-⎨⎪⎩,则2z y x =-的最大值为 .6.已知行列式126300a bc d =,则a bc d= . 7.已知有四个数1,2,a ,b ,这四个数的中位数是3,平均数是4,则ab = .8.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋯+= .9.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有 种安排情况.10.已知椭圆22:143x y C +=的右焦点为F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',求直线l 的方程是 .11.设a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件:(1)对任意的0x R ∈,0()f x 的值为0x 或20x ;(2)关于x 的方程()f x a =无实数解, 则a 的取值范围是 .12.已知1a ,2a ,1b ,2b ,⋯,(*)k b k N ∈是平面内两两互不相等的向量,满足12||1a a -=,且||{1i j a b -∈,2}(其中1i =,2,1j =,2,⋯,)k ,则k 的最大值是 . 二、选择题(本大题共4题,每题5分,共20分) 13.下列等式恒成立的是( ) A .222a b ab + B .222a b ab +- C .2||a b ab + D .222a b ab +-14.已知直线方程3410x y ++=的一个参数方程可以是( )A .1314x t y t =+⎧⎨=--⎩B .1413x ty t =-⎧⎨=-+⎩C .1314x t y t =-⎧⎨=-+⎩D .1413x t y t =+⎧⎨=-⎩15.在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线相交的面是( )A .面11AAB BB .面11BBC CC .面11CCD DD .面ABCD16.命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件 C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.18.(14分)已知函数()sin f x x ω=,0ω>.(1)()f x 的周期是4π,求ω,并求1()2f x =的解集;(2)已知1ω=,2()()3()()2g x f x x f x π=--,[0x ∈,]4π,求()g x 的值域.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为qv x=,x 为道路密度,q 为车辆密度.1100135(),040()3(40)85,4080x x v f x k x x ⎧-<<⎪==⎨⎪--+⎩. (1)若交通流量95v >,求道路密度x 的取值范围;(2)已知道路密度80x =,交通流量50v =,求车辆密度q 的最大值.20.(16分)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x y b b Γ+=+>交于点(A A x ,)A y (第一象限),曲线Γ为1Γ、2Γ上取满足||A x x >的部分.(1)若A x =b 的值;(2)当b2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且1||8PF =,求12F PF ∠;(3)过点2(0,2)2b D +斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ,并求OM ON 的取值范围.21.(18分)已知数列{}n a 为有限数列,满足12131||||||m a a a a a a --⋯-,则称{}n a 满足性质P .(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P ,请说明理由; (2)若11a =,公比为q 的等比数列,项数为10,具有性质P ,求q 的取值范围; (3)若{}n a 是1,2,3,⋯,m 的一个排列(4)m ,{}n b 符合1(1k k b a k +==,2,⋯,1)m -,{}n a 、{}n b 都具有性质P ,求所有满足条件的数列{}n a .2020年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1A =,2,4},集合{2B =,4,5},则A B = {2,4} .【思路分析】由交集的定义可得出结论. 【解析】:因为{1A =,2,4},{2B =,4,5}, 则{2AB =,4}.故答案为:{2,4}.【总结与归纳】本题考查交集的定义,属于基础题.2.计算:1lim 31n n n →∞+=-13. 【思路分析】由极限的运算法则和重要数列的极限公式,可得所求值.【解析】:1111lim1101limlim 113130333limn n n n n n n n nn →∞→∞→∞→∞++++====----, 故答案为:13.【总结与归纳】本题考查数列的极限的求法,注意运用极限的运算性质,考查运算能力,是一道基础题.3.已知复数12(z i i =-为虚数单位),则||z【思路分析】由已知直接利用复数模的计算公式求解.【解析】:由12z i=-,得||z . .【总结与归纳】本题考查复数模的求法,是基础的计算题.4.已知函数3()f x x =,()f x '是()f x 的反函数,则()f x '= 13x ,x R ∈ .【思路分析】由已知求解x ,然后把x 与y 互换即可求得原函数的反函数. 【解析】:由3()y f x x ==,得x =,把x 与y互换,可得3()f x x =的反函数为1()f x -=【总结与归纳】本题考查函数的反函数的求法,注意反函数的定义域是原函数的值域,是基础题.5.已知x 、y 满足202300x y x y y +-⎧⎪+-⎨⎪⎩,则2z y x =-的最大值为 1- .【思路分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解析】:由约束条件202300x y x y y +-⎧⎪+-⎨⎪⎩作出可行域如图阴影部分,化目标函数2z y x =-为2y x z =+,由图可知,当直线2y x z =+过A 时,直线在y 轴上的截距最大, 联立20230x y x y +-=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,即(1,1)A .z 有最大值为1211-⨯=-.故答案为:1-.【总结与归纳】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 6.已知行列式126300a bc d =,则a bc d= 2 . 【思路分析】直接利用行列式的运算法则求解即可. 【解析】:行列式126300a bc d =,可得36a b c d =,解得2a bc d=. 故答案为:2.【总结与归纳】本题考查行列式的应用,代数余子式的应用,是基本知识的考查. 7.已知有四个数1,2,a ,b ,这四个数的中位数是3,平均数是4,则ab = 36 .【思路分析】分别由题意结合中位数,平均数计算方法得13a b +=,232a+=,解得a ,b ,再算出答案即可.【解析】:因为四个数的平均数为4,所以441213a b +=⨯--=,因为中位数是3,所以232a+=,解得4a =,代入上式得1349b =-=,所以36ab =, 故答案为:36.【总结与归纳】本题考查样本的数字特征,中位数,平均数,属于基础题.8.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋯+=278.【思路分析】根据等差数列的通项公式可由1109a a a +=,得1a d =-,在利用等差数列前n 项和公式化简12910a a a a ++⋯+即可得出结论.【解析】:根据题意,等差数列{}n a 满足1109a a a +=,即11198a a d a d ++=+,变形可得1a d =-,所以1129110119899369362729998da a a a a d d d a a d a d d d ⨯+++⋯++-+====++-+. 故答案为:278.【总结与归纳】本题考查等差数列的前n 项和与等差数列通项公式的应用,注意分析1a 与d的关系,属于基础题.9.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有 180 种安排情况.【思路分析】根据题意,由组合公式得共有112654C C C 排法,计算即可得出答案. 【解析】:根据题意,可得排法共有112654180C C C =种. 故答案为:180.【总结与归纳】本题考查组合数公式,解题关键是正确理解题意并熟悉组合数公式,属于基础题.10.已知椭圆22:143x y C +=的右焦点为F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',求直线l 的方程是10x y +-= .【思路分析】求出椭圆的右焦点坐标,利用已知条件求出直线的斜率,然后求解直线方程.【解析】:椭圆22:143x y C +=的右焦点为(1,0)F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',可知直线l 的斜率为1-,所以直线l 的方程是:(1)y x =--, 即10x y +-=. 故答案为:10x y +-=.【总结与归纳】本题考查椭圆的简单性质的应用,直线与直线的对称关系的应用,直线方程的求法,是基本知识的考查.11.设a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件:(1)对任意的0x R ∈,0()f x 的值为0x 或20x ;(2)关于x 的方程()f x a =无实数解,则a 的取值范围是 (-∞,0)(0⋃,1)(1⋃,)+∞ .【思路分析】根据条件(1)可知00x =或1,进而结合条件(2)可得a 的范围 【解析】:根据条件(1)可得00x =或1,又因为关于x 的方程()f x a =无实数解,所以0a ≠或1, 故(a ∈-∞,0)(0⋃,1)(1⋃,)+∞, 故答案为:(-∞,0)(0⋃,1)(1⋃,)+∞.【总结与归纳】本题考查函数零点与方程根的关系,属于基础题.12.已知1a ,2a ,1b ,2b ,⋯,(*)k b k N ∈是平面内两两互不相等的向量,满足12||1a a -=,且||{1i j a b -∈,2}(其中1i =,2,1j =,2,⋯,)k ,则k 的最大值是 6 . 【思路分析】设11OA a =,22OA a =,结合向量的模等于1和2画出图形,由圆的交点个数即可求得k 的最大值.【解析】:如图,设11OA a =,22OA a =,由12||1a a -=,且||{1i j a b -∈,2}, 分别以1A ,2A 为圆心,以1和2为半径画圆,其中任意两圆的公共点共有6个.故满足条件的k 的最大值为6. 故答案为:6.【总结与归纳】本题考查两向量的线性运算,考查向量模的求法,正确理解题意是关键,是中档题.二、选择题(本大题共4题,每题5分,共20分) 13.下列等式恒成立的是( ) A .222a b ab + B .222a b ab +- C .2||a b ab + D .222a b ab +-【思路分析】利用2()0a b +恒成立,可直接得到222a b ab +-成立,通过举反例可排除ACD .【解析】:A .显然当0a <,0b >时,不等式222a b ab +不成立,故A 错误;B .2()0a b +,2220a b ab ∴++,222a b ab ∴+-,故B 正确;C .显然当0a <,0b <时,不等式2||a b ab +不成立,故C 错误;D .显然当0a >,0b >时,不等式222a b ab +-不成立,故D 错误.故选:B .【总结与归纳】本题考查了基本不等式的应用,考查了转化思想,属基础题. 14.已知直线方程3410x y ++=的一个参数方程可以是( ) A .1314x t y t =+⎧⎨=--⎩B .1413x t y t =-⎧⎨=-+⎩C .1314x t y t=-⎧⎨=-+⎩D .1413x t y t=+⎧⎨=-⎩【思路分析】选项的参数方程,化为普通方程,判断即可.【解析】:1314x t y t=+⎧⎨=--⎩的普通方程为:1314x y -=-+,即4310x y +-=,不正确;1413x t y t=-⎧⎨=-+⎩的普通方程为:1413x y -=-+,即3410x y ++=,正确; 1314x t y t=-⎧⎨=-+⎩的普通方程为:1314x y -=-+,即4310x y +-=,不正确; 1413x t y t=+⎧⎨=-⎩的普通方程为:1413x y -=--,即3470x y +-=,不正确; 故选:B .【总结与归纳】本题考查直线的参数方程与普通方程的互化,是基本知识的考查. 15.在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线相交的面是( )A .面11AAB BB .面11BBC CC .面11CCD DD .面ABCD 【思路分析】由图可知点P 在△1AA D 内,过P 作1//EF A D ,且1EFAA 于E ,EFAD 于F ,在平面ABCD 中,过F 作//FG CD ,交BC 于G ,由平面与平面平行的判定可得平面//EFG 平面1A DC ,连接AC ,交FG 于M ,连接EM ,再由平面与平面平行的性质得1//EM AC ,在EFM ∆中,过P 作//PN EM ,且PN FM 于N ,可得1//PN AC ,由此说明过点P 且与1A C 平行的直线相交的面是ABCD . 【解析】:如图,由点P 到11A D 的距离为3,P 到1AA 的距离为2, 可得P 在△1AA D 内,过P 作1//EF A D ,且1EF AA 于E ,EFAD 于F ,在平面ABCD 中,过F 作//FG CD ,交BC 于G ,则平面//EFG 平面1A DC .连接AC ,交FG 于M ,连接EM ,平面//EFG 平面1A DC ,平面1A AC ⋂平面11A DC AC =,平面1A AC ⋂平面EFM EM =, 1//EM AC ∴. 在EFM ∆中,过P 作//PN EM ,且PNFM 于N ,则1//PN AC . 线段FM 在四边形ABCD 内,N 在线段FM 上,N ∴在四边形ABCD 内.∴过点P 且与1A C 平行的直线相交的面是ABCD .故选:D .【总结与归纳】本题考查空间中直线与直线位置关系的判定及应用,考查空间想象能力与思维能力,是中档题.16.命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件 C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【思路分析】对于命题1q :当0a >时,结合()f x 单调递减,可推出()()()f x a f x f x f +<<+(a ),命题1q 是命题p 的充分条件.对于命题2q :当00a x =<时,f (a )0()0f x ==,结合()f x 单调递增,推出()()f x a f x +<,进而()()f x a f x f +<+(a ),命题2q 也是p 的充分条件.【解析】:对于命题1q :当()f x 单调递减且()0f x >恒成立时, 当0a >时,此时x a x +>, 又因为()f x 单调递减, 所以()()f x a f x +< 又因为()0f x >恒成立时, 所以()()f x f x f <+(a ), 所以()()f x a f x f +<+(a ),所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 当00a x =<时,此时x a x +<,f (a )0()0f x ==, 又因为()f x 单调递增, 所以()()f x a f x +<, 所以()()f x a f x f +<+(a ), 所以命题2p ⇒命题p , 所以1q ,2q 都是p 的充分条件, 故选:C .【总结与归纳】本题考查命题的真假,及函数的单调性,关键是分析不等式之间关系,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.【思路分析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,依次求出圆面和矩形的面积,相加即可;(2)先利用线面垂直的判定定理证明1AD ⊥平面ADB ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角,再利用三角函数的知识求出1cos D CA ∠即可.【解析】:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,221214S πππ∴=⨯⨯+⨯=.故该圆柱的表面积为4π.(2)正方形11ABC D ,1AD AB ∴⊥, 又12DAD π∠=,1AD AD ∴⊥,ADAB A =,且AD 、AB ⊂平面ADB ,1AD ∴⊥平面ADB ,即1D 在面ADB 上的投影为A ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角, 而1126cos 3AC D CA CD ∠===,∴线段1CD 与平面ABCD所成的角为 【总结与归纳】本题考查圆柱的表面积、空间线面夹角问题,熟练掌握线面垂直的判定定理是解题的关键,考查学生的空间立体感和运算能力,属于基础题. 18.(14分)已知函数()sin f x x ω=,0ω>.(1)()f x 的周期是4π,求ω,并求1()2f x =的解集;(2)已知1ω=,2()()()()2g x f x x f x π=--,[0x ∈,]4π,求()g x 的值域.【思路分析】(1)直接利用正弦型函数的性质的应用求出结果. (2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.【解析】:(1)由于()f x 的周期是4π,所以2142πωπ==,所以1()sin 2f x x =.令11sin 22x =,故1226x k ππ=+或526k ππ+,整理得43x k ππ=+或543x k ππ=+.故解集为{|43x x k ππ=+或543x k ππ=+,}k Z ∈.(2)由于1ω=,所以()sin f x x =.所以21cos2111()sin )sin()22cos2sin(2)222226x g x x x x x x x x ππ-=--==-+=-+.由于[0x ∈,]4π,所以22663x πππ+. 1sin(2)126x π+, 故11sin(2)62x π--+-,故1()02g x -.所以函数()g x 的值域为1[,0]2-.【总结与归纳】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为qv x=,x 为道路密度,q 为车辆密度.1100135(),040()3(40)85,4080x x v f x k x x ⎧-<<⎪==⎨⎪--+⎩. (1)若交通流量95v >,求道路密度x 的取值范围;(2)已知道路密度80x =,交通流量50v =,求车辆密度q 的最大值.【思路分析】(1)易知v 越大,x 越小,所以()v f x =是单调递减函数,0k >,于是只需令1100135()953x ->,解不等式即可;(2)把80x =,50v =代入()v f x =的解析式中,求出k 的值,利用q vx =可得到q 关于x 的函数关系式,分段判断函数的单调性,并求出各自区间上q 的最大值,取较大者即可.【解析】:(1)qv x=,v ∴越大,x 越小,()v f x ∴=是单调递减函数,0k >, 当4080x 时,v 最大为85,于是只需令1100135()953x ->,解得3x >,故道路密度x 的取值范围为(3,40).(2)把80x =,50v =代入()(40)85v f x k x ==--+中,得504085k =-+,解得78k =.1100135(),04037(40)85,40808x x x x q vx x x x x ⎧-<<⎪⎪∴==⎨⎪--+⎪⎩,当040x <<时,q 单调递增,40110040135()4040003q <⨯-⨯⨯≈;当4080x 时,q 是关于x 的二次函数,开口向下,对称轴为4807x =,此时q 有最大值,为2748048028800()12040008777-⨯+⨯=>.故车辆密度q 的最大值为288007.【总结与归纳】本题考查分段函数的实际应用,考查学生分析问题和解决问题的能力,以及运算能力,属于中档题.20.(16分)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x yb b Γ+=+>交于点(A A x ,)A y (第一象限),曲线Γ为1Γ、2Γ上取满足||A x x >的部分.(1)若A x =b 的值;(2)当b 2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且1||8PF =,求12F PF ∠;(3)过点2(0,2)2b D+斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ,并求OM ON 的取值范围.【思路分析】(1)联立曲线1Γ与曲线2Γ的方程,以及A x =,解方程可得b ; (2)由双曲线的定义和三角形的余弦定理,计算可得所求角;(3)设直线24:22b b l y x +=-+,求得O 到直线l 的距离,判断直线l 与圆的关系:相切,可设切点为M ,考虑双曲线的渐近线方程,只有当2A y >时,直线l 才能与曲线Γ有两个交点,解不等式可得b 的范围,由向量投影的定义求得OM ON ,进而得到所求范围.【解析】:(1)由A x =A 为曲线1Γ与曲线2Γ的交点,联立222222144A A A A x y bx y b ⎧-=⎪⎨⎪+=+⎩,解得A y =,2b =;(2)由题意可得1F ,2F 为曲线1Γ的两个焦点,由双曲线的定义可得12||||2PF PF a -=,又1||8PF =,24a =, 所以2||844PF =-=,因为b =3c =, 所以12||6F F =,在△12PF F 中,由余弦定理可得22212121212||||||cos 2||||PF PF F F F PF PF PF +-∠=6416361128416+-==⨯⨯,由120F PF π<∠<,可得1211arccos 16F PF ∠=;(3)设直线24:22b b l y x +=-+,可得原点O 到直线l 的距离24||b d +== 所以直线l 是圆的切线,设切点为M ,所以2OM k b =,并设2:OM y x b =与圆2224x y b +=+联立,可得222244x x b b+=+,可得x b =,2y =,即(,2)M b ,注意直线l 与双曲线的斜率为负的渐近线平行, 所以只有当2A y >时,直线l 才能与曲线Γ有两个交点, 由222222144A A A Ax y b x y b ⎧-=⎪⎨⎪+=+⎩,可得4224A b y b=+, 所以有4244b b<+,解得22b >+22b<-(舍去), 因为OM 为ON 在OM 上的投影可得,24OM ON b =+,所以246OM ON b =+>+, 则(6OM ON ∈+)+∞.【总结与归纳】本题考查双曲线与圆的定义和方程、性质,考查直线和圆的方程、双曲线的方程的联立,以及向量的数量积的几何意义,考查方程思想和化简运算能力,属于中档题. 21.(18分)已知数列{}n a 为有限数列,满足12131||||||m a a a a a a --⋯-,则称{}n a 满足性质P .(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P ,请说明理由; (2)若11a =,公比为q 的等比数列,项数为10,具有性质P ,求q 的取值范围; (3)若{}n a 是1,2,3,⋯,m 的一个排列(4)m ,{}n b 符合1(1k k b a k +==,2,⋯,1)m -,{}n a 、{}n b 都具有性质P ,求所有满足条件的数列{}n a .【思路分析】(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P 即可;(2)假设公比q 的等比数列满足性质p ,可得:11111||||n n a a q a a q ---,推出11(1)[(1)2]0n n q q q q ---+-,通过1q ,01q <时,10q -<时:1q <-时,四种情况讨论求解即可.(3)设1a p =,分1p =时,当p m =时,当2p =时,当1p m =-时,以及{3P ∈,4,⋯,3m -,2}m -,五种情况讨论,判断数列{}n a 的可能情况,分别推出{}n b 判断是否满足性质P 即可.【解析】:(1)对于数列3,2,5,1,有|23|1-=,|53|2-=,|13|2-=,满足题意,该数列满足性质P ;对于第二个数列4、3、2、5、1,|34|1-=,|24|2-=,|54|1-=.不满足题意,该数列不满足性质P . (2)由题意:11111||||n n a a q a a q ---,可得:1|1||1|n n q q ---,{2n ∈,3,⋯,9},两边平方可得:22212121n n n n q q q q ---+-+,整理可得:11(1)[(1)2]0n n q q q q ---+-,当1q 时,得1(1)20n q q -+-此时关于n 恒成立, 所以等价于2n =时,(1)20q q +-,所以,(2)(1)0q q +-,所以2q -,或1q ,所以取1q ,当01q <时,得1(1)20n q q -+-,此时关于n 恒成立,所以等价于2n =时,(1)20q q +-, 所以(2)(1)0q q +-,所以21q -,所以取01q <. 当10q -<时:11[(1)2]0n n q q q --+-,当n 为奇数时,得1(1)20n q q -+-,恒成立,当n 为偶数时,1(1)20n q q -+-,不恒成立; 故当10q -<时,矛盾,舍去.当1q <-时,得11[(1)2]0n n q q q --+-,当n 为奇数时,得1(1)20n q q -+-,恒成立, 当n 为偶数时,1(1)20n q q -+-,恒成立;故等价于2n =时,(1)20q q +-, 所以(2)(1)0q q +-,所以2q -或1q ,所以取2q -, 综上(q ∈-∞,2](0,)-+∞.(3)设1a p =,{3p ∈,4,⋯,3m -,2}m -,因为1a p =,2a 可以取1p -,或1p +,3a 可以取2p -,或2p +,如果2a 或3a 取了3p -或3p +,将使{}n a 不满足性质P ;所以{}n a 的前5项有以下组合: ①1a p =,21a p =-;31a p =+;42a p =-;52a p =+; ②1a p =,21a p =-;31a p =+;42a p =+;52a p =-; ③1a p =,21a p =+;31a p =-;42a p =-;52a p =+; ④1a p =,21a p =+;31a p =-;42a p =+;52a p =-;对于①,11b p =-,21||2b b -=,31||1b b -=,与{}n b 满足性质P 矛盾,舍去;对于②,11b p =-,21||2b b -=,31||3b b -=,41||2b b -=与{}n b 满足性质P 矛盾,舍去; 对于③,11b p =+,21||2b b -=,31||3b b -=,41||1b b -=与{}n b 满足性质P 矛盾,舍去; 对于④11b p =+,21||2b b -=,31||1b b -=,与{}n b 满足性质P 矛盾,舍去; 所以{3P ∈,4,⋯,3m -,2}m -,均不能同时使{}n a 、{}n b 都具有性质P . 当1p =时,有数列{}:1n a ,2,3,⋯,1m -,m 满足题意. 当p m =时,有数列{}:n a m ,m -1,⋯,3,2,1满足题意.当2p =时,有数列{}:2n a ,1,3,⋯,1m -,m 满足题意.当1p m =-时,有数列{}:1n a m -,m ,2m -,3m -,⋯,3,2,1满足题意. 所以满足题意的数列{}n a 只有以上四种.【总结与归纳】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须要有较高的数学思维逻辑修养才能解答.。
2020高考数学分类汇编--概率统计

2020年普通高等学校招生全国统一考试一卷理科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+ D .ln y a b x =+19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束. 经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 5.D6.B7.C 8.C19.解:(1)甲连胜四场的概率为116. (2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684 ---=.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为11117 8168816+++=.2020年普通高等学校招生全国统一考试理科数学3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()20,,2,1,⋯=iyxii ,其中ix和i y分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑==20160iix,∑==2011200i iy,()∑==-201280i ix x,()∑==-20129000i iyy,()()080201∑==--i i iy y x x.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()20,,2,1,⋯=i y x i i 的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()∑∑∑===----=ni ini i ni ii y y x x yyx x r 12121,414.12≈.2020年普通高等学校招生全国统一考试理科数学3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()=1e t K I t --+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则t *约为(ln193)≈A .60B .63C .66D .6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关? 附:K3.B4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试文科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+17.(12分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:乙分厂产品等级的频数分布表(1(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 5.D 17.解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A 级品的概率的估计值为400.4100=; 乙分厂加工出来的一件产品为A 级品的概率的估计值为280.28100=. (2)由数据知甲分厂加工出来的100件产品利润的频数分布表为因此甲分厂加工出来的100件产品的平均利润为65402520520752015100⨯+⨯-⨯-⨯=.由数据知乙分厂加工出来的100件产品利润的频数分布表为因此乙分厂加工出来的100件产品的平均利润为70283017034702110100⨯+⨯+⨯-⨯=.比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.2020年普通高等学校招生全国统一考试文科数学4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名 B .18名C .24名D .32名18. (12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i ) (i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i ) (i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=))niix y x y --∑((=1.414.4.B18.解:(1)由己知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200= 12 000. (2)样本(,)i i x y (1,2,,20)i =的相关系数20))0.943i ix yrx y--===≈∑((.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.2020年普通高等学校招生全国统一考试文科数学3.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为A.0.01B.0.1C.1D.104.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:0.23(53)()=1e tIKt--+,其中K为最大确诊病例数.当I(*t)=0.95K时,标志着已初步遏制疫情,则*t约为(ln19≈3)A.60B.63C.66D.6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,3.C4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试(北京卷)数 学(18)(本小题14分)某校为举办甲乙两项不同活动,分别设计了相应的活动方案:方案一、方案二、为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率:(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p,试比较0p与1p的大小.(结论不要求证明)2020年普通高等学校招生全国统一考试(江苏卷)4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲ .4.1 923.(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示) .23.满分10分.解:(1)113111133C C 1C C 3p =⋅=,113211133C C 2C C 3q =⋅=,11113121211111*********C C C C 1270(1)C C C C 3927p p q p q p q =⋅⋅+⋅⋅+⋅--=+=,1111111133222112211111111111133333333C C C C C C C C ()(1)C C C C C C C C q p q p q =⋅⋅+⋅+⋅⋅+⋅⋅--11216=9327q -+=.(2)当2n ≥时,1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+,①111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--112=93n q --+,②2⨯+①②,得()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++. 从而1112(211)3n n n n p q p q ---+-+=,又111312p q -+=,所以11112()1()3331n nn n p q -+++==,*n ∈N .③由②,有1313()595n n q q --=--,又135115q -=,所以1113()1595n n q -=-+,*n ∈N . 由③,有13111()210111()()33925n n n n n p q =+=-+-+[],*n ∈N . 故311111()()109235n n n n p q --=--+,*n ∈N . n X 的概率分布则*1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N .2020年普通高等学校招生全国统一考试(天津卷)数学4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A.10 B.18 C.20 D.3613.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.4.B13.16;232020年普通高等学校招生全国统一考试5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62%B .56%C .46%D .42%12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着i p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )19.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,5.C 12.AC19.解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=. (2)根据抽查数据,可得22⨯列联表:(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯. 由于7.484 6.635>,故有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关.2020年普通高等学校招生全国统一考试(浙江卷)数 学16.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______. 16.1,13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三上期末考试数学试题分类汇编
统计与概率、推理
一、统计
1、(徐汇区2019届高三)上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如下表所示:
等级A+ A B+ B B- C+ C C- D+ D E
分数70 67 64 61 58 55 52 49 46 43 40
上海某高中2018届高三(1)班选考物理学业水平等级考的学生中,有5人取得+
A成绩,其他人的成绩至少是B级及以上,平均分是64分.这个班级选考物理学业水平等级考的人数至少为___________人.
2、(长宁区2019届高三)有一批种子,对于一颗种子来说,它可能1天发芽,也可能2天发芽,⋅⋅⋅⋅⋅⋅⋅,下表是不同发芽天数的种子数的记录:
发芽天数 1 2 3 4 5 6 7 8
≥
种子数8 26 22 24 12 4 2 0
统计每颗种子发芽天数得到一组数据,则这组数据的中位数是()
A. 2
B. 3
C. 3.5
D. 4
参考答案
一、
1、15
2、B
二、概率
1、(奉贤区2019届高三)有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆放到书架的同一层上,则同一科目的书都相邻的概率是
2、(虹口区2019届高三)已知7个实数1、2-、4、a、b、c、d依次构成等比数列,若成这7个数中任取2个,则它们的和为正数的概率为
3、(金山区2019届高三)从1、2、3、4这四个数中一次随机地抽取两个数,则其中一个数是另一个数的两倍的概率是(结果用数值表示)
4、(普陀区2019届高三)在一个袋中装有大小、质地均相同的9只球,其中红色、黑色、白色各3只,若从袋中随机取出两个球,则至少有一个红球的概率为(结果用最简分数表示)
5、(杨浦区2019届高三)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为()
A.
3
10
B.
3
5
C.
2
5
D.
2
3
6、(长宁区2019届高三)若甲、乙两位同学随机地从6门课程中选修3门,则两人选修的课程中恰有1门相同的概率为
参考答案 二、 1、
15 2、47 3、13 4、7
12 5、B 6、20
9
三、推理
1、(宝山区2019届高三)如果等差数列{}{},n n a b 的公差都为()0d d ≠,若满足对于任意*
,
n N ∈都有n n b a kd -=,其中k 为常数,k N *
∈,则称它们互为“同宗”数列.已知等差数列{}n a 中,
首项11a =,公差2d =,数列{}n b 为数列{}n a 的“同宗”数列,若1122
11
11
lim 3
n n n a b a b a b →∞⎛⎫++
+
=
⎪⎝⎭,则k = . 2、(奉贤区2019届高三)天干地支纪年法,源于中国,中国自古便有十天干与十二地支. 十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸
十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥
天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后, 天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为 “丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙 亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年, 那么到改革开放100年时,即2078年为 年
3、(奉贤区2019届高三)若三个非零且互不相等的实数1x 、2x 、3x 成等差数列且满足
123
112
x x x +=,则称1x 、2x 、3x 成“β等差数列”,已知集合{|||100,}M x x x =≤∈Z ,则由M 中的三个元素组成的所有数列中,“β等差数列”的个数为( )
A. 25
B. 50
C. 51
D. 100
4、(普陀区2019届高三)记a 为常数,记函数1()log 2a
x
f x a x
=
+-(0a >且1a ≠,0x a <<)的反函数为1
()f x -,则11111232()()()()21212121
a f f f f a a a a ----+++⋅⋅⋅+=++++
5、(青浦区2019届高三)记号[]x 表示不超过实数x 的最大整数,若2
()[][30]30
x f x x =+,则
(1)(2)(3)(29)(30)f f f f f +++⋅⋅⋅++的值为( )
A. 899
B. 900
C. 901
D. 902
6、(松江区2019届高三)已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内
任意一点P ,
当12OP xe ye =+时,则称有序实数对(,)x y 为点P 的广义坐标,若点A 、B 的广义坐标分 别为11(,)x y 、22(,)x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212
(
,)22
x x y y ++; ② A 、B 两点间的距离为221212()()x x y y -+-; ③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是 (请写出所有真命题的序号)
7、(徐汇区2019届高三)对于函数()y f x =,如果其图像上的任意一点都在平面区域
{}(,)|()()0x y y x y x +-≤内,则称函数()f x 为“蝶型函数”.已知函数:①sin y x =;②
21y x =-,下列结论正确的是( )
(A )①、②均不是“蝶型函数” (B )①、②均是“蝶型函数”
(C )①是“蝶型函数”;②不是“蝶型函数” (D )①不是“蝶型函数”;②是“蝶型函数”
8、(闵行区2019届高三)若无穷数列{}n a 满足:10a ≥,当n ∈*N ,2n ≥时,
1121||max{,,,}n n n a a a a a ---=⋅⋅⋅(其中121max{,,,}n a a a -⋅⋅⋅表示121,,,n a a a -⋅⋅⋅中的最大项),有以下
结论:
① 若数列{}n a 是常数列,则0n a =(n ∈*N ); ② 若数列{}n a 是公差0d ≠的等差数列,则0d <; ③ 若数列{}n a 是公比为q 的等比数列,则1q >;
④ 若存在正整数T ,对任意n ∈*N ,都有n T n a a +=,则1a 是数列{}n a 的最大项. 则其中的正确结论是 (写出所有正确结论的序号)
参考答案 三、
1、2
2、戊戌
3、B
4、2a
5、C
6、①③
7、B
8、①②③④。