第十讲 简单的行程问题
小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度x时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差x时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。
(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。
数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
(二)追及问题追及问题也是行程问题中的一种情况。
这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
三年级科学第十讲 简单的行程问题

三年级科学第十讲简单的行程问题三年级科学第十讲简单的行程问题
引言
本次课程旨在教授三年级学生如何解决简单的行程问题。
行程问题是指计算在规定的时间内,一个物体根据给定的速度和时间间隔的移动情况。
通过研究本课程,学生将能够理解行程问题的基本概念和解决方法。
目标
本课程的目标是使学生能够:
- 理解行程问题的定义和基本要素
- 学会根据给定速度和时间间隔计算物体的行程
- 解决简单的行程问题
课程内容
1. 行程问题的定义
- 行程是指一个物体在一段时间内的移动距离。
- 行程问题需要知道物体的速度和经过的时间间隔。
2. 计算行程的公式
- 行程等于速度乘以时间间隔。
3. 解决简单的行程问题
- 根据给定的速度和时间间隔计算行程。
- 使用行程公式求解行程问题的一般步骤:
1. 确定已知量,包括速度和时间间隔。
2. 使用行程公式进行计算。
3. 得出行程结果。
4. 例题演练
- 提供几个简单的行程问题的例题,供学生练。
结论
通过本课程的研究,学生已经掌握了解决简单的行程问题的基本方法。
他们能够理解行程的定义和基本要素,并能够使用行程公式计算物体的行程。
接下来,他们可以通过练更多的行程问题来提高他们的解决能力。
(word完整版)初中行程问题专题讲解

初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。
我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。
原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。
下面我们将行程问题归归类,由易到难,逐步剖析。
1. 单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。
甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】310080=-x x .例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。
求火车的速度和长度。
【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:【等量关系式】火车min 1行驶的路程=桥长+火车长;火车s 40行驶的路程=桥长-火车长 【列出方程组】⎩⎨⎧-=+=yx y x 100040100060举一反三:1.小明家和学校相距km 15。
小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。
2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260.求提速后的火车速度。
小学人教四年级数学《简单的行程问题》课件

物体 汽车 步行 神舟七号 骑自行车 蜗牛 猎豹 旗鱼 声音 17 级风
速度
70千米 ⁄时 70米⁄分 8千米⁄秒 8千米⁄时 8米⁄时 2千米 ⁄分 33米⁄秒 340米⁄秒 60米⁄秒
32
聪聪 560米
明明 560米
亮亮 420米
从家到学校所用的 8分钟 7分钟 7分钟
时间
时间相同,比路程。
时间相同,路程远的走得快,路程短的走得慢。
6
路程和时间都不相同,怎么比?
从家到学校之间的 路程
从家到学校所用的 时间
聪聪 560米
8分钟
明明 560米
7分钟
亮亮 420米
7分钟
7
从家步行到学校的情况
一辆汽车每小时行70千米,行280千米要多长时间?
速度
路程
时间
一辆汽车4小时行了280千米,它每小时行多少千米?
时间
路程
速度
? 280 ÷ 70 = 4(小时) 280 ÷ 4 = 70(千米/时)
路程÷速度=时间 路程÷时间=速度
18
一、下面的说法对吗?为什么?
1、“小明家和学校相距700米,他从家 到学校走了10分钟,他每分钟走多
少米?”这道题是--求---路---程- 求。速度 ( × ) 2、已知3小时走的路程,可以求速度。( √ )
19
二、题目中已知什么?求什么?怎样列式?(不计算)
1、小林每分钟走60米,他15分钟走多少米?
速度
时间 路程
列式:60 × 15
2、声音每秒传播340米,声音传播1700米
要用多长时间?速度
光传播的速度是30万千米/秒
14
例题(1)
一辆汽车每小时行70千米,4小时行多少千米?
行程问题

行 程 问 题行程问题为小学和初中数学学习的重要应用问题,在行程问题中,除特别指出外,都假定速度是常数,即匀速运动,匀速运动的基本公式十分简单: 路程=时间⨯速度但是由于路程的多样化,时间前后的差别,以及速度的变化,使得行程问题变得复杂而丰富多彩。
行程问题虽然是实际问题的初级近似,但地,由于它的各色各样的变化,使得中小学的数学知识中的许多知识点能有趣而生动地融汇其中,而成为学生能力培养的有力工具。
在各届华杯赛中,行程问题是各类问题出现频率最高的问题之一。
求解行程问题一般分如下步骤:1。
审题 2。
画示意图 3。
找关键要素 4。
列关系式 5。
分析 6。
给出答案。
下面将通过具体的问题来解释这六个步骤。
行程问题中的方程方法列方程求解行程问题是最通常的方法,也是最为有效的方法。
多数行程问题可以用列方程解方程的方法来求解。
列方程就是上述步骤中第四步中建立一个或几个含有未知数的条件等式,而第五步中的分析就是解方程。
例1.甲、乙二人从相距60千米的两地同时相向而行,6小时后相遇。
如果二人的速度每小时个增加1千米,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人速度个多少?解。
设甲的速度为每小时v 千米。
因为,两人6小时相遇,所以,二人的速度和为10千米。
乙的速度为每小时10-v 千米。
二人的速度个增加1千米,速度和为12千米,因此,需要小时)(51260=相遇。
第一次甲的行程为6v ,第二次甲的行程为5(v +1),相差1千米: .6 ,1)1(56==+-v v v答。
二人的速度分别为每小时6千米和每小时4千米。
例2. 快、中、慢三辆车同时从同一地出发, 沿一公路追赶前面一个骑自行车的人,这三辆车分别用6分钟、10分钟、12分钟追上骑自行车的人。
现知快车每小时走24千米,中车每小时走20千米。
那么慢车每小时走多少千米?解。
设自行车速度为每小时v 千米,慢车每小时a 千米,三车出发时自行车在他们前面L 千米。
必备小升初数学知识点之行程问题

必备小升初数学知识点之行程问题在历年小升初数学测试中,行程效果是很多孩子失分的中央,很多同窗对行程效果都模糊不清甚至坚持,下面为大家分享小升初数学知识点之行程效果,希望对大家有协助!综合行程知识点:基本概念:行程效果是研讨物体运动的,它研讨的是物体速度、时间、路程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键效果:确定运动进程中的位置和方向。
相遇效果:速度和×相遇时间=相遇路程(请写出其他公式) 追及效果:追及时间=路程差÷速度差(写出其他公式)流水效果:顺水行程=(船速+水速)×顺水时间顺水行程=(船速-水速)×顺水时间顺水速度=船速+水速顺水速度=船速-水速静水速度=(顺水速度+顺水速度)÷2水速=(顺水速度-顺水速度)÷2流水效果:关键是确定物体所运动的速度,参照以上公式。
过桥效果:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法基此题型:路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中恣意两个量,求第三个量。
经典例题:1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,如今羊已跑出30米,马末尾追它。
问:羊再跑多远,马可以追上它?解:依据〝马跑4步的距离羊跑7步〞,可以设马每步长为7x 米,那么羊每步长为4x米。
依据〝羊跑5步的时间马跑3步〞,可知同一时间马跑3*7x 米=21x米,那么羊跑5*4x=20米。
可以得出马与羊的速度比是21x:20x=21:20依据〝如今羊已跑出30米〞,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,如今求马的21份是多少路程,就是30÷(21-20)×21=630米2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?答案720千米。
三年级奥数第十讲__简单的行程问题

三年级奥数第十讲__简单的行程问题work Information Technology Company.2020YEAR三年级数学提升班学生姓名:第十讲:简单的行程问题所谓大师,就是这样的人:他们用自己的眼睛去看别人见过的东西,在别人司空见惯的东西上能够发现出美来。
——奥古斯特·罗丹知识纵横行程问题包括相遇问题、追及问题、火车过桥等,这类问题思维灵活性大,辐射面广,但依据都只有一个,必须掌握速度、时间和路程之间的数量关系,这三个量间的关系可以用下列等式表示出来:路程=时间×速度速度=路程÷时间时间=路程÷速度例题求解【例1】甲、乙二人同地同方向出发,甲每小时走7千米,乙每小时走5千米,乙先走2小时后,甲才开始走,甲追上乙需要几小时?【例2】一辆公共汽车和一辆小轿车同时从相距200千米的两地相向而行,公共汽车每小时行20千米,小轿车每小时行30千米,问几小时后两车相遇?【例3】小伟和小明从学校到电影院看电影,小伟以每分钟60米的速度向影院走去,5分钟后,小明以每分钟80米的速度向影院走去,结果两人同时到达影院学校到电影院的路程是多少米?【例4】小聪和小刚从学校到相距2400米的电影院去看电影,小聪每分钟行60米,他出发8分钟后,小刚才出发,结果两人同时到达电影院,小刚每分钟行多少米?【例5】一辆汽车从甲地开往乙地,每小时行40千米,开出5小时候,一列火车以每小时行90千米的速度也从甲地开往乙地,在甲、乙两地的中点处火车追上汽车,甲、乙两地相距多少千米?【例6】一列火车长150米,每秒行60米,问全车通过450米长的大桥,需要行多少时间?学力训练1.一架飞机每分钟行18千米,一天从机场起飞,航行半小时到达A地执行救灾任务,机场与A地之间的路程是多少千米?2.早晨8时一辆汽车从甲地开往乙地,每小时行80千米,下午1时到达乙地,甲、乙两地的路程是多少?3.一天小红到学校参加合唱,每分钟行50米,行了2分钟后发现歌谱未带,转身回家去拿,前后一共用了20分钟才到学校,小红家到学校的路程是多少米?4.良马每天行120千米,劣马每天行75千米,劣马先行12天,良马几天可以追上劣马?5.小智和小慧从学校到森林公园春游,小智步行,每小时走5千米,他出发后4小时,小慧骑自行车,每小时行15千米,小慧追上小智时,正好到达森林公园,学校离森林公园有多少千米?6.汽车上坡每小时行6千米,从原路返回下坡每小时行12千米,上、下坡平均每小时行多少千米?家长签字:。
四年级行程问题ppt课件

画图法
通过画图直观地表示物体 的运动轨迹和相对位置, 帮助理解问题并找出解决 方案。
代数法
通过设立代数式表示物体 的速度、时间和距离,通 过代数运算求解。
追及问题的实例
小明和小华在环形跑道上跑步,小明跑一圈需要5分钟,小华 跑一圈需要6分钟。两人从同一点同向出发,多少分钟后两人 再次相遇?
一辆货车和一辆客车在同一条公路上同向行驶,货车的速度 是60千米/小时,客车的速度是75千米/小时。客车在行驶了 2小时后发现货车在前方54千米处,问货车行驶了多少时间 追上了客车?
环形跑道问题的解决方法
总结词
解决环形跑道问题需要先确定每个物体的速度和方向,然后根据问题描述分析物 体的相对运动关系,最后通过计算得出答案。
详细描述
解决环形跑道问题需要先理解物体的相对运动关系,即哪个物体在追赶哪个物体 ,或者哪个物体在等待哪个物体。然后根据相对速度和距离,计算出物体相遇或 追及的时间和地点。
03
CATALOGUE
追及问题
追及问题的定义
01
追及问题是行程问题中的一种, 主要研究两个或多个物体在同一 直线上运动,一个物体追赶另一 个物体的过程。
02
追及问题的关键在于找出两者之 间的速度差和距离差,以及追赶 所需的时间。
追及问题的解决方法
01
02
03
公式法
利用速度、时间和距离之 间的关系,列出方程求解 。
05
CATALOGUE
环形跑道问题
环形跑道问题的定义
总结词
环形跑道问题是指两个或多个物体在同一条环形跑道上按照不同的速度进行运 动,并涉及到追及和相遇的问题。
详细描述
环形跑道问题通常涉及到两个或多个物体在同一环形跑道上运动,每个物体都 有自己的速度。这类问题通常涉及到追及和相遇的情况,需要找出物体何时、 何地能够相遇或者追及。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十讲简单的行程问题
◆知识要点
基本公式:路程=速度×时间
相遇问题:路程和=速度和×相遇时间
◆新课讲授
例题1、南京到济南的铁路长是540千米,一列火车从南京开出,9小时到达济南,这列火车平均每小时行多少千米?
思路导航
基本关系:路程=速度×时间
540÷9=60(千米/时)
答:这列火车平均每小时行60千米。
课堂练习1、石家庄到承德的公路长是540千米。
红红一家从石家庄开车到承德游览避暑山庄,如果平均每小时行驶90千米,上午8时出发,那么几时可以到达?
例题2、一辆汽车上山的速度为每小时36千米,行了5小时到达山顶,下山时按原路返回,平均每小时比上山时多行了9千米。
汽车下山时用了多长时间?思路导航
基本关系:路程=速度×时间时间=路程÷速度
36×5=180(千米)
180÷(36+9)=4(小时)
答:汽车下山时用了4小时。
课堂练习2、甲乙两港之间的水路长504千米,小明上午7时从甲地上船,晚上9时到达乙地,这艘客船平均每小时航行多少千米?
例题3、甲、乙两地相距150千米。
一辆汽车从甲地开往乙地,行了3小时后,离乙地还有15千米。
这辆汽车平均每小时行多少千米?
思路导航
画出线段图,用汽车的路程除以它的时间就是它的速度。
(150-15)÷3=45(千米/时)
答:这辆汽车平均每小时行45千米。
课堂练习3、小红从家到学校800米共走了10分钟,她用同样的速度,从家到新华书店有320米,要走几分钟?
例题4、快车和慢车同时从甲地开往乙地,快车每小时比慢车多行20千米,当快车经过3小时到达乙地时,慢车离乙地还有60千米,又过了2小时慢车也到达了乙地,甲乙两地相距多少千米?
思路导航
突破口:乙的路程和时间已知,所以可先求出乙的速度,进而得到甲的速度。
60÷2+20=50(千米/时)
50×3=150(千米)
答:甲乙两地相距150千米。
课堂练习4、一辆货车从郑州出发,如果每小时行驶70千米,4小时就可以到达平顶山。
结果路上堵车,多用了1个小时才到达。
这辆汽车实际平均每小时行驶多少千米?
例题5、两个城市相距500千米,一列客车和一列货车同时从两个城市相对开出,客车平均速度是每小时55千米,货车平均速度是每小时45千米。
两车开出后几小时相遇?
思路导航
相遇问题基本公式:路程和=速度和×相遇时间
500÷(55+45)=5(小时)
答:两车开出后5小时相遇。
课堂练习5、甲乙两人分别从两地同时出发,甲每分钟走65米,乙每分钟走50米,经过9分钟后还相距20米。
两地相距多少米?
猴王给小猴子分桃
风景秀丽的花果山上住着一群猴子,有一天猴王要给一群小猴子分桃子。
猴王跟小猴说:“我给8个桃,平均分给4只小猴,行吗?”小猴子听后连忙摇头,嫌分得太少了,大声喊道:“不行!不行!”猴王缓了口气说:“好吧!我给80个桃,平均分给40只小猴怎么样?”小猴子贪婪地说:“大王,请您高抬贵手多给点行吗?”猴王立即拍着胸脯,慷慨地说:“我给你们800个桃,平均分给400只小猴,这下总该满意了吧!”小猴子笑了,猴王也笑了。
谁的笑是聪明的呢?为什么?。