《圆的有关性质》教学设计1
人教版初中数学课标版九年级上册第二十四章22.1圆的有关性质说课稿

人教版九年级上册第24章第1节《弧、弦、圆心角》说课稿各位老师:我今天说课的课题是人教版九年级上册第24章第1节《弧、弦、圆心角》。
接下来,我将从教材,学情,教法,学法,教学过程五个方面来说课。
教材分析1.地位与作用本节课是在学习了旋转,圆的有关知识和垂径定理的基础上进行的。
整节课是以圆的旋转不变性为主线。
通过感性认识到理性认识的转化,展开对弧、弦、圆心角之间关系的研究的。
是对圆的性质的进一步学习。
它将为证明线段相等、角相等提供重要依据,将为今后学习圆的有关内容打下基础,在本章中起着承上启下的重要作用。
2.教学目标知识与技能:1.理解圆的旋转不变性和圆心角的概念.2.掌握弧、弦、圆心角关系定理及推论并能解决有关问题.过程与方法:1.培养学生观察、分析、归纳的能力.2.向学生渗透旋转变换思想及由特殊到一般的认识规律.情感与态度:通过引导学生对图形的观察,激发学生探究,发现数学问题的兴趣和欲望.3.教学重难点重点: 掌握弧、弦、圆心角关系定理及推论并能解决相关问题.难点: 利用圆的旋转不变性推导弧、弦、圆心角关系定理及推论.弧、弦、圆心角的关系定理的灵活运用.学情分析九年级学生已初步具备数学分析、解决问题的能力,但学生对圆的旋转不变性不甚了解,所以在探讨弧、弦、圆心角之间的相等关系时可能感到困难。
学生尽管逻辑思维能力很强,但对于圆的认识还很浅肤,对圆的相关概念很少接触,故而在掌握知识的深度和灵活性方面还有欠缺。
本节课引导学生积极参与探究活动,充分理解圆的旋转不变性,同时通过变式训练,让学生能够灵活应用定理来解决问题。
教法分析本节课采取观察,猜想,证明,归纳的教学模式。
采用引导发现,探究证明的教学方法。
学法分析本节课采取动手操作,猜想验证,归纳总结,反思拓展的学习方法。
接下来,重点说一说本节课的教学过程。
教学过程一.创设情境导入新课导语:古希腊数学家这样描述圆:在一切平面图形中,圆是最美的!我们知道圆是轴对称图形,并由圆的轴对称性得到了垂径定理及推论。
人教版九年级数学上册《第二十四章圆24.1圆的有关性质》第1课时说课稿

人教版九年级数学上册《第二十四章圆24.1圆的有关性质》第1课时说课稿一. 教材分析《人教版九年级数学上册》第二十四章主要讲述圆的性质。
本章内容是整个初中数学的重要部分,也是学生对圆的认知的重要阶段。
通过本章的学习,学生可以深入理解圆的性质,为后续学习圆的方程和其他相关内容打下基础。
二. 学情分析九年级的学生已经具备了一定的几何基础,对平面几何图形有了一定的认识。
但是,对于圆的性质,学生可能还存在着一些模糊的认识,需要通过本节课的学习来纠正和加深理解。
此外,学生可能对圆的性质的理解停留在表面,需要通过实例分析和练习,加深对圆的性质的理解。
三. 说教学目标1.知识与技能:通过本节课的学习,学生能够理解圆的性质,并能够运用圆的性质解决实际问题。
2.过程与方法:通过观察、分析和推理,学生能够发现圆的性质,并能够运用圆的性质解决实际问题。
3.情感态度与价值观:通过本节课的学习,学生能够培养对数学的兴趣,提高对数学的认识。
四. 说教学重难点1.教学重点:圆的性质的理解和运用。
2.教学难点:圆的性质的证明和运用。
五. 说教学方法与手段本节课采用讲授法、提问法、小组讨论法等多种教学方法,并结合多媒体课件、实物模型等教学手段,以提高学生的学习兴趣和参与度。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引起学生对圆的性质的兴趣。
2.讲解:讲解圆的性质,并通过实例进行分析。
3.练习:学生进行练习,巩固对圆的性质的理解。
4.拓展:通过小组讨论,引导学生发现圆的性质的证明方法。
七. 说板书设计板书设计要清晰、简洁,能够突出圆的性质的关键点。
可以采用图示、列表等形式,帮助学生理解和记忆。
八. 说教学评价教学评价可以从学生的课堂表现、作业完成情况、测验成绩等方面进行。
通过评价,可以了解学生对圆的性质的理解程度,为后续教学提供参考。
九. 说教学反思在课后,教师应该对自己的教学进行反思,看学生是否掌握了圆的性质,教学过程中是否存在问题,以便于改进教学方法和手段,提高教学质量。
《圆的认识》教案(总)

《圆的认识》教案(总)第一章:引言1.1 教学目标让学生初步了解圆的概念。
让学生掌握圆的基本性质。
1.2 教学内容圆的定义:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆。
圆的半径:圆心到圆上任意一点的距离。
1.3 教学方法采用问题驱动法,引导学生主动探索圆的性质。
通过实物演示,让学生直观地理解圆的概念。
1.4 教学活动引导学生观察生活中的圆形物体,如硬币、轮胎等,引发对圆的思考。
学生自主探究,发现圆的性质,如直径、半径等。
第二章:圆的性质2.1 教学目标让学生掌握圆的基本性质,如圆的直径、半径等。
让学生了解圆的周长和面积的计算方法。
2.2 教学内容圆的直径:通过圆心,并且两端都在圆上的线段。
圆的周长:圆一周的长度,公式为2πr。
圆的面积:圆内部的大小,公式为πr²。
2.3 教学方法采用讲授法,讲解圆的性质和计算方法。
配合多媒体演示,让学生更直观地理解圆的性质。
2.4 教学活动学生自主探究,发现圆的直径、半径等性质。
老师讲解圆的周长和面积的计算方法,并进行示范。
第三章:圆的周长和面积3.1 教学目标让学生掌握圆的周长和面积的计算方法。
让学生能够运用圆的周长和面积解决实际问题。
3.2 教学内容圆的周长:圆一周的长度,公式为2πr。
圆的面积:圆内部的大小,公式为πr²。
3.3 教学方法采用讲授法,讲解圆的周长和面积的计算方法。
配合多媒体演示,让学生更直观地理解圆的性质。
3.4 教学活动学生自主探究,发现圆的周长和面积的计算方法。
老师讲解圆的周长和面积的计算方法,并进行示范。
第四章:圆的应用4.1 教学目标让学生能够运用圆的周长和面积解决实际问题。
让学生巩固圆的知识,提高解决问题的能力。
4.2 教学内容运用圆的周长和面积解决实际问题,如计算圆桌的周长和面积等。
4.3 教学方法采用案例分析法,让学生通过实际案例巩固圆的知识。
引导学生运用圆的周长和面积公式,解决实际问题。
人教版九年级上册数学圆的有关性质 四课时教学设计(教案)

教学时间课题24.1.1 圆课型新授课教学目标知识和能力探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.过程和方法体会圆的不同定义方法,感受圆和实际生活的联系.培养学生把实际问题转化为数学问题的能力.情感态度价值观在解决问题过程中使学生体会数学知识在生活中的普遍性.教学重点圆的两种定义的探索,能够解释一些生活问题.教学难点圆的运动式定义方法教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、创设问题情境,激发学生兴趣,引出本节内容活动1:如图1,观察下列图形,从中找出共同特点.图1学生活动设计:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.教师活动设计:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.二、问题引申,探究圆的定义,培养学生的探究精神活动2:如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件:画圆)图2学生活动设计:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.活动3:讨论圆中相关元素的定义.如图3,你能说出弦、直径、弧、半圆的定义吗?图3学生活动设计:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.教师活动设计:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决.弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;弧的表示方法:以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC;劣弧:小于半圆的弧叫作劣弧,如图3中的BC.活动4:讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)学生活动设计:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.图4三、应用提高,培养学生的应用意识和创新能力活动5:如何在操场上画一个半径是5 m的圆?说出你的理由师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.活动6:从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?图5师生活动设计:首先求出半径,然后除以20即可.〔解答〕树干的半径是23÷2=11.5(cm).平均每年半径增加11.5÷20=0.575(cm).小结:圆的两种定义以及相关概念.在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)学生活动设计:如图2所示,连接OA、OB,得到等腰△OAB,即OA=OB.因CD⊥AB,故△OA M与△OB M都是直角三角形,又O M为公共边,所以两个直角三角形全等,则A M=B M.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此.AM=B M,AC=BC,同理得到AD BD教师活动设计:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,弦AB=16 m,求此圆的半径.图3学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC⊥AB,图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接作OE ⊥AB ,垂足为E ,交圆于则AE =21AB = 30 cm .令⊙的半径为R ,情感培养学生积极探索数学问题的态度及方法.态度价值观教学重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.教学难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、一、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作.由已知条件可知∠AOB=∠A′O′B′;由AB AC=,△ABC是等腰三角形,由∠ACB=60°,得到△ABC是等边三角形,AB=AC=BC,所以得到∠AOB=∠AOC=∠BOC.教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.〔证明〕∵AB AC=∴AB=AC,△ABC是等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠AOC=∠BOC.2.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.图3学生活动设计:学生分析,由BC=CD=DA可以得到这三条弦所对的圆心角相等,所以考虑连接OC,得到∠AOD=∠DOC=∠BOC,而AB是直径,于是得到∠BOD=23×180°=120°.教师活动设计:此问题的解决方式和活动3类似,不过要注意学生对辅助线OC的理解,添加辅助线OC的原因.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?师生活动设计:小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如可以请同学们画一个只能是圆心角相等的这个条件的图.如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′.图4教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.小结:弦、圆心角、弧三量关系.作业设计必做习题24.1 第2、3题,第10题.选做P88:11、12教学反思教学时间课题24.1.4 圆周角课型新授课教学目标知识和能力1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.过程和方法1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.4.学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度价值观引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.教学重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.教学难点发现并论证圆周角定理.教学准备教师多媒体课件学生“五个一”问题与情境师生行为设计意图[活动1 ]演示课件或图片:教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发问题1如图:同学甲站在圆心O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C ,他们的视角(AOB ∠和ACB ∠)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D 和E ,他们的视角(ADB ∠和AEB ∠)和同学乙的视角相同吗?角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB )所对的圆心角(AOB ∠)与圆周角(ACB ∠)、同弧所对的圆周角(ACB ∠、ADB ∠、AEB ∠等)之间的大小关系.教师引导学生进行探究.教师关注:1.问题的提出是否引起了学生的兴趣;2.学生是否理解了示意图; 3.学生是否理解了圆周角的定义;4.学生是否清楚了要研究的数学问题.现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.[活动2]问题1同弧(弧AB )所对的圆心角∠AOB 与圆周角∠ACB 的大小关系是怎样的?问题2同弧(弧AB )所对的圆周角∠ACB 与圆周角∠ADB 的大小关系是怎样的?O BAC BOA C D E教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论. 在活动中,教师应关注:1.学生是否积极参与活动; 2.学生是否度量准确,观察、发现的结论是否正确.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数; 3.改变圆的半径大小.活动2的设计是为 引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.问题5如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6如图,⊙O的直径AB 为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.问题6提出后,教师关注:1.学生是否能由已知条件得出直角三角形ABC、ABD;2.学生能否将要求的线段放到三角形里求解;3.学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.[活动5]问题通过本节课的学习你有哪些收获?教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结,使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联系,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业的目的是让学生养成看书的习惯,并通过看书加DBOAC。
苏科版数学九年级上册第2章《圆》教学设计1

苏科版数学九年级上册第2章《圆》教学设计1一. 教材分析《苏科版数学九年级上册第2章《圆》》是学生在学习了平面几何基本概念和性质的基础上,进一步研究圆的相关知识。
本章内容包括圆的定义、性质、圆的方程、圆与直线的关系等。
通过本章的学习,使学生了解圆的基本概念和性质,掌握圆的方程的求法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但部分学生对圆的概念和性质理解不深,对于圆的方程的求法和解题方法还不够熟练。
因此,在教学过程中,要注重引导学生深入理解圆的概念和性质,并通过大量的练习,提高学生解决实际问题的能力。
三. 教学目标1.理解圆的定义和性质,掌握圆的方程的求法。
2.培养学生解决实际问题的能力,提高学生的逻辑思维能力和空间想象能力。
3.培养学生合作学习的意识,提高学生的沟通能力和团队协作能力。
四. 教学重难点1.圆的定义和性质的理解。
2.圆的方程的求法和解题方法的掌握。
五. 教学方法1.采用问题驱动法,引导学生主动探究圆的定义和性质。
2.采用案例分析法,分析实际问题,培养学生解决实际问题的能力。
3.采用小组合作学习法,培养学生合作学习的意识,提高学生的沟通能力和团队协作能力。
六. 教学准备1.准备相关的教学案例和实际问题,用于课堂分析和讨论。
2.准备教学PPT,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些与圆相关的实际问题,引导学生思考圆的定义和性质,激发学生的学习兴趣。
2.呈现(10分钟)讲解圆的定义和性质,引导学生通过PPT了解圆的相关知识。
在此过程中,注重引导学生主动参与,提问学生对圆的定义和性质的理解。
3.操练(10分钟)通过PPT展示一些例题,讲解圆的方程的求法。
在此过程中,引导学生主动思考,解答问题。
同时,提醒学生注意解题方法的总结。
4.巩固(10分钟)布置练习题,让学生独立完成。
人教版九年级数学上册圆的有关性质《圆周角》教学设计

24.1圆的有关性质(第四课时)一、内容和内容解析1.内容圆周角概念,圆周角定理及其推论.2.内容解析与圆心角一样,圆周角也是研究圆时重点研究的一类角.顶点在圆上并且两边都与圆相交的角叫做圆周角.圆周角定理(即一条弧所对的圆周角等于它所对的圆心角的一半)揭示了一条弧所对的圆周角与圆心角之间的数量关系.从而把圆周角与相对应的弧、弦联系起来.圆周角定理及其推论为与圆有关的角的计算,证明角相等,弧、弦相等等数学问题提供了十分便捷的方法和思路,即是圆心角、弦、弧之间关系的继续,又是后续研究圆与其他平面图形的桥梁和纽带.圆周角定理得证明,采用完全归纳法,通过分类讨论,把一般问题转化为特殊情况来证明,渗透了分类讨论和化一般为特殊的化归思想.基于以上分析,确定本节课的教学重点是:圆周角定理.二、目标和目标解析1.目标(1)了解圆周角的概念,会证明圆周角定理及其推论.(2)结合圆周角定理的探索与证明的过程,进一步体会分类讨论、化归的思想方法.2.目标解析达成目标(1)的标志是:能在具体的图形中正确识别一条弧所对的圆周角;知道一条弧所对的圆周角等于这条弧所对的圆心角的一半,知道同弧或等弧所对的圆周角相等,能够正确识别直径所对的圆周角,并会结合具体问题构造直径所对的圆周角;能够应用定理和推论解决简单问题.达成目标(2)的标志是:能通过画图、观察、度量、归纳等方式发现一条弧所对圆周角与圆心角之间的关系;能根据圆心与圆周角的位置关系对同弧所对的圆周角进行分类,理解证明圆周角定理需要分三种情况的必要性;理解证明圆周角定理时,可以把圆心在圆周角的内部和外部两种情况转化成特殊情况,从而证明定理.三、教学问题诊断分析圆心与圆周角具有三种不同的位置关系:圆心在圆周角的一边上,圆心在圆周角的内部,圆心在圆周角的外部.所以,圆周角定理的证明要采用完全归纳法,分情况证明.学习本节课内容时,学生已经具备一定的逻辑推理能力,但对于一个几何命题要分情况证明的经验还很缺乏.因此,教学的关键是:①在学生明确圆周角的概念后,让学生动手画圆周角,一方面让学生深入了解圆周角,另一方面,让学生在动手操作中体会圆心与圆周角具有三种不同的位置关系,为后面证明中的分类讨论做好铺垫.②学生合作交流,通过度量事先画的一条弧所对的圆周角与圆心角的度数,探究并猜想他们之间的数量关系,然后教师在利用计算机软件来验证,让学生进一步明确他们之间的关系,从而得到命题:一条弧所对的圆周角等于它所对的圆心角的一半.③从特殊的位置关系——圆心在圆周角一边上的情形入手,先证明猜想,再将其他两种情形转化为圆心在圆周角一边上的情形.基于以上分析,本节课的教学难点是:分情况证明圆周角定理.四、教学过程设计1.了解圆周角的概念问题1 如图1,∠ACB的顶点和边有哪些特点?师生活动:学生观察图形,教师引导学生结合图形认识到:∠ACB的顶点在OΘ上,角的两边分别交OΘ于点A,B两点.教师进而指出:顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周角与圆心角都是圆有关的角.设计意图:结合图形,获得圆周角定义,理解圆周角的概念.练习教科书第88页练习第一题.师生活动:学生思考并回答问题.设计意图:同时呈现有关圆周角的正例和反例,有利于学生对圆周角概念的本质属性与非本质属性进行比较,巩固对概念的理解.2.探索圆周角定理问题2在图2中,∠ACB是圆周角,作出弧AB所对的圆心角∠AOB.分别测量∠ACB和∠AOB的度数.他们之间有什么关系?师生活动:学生画图,连接OA,OB得到圆心角∠AOB.跳时指出∠ACB和∠AOB都对着弧AB提出以下问题.教师追问1:图2中,∠ACB和∠AOB有怎样的关系?1.即师生活动:学生通过观察,度量,猜想AOB∠=ACB∠2一条弧所对的圆周角等于它所对的圆心角的一半.教师追问2:在OΘ上任取一条弧,做出这条弧所对的圆周角和圆心角,测量它们的度数,你能得出同样的结论吗?师生活动:除学生动手画图度量,并验证猜想外,教师也可以利用《几何画板》软件的动态功能和度量功能进行演示,从更广泛的角度验证猜想:①拖动圆周角的顶点在优弧AB上运动;②改变弧的大小;③改变圆的大小后分别进行①和②的掩演示.引导学生发现,在演示过程中,∠ACB和∠AOB 度数的比值保持不变.设计意图:引导学生经历观察猜想、操作、分析、验证、交流等基本数学活动,探索圆周角的性质:一条弧所对的圆周角等于它所对的圆心角的一半.教师使用《几何画板》做进一步演示与验证,在动态环境中研究圆周角与圆心角的关系,即在某些量变化的过程中让学生观察不变的数量关系,帮助学生更好地理解一条弧所对的圆周角与圆心角的数量关系.3.证明圆周角定理问题3 如何证明一条弧所对的圆周角等于它所对的圆心角的一半?教师追问1:在圆上任取弧BC,画出圆心角∠BAC和圆周角∠BOC,圆心与圆周角有几种位置关系?师生活动:学生动手画图、交流、思考,得到圆心与圆周角的三种位置关系(图3):①圆心在圆周角的一边上;②圆心在圆周角的内部;③圆心在圆周角的外部.设计意图:把直观操作与逻辑推理有机结合,使得推理论证成为学生观察、实验、探究得出结论的自然延续.同时进一步明确证明的必要性和证明的方法.教师追问2:第①种情况下,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?师生活动:学生结合三种位置的图形,认识到第①种情况属于特殊情况,另外两种情况比第①种情况复杂.研究数学问题一般从特殊情况开始,再考虑其他情况能否转化成特殊情况.师生结合图3(1),分析第①种情况,得到BOC A C A BOC C A OC OA ∠=∠⇒⎭⎬⎫∠+∠=∠∠=∠⇒=21 教师指出:符号”B A “⇒表示由条件A 推出B ,可以用”“⇒方式给出推理过程.设计意图:从特殊情况入手,证明猜想G 便于学生的学习又为其他两种情况的证明提供了转化的方向.教师追问3: 在第②③种情况下,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?师生活动:学生思考,尝试解决.如果学生有困难,教师可提示学生:将第②③种情况转化成第①种情况.根据学生的情况,师生共同研究完成第②种情况的证明.证明:如图4,连接AO 并延长交ΘO 于点D.BOD BAD B BAD BOD B BAD OB OA ∠=∠⇒⎭⎬⎫∠+∠=∠∠=∠⇒=21. 同理,COD CAD ∠=∠21. BOC COD BOD CAD BAD BAC ∠=∠+∠=∠+∠=∠∴212121.学生独立完成第③种情况的证明.从而得到定理:一条弧所对的圆周角等于它所对的圆心角的一半.设计意图:将一般情况化为特殊情况,体现了化归的数学思想.学生通过证明三种情况,感受分类证明的必要性,有利于逻辑推理能力的提升.4.探究特殊情况,获得推论问题4我们知道,一条弧,可以对着不同的圆周角,这些圆周角之间有什么关系?也就是说,同弧或等弧所对的圆周角之间有什么关系?师生活动:学生画出弧BC所对的几个圆周角和圆心角(图5),先观察、猜想,根据定理得到结论:一条弧所对的圆周角相等.再思考同弧或等弧的情况.如果学生遇到困难,教师可根据情况提示学生:考虑圆周角与圆心角之间的关系、弧与圆心角之间的关系,通过弧相等得到结论.设计意图:让学生经历观察、猜想、证明得出推论的探索过程,得到圆周角定理的推论,进一步认识与圆有关的角和弧之间的关系.问题 5 半圆或直径所对的圆周角有什么特殊性?师生活动:学生画出弧AB所对的几个圆周角和圆心角(图6),通过观察、猜想,根据定理得到结论:半圆(或直径)所对的圆周角是直角.教师进一步引导学生得出:90°的圆周角所对的弦是直径.设计意图:由一般到特殊进一步认识定理,加深对定理的理解,获得推论.5.应用圆周角定理与推论例如图7,OΘ的直径AB的长为10cm.弦AC长为6cm,∠ACB的平分线交OΘ于点D, 求BC,AD,BD的长.师生活动:师生共同分析已知条件、所求和解题思路.如图8,欲求BC的长,由BC所在的△ABC中AB 为OΘ的直径,可知∠ACB=90°.又AB和AC已知,在Rt△ABC中,由勾股定理可求BC的长.由CD平分∠ACB得∠ACD=∠BCD,连接OD,可得∠AOD=∠BOD=90°,进而由勾股定理可求AD,BD的长.学生解答,一名学生板书,教师组织学生交流.设计意图:应用圆周角定理及其推论解决问题,巩固所学的内容.6.小结教师与学生一起回顾本节课的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)我们是如何证明圆周角定理的?在证明过程中用到了哪些思想方法?设计意图:通过小结使学生归纳梳理总结本节的知识、技能、方法,将本节课所学的知识与以前所学的知识进行紧密联系,有利于学生认知数学思想、教学方法,积累数学活动的经验.7.布置作业教科书第88页练习题第2,3,4题.。
《圆的有关性质(一)》教案

上面这些内容的推导及应用.
教学方法
教师引导学生自己归纳总结法.
教具准备
投影片三张:
教学过程
Ⅰ.回顾本章内容
[师]本章的内容已全部学完,大家能总结一下我们都学过哪些内容吗
[生]首先,我们学习了圆的定义;知道圆既是轴对称图形,又是中心对称图形,并且有旋转不变性的特点;利用轴对称变换的方法探索出垂径定理及逆定理;用旋转变换的方法探索圆心角、弧、弦之间相等关系的定理;用推理证明的方法研究了圆心角和圆周角的关系;又研究了确定圆的条件;点和圆、直线和圆、圆和圆的位置关系;圆的切线的性质和判断;探究了圆弧长和扇形面积公式,圆锥的侧面积.
[生]车轮做成圆形的就是利用了圆的旋转不变性.车轮在平坦的地面上行驶时,它与地面线相切,当它向前滚动时,轮子的中心与地面的距离总是不变的,这个距离就是半径.把车厢装在过轮子中心的车轴上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳.如果车轮不是圆形,坐在车上的人会觉得非常颠.
二、圆心角与圆周角的关系
圆的有关性质(一)
教学目标
一教学知识点
1.掌握本章的知识结构图.
2.探索圆及其相关结论.
3.掌握并理解垂径定理.
4.认识圆心角、弧、弦之间相等关系的定理.
5.掌握圆心角和圆周角的关系定理.
二能力训练要求
1.通过探索圆及其相关结论的过程,发展学生的数学思考能力.
2.用折叠、旋转的方法探索圆的对称性,以及圆心角、弧、弦之间关系的定理,发展学生的动手操作能力.
如图3, AB是是⊙O的直径, CD是⊙O的一条弦,且AB⊥CD于点G 3若点F在弧AD上运动以上结论还成立吗 不与点A,D重合
板书设计
回顾与思考
一、1.圆的有关概念及性质;
九年级数学上册《圆的有关概念》教案、教学设计

(一)教学பைடு நூலகம்难点
1.重点:圆的基本概念、性质及计算方法,包括圆心、半径、直径、弧、弦、切线等;圆的周长、面积公式的应用。
2.难点:圆的性质的理解和应用,尤其是弦、切线等特殊线段的性质;解决实际问题时,圆的相关知识与其他数学知识的综合运用。
(二)教学设想
1.教学方法:
-采用情境教学法,以生活中的实际例子引入圆的概念,让学生感受圆的无处不在,激发学习兴趣;
3.圆的周长和面积:讲解圆的周长和面积公式,推导过程注重学生的参与,让学生理解公式的来源。
4.圆的应用:结合实际例子,展示圆的相关知识在生活中的应用,提高学生的学习兴趣。
(三)学生小组讨论
在这一环节,我会将学生分成若干小组,每组4-6人。针对以下问题进行讨论:
1.圆的性质有哪些?它们在实际生活中有何应用?
2.圆的周长和面积公式是如何推导出来的?如何运用这些公式解决实际问题?
3.你还能想到哪些与圆相关的有趣现象或问题?
讨论过程中,我会巡回指导,关注每个小组的讨论情况,及时解答学生的问题,引导他们深入思考。
(四)课堂练习
课堂练习环节,我会设计以下几类题目:
1.基础题:针对圆的基本概念和性质,让学生巩固所学知识。
5.能够运用圆的相关知识,解决一些简单的几何问题,如求圆的切线、弦长等。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法:
1.采用直观演示法,通过展示圆的实际物体,让学生感知圆的特点,引导学生从生活中发现圆的美;
2.运用探究式教学法,引导学生主动探究圆的性质,培养学生的逻辑思维能力和几何直观;
-利用直观演示法,通过教具、多媒体课件等展示圆的性质,帮助学生形成直观的认识;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1圆的有关性质24.1.1圆教学目标1.理解圆、弧、等弧、弦、等圆、半圆、直径等有关概念.2.能初步应用“同圆的半径相等”及“圆心是任一直径的中点”进行简单的证明和计算.教学重点圆的有关概念.教学难点圆、等圆、弧、等弧、弦、半圆、直径等有关概念的区别与联系.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标圆是生活中常见的图形,许多物体都给我们以圆的形象.请你举出生活中一些圆的例子.从本节课开始,我们将会更清楚地了解圆以及一些相关的概念和性质.二、自主学习指向目标1.自学教材第79至80页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一圆的定义及表示活动一:圆的定义.图1(1)从旋转的角度理解:如图1,在一个平面内,线段OA绕它固定的一个端点O__旋转一周__,另一个端点A所形成的图形叫做圆,固定的端点O叫做__圆心__,线段OA叫做__半径__.【展示点评】①在平面内画出圆,必须明确圆心和半径两个要素,__圆心__确定位置,__半径__确定大小.②以点O为圆心的圆,记作“⊙O”,读作“圆O”.那么以点A为圆心的圆,记作__⊙A__,读作__圆A__.(2)从集合的观点理解:圆心为O、半径为r的圆可以看成是所有__到定点O的距离等于定长r__的点的集合.【小组讨论】圆和圆面有何不同?如何证明几个点在同一个圆上?【反思小结】线段OA绕它的固定的一个端点O旋转一周所形成的图形叫做圆面,而圆是一个封闭的曲线图形,指的是圆周.证明几个点在同一个圆上,就是证明这几个点到一个定点的距离________.【针对训练】见学生用书“当堂练习”知识点一探究点二圆的相关概念图2活动二:1.连接圆上任意两点的__线段__叫做弦,经过圆心的弦叫做__直径__.如图2,__AB__是⊙O的直径;在⊙O中,线段__AC__是弦.思考:弦与直径有什么关系?【展示点评】直径是经过圆心的弦.2.圆弧是圆上__任意两点间的部分__,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做__半圆__.大于__半圆__的弧叫做优弧,小于__半圆__的弧叫做劣弧.思考:(1)“半圆是弧,弧是半圆”这种说法正确吗?【展示点评】半圆是弧,但弧不一定是半圆.(2)弧的表示:以A,B为端点的弧记作AB,读作“圆弧AB”或“弧AB”,那么以M,N为端点的弧记作__MN,读作__弧MN__.如图2,弦AC所对的弧有两条,其中优弧记作__ABC,劣弧记作__AC.3.能够__重合__的两个圆叫做等圆.“由半径相等的两个圆是等圆”.在同圆或等圆中,能够互相__重合__的弧叫做等弧.【小组讨论】弦和直径有何联系和区别?弧与半圆有何区别和联系?【反思小结】在理解圆的相关概念时要结合图形加强直观理解,特别要注意弦与直径,弧与半圆的区别与联系.直径是弦,但弦不一定是直径,半圆是弧,但弧不一定是半圆.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标1.圆圆的定义描述性定义集合定义圆的表示法、读法圆的相关概念2.应用:同圆的半径相等,圆心是任一直径的中点.五、达标检测反思目标1.下列命题正确的有( A )①弦是圆上任意两点之间的部分②半径是弦③直径是最长的弦④弦是半圆,半圆是弦A.1个B.2个C.3个D.4个2.⊙O中若弦AB等于⊙O的半径,则△AOB的形状是__等边三角形__.3.如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点,若AC=10cm,则OD=__5__cm.4.如图,已知在⊙O中,AB、CD为直径,则AD与BC的关系是( C ).A.AD=BCB.AD∥BCC.AD∥BC且AD=BCD.不能确定5.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,求证:A、B、C三点共在同一圆上.证明:∵在Rt△ABC中,D是AB的中点,∴CD=1,2AB,∵AD=BD=1,2AB,∴AD=BD=CD,∴点A、B、C在以D为圆心,AD长为半径的圆上.六、布置作业巩固目标1.上交作业教材第81页练习第1,3题.2.课后作业见学生用书的“课后作业”部分.教学反思__24.1.2垂直于弦的直径教学目标1.探索并了解圆的对称性和垂径定理.2.能运用垂径定理解决几何证明、计算和作图问题,并会解决一些实际问题.教学重点垂径定理及推论.教学难点发现并证明垂径定理.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?二、自主学习指向目标1.自读教材第81至83页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一垂径定理及其推论.活动一:出示教材第81页“探究”,实践操作,问1:我们知道,圆是轴对称图形,那么圆的对称轴有多少条?圆的任何一条直径都是它的对称轴,这种说法正确吗?问2:如何证明圆是轴对称图形?【展示点评】圆有无数条对称轴,直径所在的直线是它的对称轴;因为对称轴是直线,而直径是线段,所以不能说“直径是圆的对称轴”.问3:如图,当CD⊥直径AB时,你还可以得到什么结论?【展示点评】符号语言:∵AB为⊙O的直径,AB⊥CD,∴__CE__=__ED__,__AC=__AD,__CB=__BD.(2)垂径定理的推论:__平分__弦(不是直径)的直径垂直于弦,并且__平分__弦所对的两条孤.符号语言:如图,在⊙O中,AB是直径,非直径的弦CD与AB相交于点E,且CE=DE.∵AB是直径,CE=DE,∴__AB⊥CD__,__AC=AD,__CB=BD.【小组讨论】为什么要在垂径定理的推论中,加上“(不是直径)”这一限制条件?【反思小结】学习垂径定理要注意:(1)条件中的“弦”可以是直径.(2)结论中的“平分弧”指平分弦所对的劣弧、优弧.学习垂径定理的推论时,一定要注意“弦不是直径”这一条件.这是因为圆的任意两条直径互相平分,但是它们不一定是互相垂直的.【针对训练】见学生用书“当堂练习”知识点一探究点二垂径定理的应用活动三:出示教材第82页例2.思考:从数学的角度分析已知什么几何图形?画出图形,分析已知哪些量?要求什么量?为了解决问题,教材添加了什么辅助线?它有何作用?【小组讨论】在解决此类问题中,常作辅助线的方法是什么?【反思小结】在圆中解决有关弦的问题时,常常需要作“垂直于弦的直径”作为辅助线.实际上,往往只需从圆心作一条与弦垂直的线段即可.这样,把垂径定理和勾股定理结合起来,容易得到圆的半径R,圆心到弦的距离d,弦长a之间的关系式__R__2=__d__2+__(a,2)__2.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标1.垂直于弦的直径圆的轴对称:________垂径定理:________垂径定理的推论:________利用垂径定理解决问题2.一种辅助线和一种数学思想方法.五、达标检测反思目标1.如图,AB是⊙O的直径,BC是弦,OD⊥BC,垂足为D,已知OD=5,则弦AC =__10__.2.若圆的半径为2 cm,圆中一条弦长为23 cm,则此弦中点到此弦所对劣弧中点的距离是__1__cm.第1题图第3题图3.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为( A ) A.2 B.3 C.4 D.54.在半径为5 cm的圆中,弦AB∥CD,AB=6 cm,CD=8 cm,则AB和CD的距离是( D )A.7 cm B.1 cm C.7 cm或4 cm D.7 cm或1 cm六、布置作业巩固目标1.上交作业教材第89页习题24.1第2,8题.2.课后作业见学生用书的“课后作业”部分.教学反思__24.1.3弧、弦、圆心角教学目标1.了解圆心角的概念.2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.3.能用弧、弦、圆心角的关系解决圆中的计算和证明.教学重点弧、弦、圆心角关系定理及推论.教学难点定理的探索、证明过程.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标剪一个圆形纸片,把它绕圆心旋转180°,所得的图形与原图形重合吗?由此你能得到什么结论?把圆绕圆心旋转任意一个角度呢?二、自主学习指向目标1.自读教材第83至84页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一圆心角活动一:出示教材第83页“探究”,问1:你能得到什么结论?问2:把圆绕圆心旋转任意一个角度呢?【展示点评】圆是中心对称图形,同时也具有旋转对称性,顶点在圆心的角叫做圆心角.【针对训练】见学生用书“当堂练习”知识点一探究点二弧、弦、圆心角之间的关系活动二:出示教材第84页思考,问1:AB和A'B',弦AB和弦A'B'相等吗?问2:如何证明它们的相等关系.思考:圆是旋转对称的,即圆绕圆心旋转任意一个角度,都能与原来的图形重合.那么,弧、弦、圆心角之间有何关系?【展示点评】定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.符号语言:在⊙O中,∵∠AOB=∠A′OB′,∴AB=A′B′.推论:1.__________________.2.__________________.符号语言:1.______________.2.________________.【小组讨论】同圆或等圆中,两个圆心角,两条弧,两条弦中如果有一组量相等,则它们所对应的其余各组量有什么关系?【反思小结】定理和推论都是以“在同圆或等圆中”为前提的,否则不成立.定理和推论可总结概括为:在同圆或等圆中,两个圆心角,两条弦,两条弧中有一组量相等,它们所对应的其余各组量也相等.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标正确理解和使用弧、弦、圆心角三者关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,即一项相等,其余二项相等.五、达标检测反思目标1.已知圆O的半径为5,弦AB的长为5,则弦AB所对的圆心角∠AOB=__60°或300°__.第2题图2.如图,在⊙O中,AB=AC,∠B=70°,则∠A等于__40°__.3.在⊙O中,圆心角∠AOB=90°,点O到弦AB的距离为4,则⊙O的直径的长为( B )A.42 B.82 C.24 D.164.如图,AB是⊙O的直径,BC=CD, 求证:OC∥AD.【证明】连接OD.∵BC=CD,∴∠BOC=∠COD,∴∠BOD=2∠COD.∵OA=OD,∴∠OAD=∠ODA,∴∠BOD=∠OAD+∠ODA=2∠ODA,∴∠COD=∠ODA,∴OC∥AD.六、布置作业巩固目标1.上交作业教材第89页第3,4题.2.课后作业见学生用书的“课后作业”部分.教学反思24.1.4圆周角教学目标1.了解圆周角、圆内接多边形的概念.2.会证明圆周角定理及其推论.3.会用圆周角定理及推论进行证明和计算.教学重点圆周角的定理及应用.教学难点运用分类讨论的数学思想证明圆周角定理.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标如图是圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗弧AB观看窗内的海洋动物,同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D 和E、他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?像∠ACB、∠ADB和∠AEB这样顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、自主学习指向目标1.自读教材第85至88页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一出示教材第85页探究活动一:圆周角定理的推导思考:(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?请在下列图中画出来.(2)①当圆心在圆周角的一边上时,如何证明问题1中发现的结论?请结合上面画出的此种情况下的图形证明.②另外两种情况如何证明,可否转化成第一种情况呢?(3)类比上述方法思考:同弧AB所对的几个圆周角有什么关系?(4)半圆(或直径)所对的圆周角是直角、锐角、钝角中的哪一种角?90°的圆周角所对的弦叫做什么?【展示点评】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径.【小组讨论】圆周角定理的证明过程体现了什么数学思想?【反思小结】圆周角定理的证明体现了分类讨论的数学思想.活动二:出示教材第87页例4.思考:解答过程中是如何应用∠ACB的平分线这一条件证得AD=BD的?推理依据是什么?去掉“AD=BD”这一步行吗?【小组讨论】问题中的直角三角形是如何产生的?依据是什么?【反思小结】半圆(或直径)所对的圆周角是直角这一推论为在圆中确定直角,构成垂直关系,创造了条件,有时在圆中没有直径时,还需构造出直径.【针对训练】见学生用书“当堂练习”知识点二探究点二圆内接四边形的性质活动三:出示教材第87页思考.【小组讨论】圆内接四边形的两组对角分别有怎样的关系?【反思小结】圆内接四边形的对角互补的题设和结论分别是圆内接四边形的对角,互补.【针对训练】见学生用书“当堂练习”知识点三四、总结梳理内化目标1.两个概念:圆周角,圆内接四边形.2.圆周角定理及其推论.3.圆内接四边形的性质.4.分类讨论的数学思想方法.五、达标检测反思目标1.如图,在⊙O中,若C是BD的中点,则图中与∠BAC相等的角有( C )A.1个B.2个C.3个D.4个2.如图,圆心角∠BOC=78°,则圆周角∠BAC的度数是( C )A.156°B.78°C.39°D.12°第1题图第2题图3.(中考·深圳)如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内OB上一点,∠BMO=120°,则⊙C的半径为( C ) A.6 B.5 C.3 D.32六、布置作业巩固目标1.上交作业教材第89页第5,6,7题.2.课后作业见学生用书的“课后作业”部分.。