2012年普通高等学校招生全国统一考试(重庆卷)文科数学
2012年全国高考文科数学试题及答案-新课标

绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C的实轴长为(A ) 2 (B )2 2(C )4(D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年高考试题:文科数学(全国卷)——含答案及解析

2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本卷和答题卡一并交回。
第Ⅰ卷注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3、第Ⅰ卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
一、选择题(1)已知集合{|}{|}{|}{|}A x xB x xC x xD x x ==是平行四边形,是矩形,是正方形,是菱形,则( ).()()()()A A B B C B C D C D A D⊆⊆⊆⊆【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。
在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解。
(2)函数1(1)y x x =+-≥的反函数为( ). 2()1(0)A yx x =-≥ 2()1(1)B yx x =-≥ 2()1(0)C yx x =+≥ 2()1(1)D yx x =+≥ 【考点】反函数【难度】容易【点评】本题考查反函数的求解方法,注意反函数的定义域即为原函数的值域。
在高一数学强化提高班上学期课程讲座1,第二章《函数与初等函数》中有详细讲解,在高考精品班数学(文)强化提高班中有对函数相关知识的总结讲解。
(3)若函数()s i n [0,2]3x fx ϕϕ+=∈(π)是偶函数,则ϕ=( ).()2A π 2()3B π 3()2C π 5()3D π 【考点】三角函数与偶函数的结合【难度】中等【点评】本题考查三角函数变换,及偶函数的性质。
2012年普通高等学校招生全国统一考试(新课标_)文科数学试卷及参考答案

2012年普通高等学校招生全国统一考试 (新课标文科数学试卷及参考答案)注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )(A )-1 (B )0 (C )12 (D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( ) (A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6.如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )18 8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π 9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )8 11.当0<x ≤12时,4x <log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( )(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年普通高等学校招生全国统一考试(大纲全国卷)文科数学及答案

2012年普通高等学校招生全国统一考试(大纲全国卷)数 学(供文科考生使用)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={|x x 是平行四边形},B ={|x x 矩形},C ={|x x 是正方形},D ={|x x 是菱形},则( )A.A B ⊆B.C B ⊆C.D C ⊆D.A D ⊆ 2.函数(1)y x =≥-的反函数为( )A.()210y x x =-≥B.()211y x x =-≥C.()210y x x =+≥D.()211y x x =+≥3.若函数()[]()sin0,2π3x f x ϕϕ+=∈是偶函数,则ϕ=( ) A.π2 B.2π3C.3π2D.5π3 4.已知α为第二象限角,3sin ,5α=则sin2α=( )A.2425-B.1225-C.1225D.24255.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A.2211612x y +=B.221128x y +=C.22184x y +=D.221124x y += 6.已知数列{}n a 的前n 项和为11,1,2,n n n S a S a +==则n S =( )A.12n -B.13()2n -C. 12()3n -D.112n - 7.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A.240种B.360种C.480种D.720种8.已知正四棱柱1111ABCD A B C D -中,12,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为( )A.2D.19.ABC ∆中,AB 边的高为CD .若,,0,||1,||2,CB CA ==⋅===a b a b a b 则AD =( )A. 1133-a bB.2233-a bC.3355-a bD.4455-a b10.已知12,F F 为双曲线22:2C x y -=的左,右焦点,点P 在C 上,12||2||,PF PF =则12cos F PF ∠=( )A.14B.35C.34D.45 11.已知125ln π,log 2,x y z e -===,则( ) A.x y z << B.z x y <<C.z y x <<D.y z x << 12.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,1,3AE BF ==动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A.8B.6C.4D.3本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~24题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分)13.81()2x x+的展开式中2x 的系数为________14.若,x y 满足约束条件10x 30,x 330x y y y -+≥⎧⎪+-≤⎨⎪+-≥⎩则3z x y =-的最小值为________15.当函数()sin 02πy x x x =≤<取得最大值时,x =________16.已知正方体1111ABCD A B C D -中,,E F 分别为11,BB CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为________三、解答题(本大题共6小题,共70分.解答题应写出文字说明,证明过程或演算步骤.) 17.(本小题10分)ABC ∆中,内角,,A B C 成等差数列,其对边,,a b c 满足223b ac =,求A .18.(本小题12分)已知数列{}n a 中,11,a =前n 项和23n n n S a +=.(1)求23,a a ;(2)求{}n a 的通项公式.19.(本小题12分)如图,四棱锥P A B C D -中,底面ABCD 为菱形,PA ⊥底面ABCD,2,AC PA E ==是PC 上的一点,2.PE EC =(1)证明:PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小.20.(本小题12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲,乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲,乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲,乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.21.(本小题12分)已知函数()3213f x x x ax =++.(1)讨论()f x 的单调性;(2)设()f x 有两个极值点12,x x ,若过两点()()()()1122,,,x f x x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值.22.(本小题12分)已知抛物线()2:1C y x =+与圆()2221:(1)()02M x y r r -+-=>有一个公共点A ,且在A 处两曲线的切线为同一直线l .(1)求r ;(2)设,m n 是异于l 且与C 及M 都相切的两条直线,,m n 的交点为D ,求D 到l 的距离.P E DC B ABACAC BCDDC DB 13.7 14.1- 15.5π6 16.3517. 【解析】由A .B .C 成等差数列可得2B A C =+,而A B C π++=,故33B B ππ=⇒=且23C A π=-而由223b ac =与正弦定理可得2222sin 3sin sin 2sin 3sin()sin 33B AC A A ππ=⇒⨯=-所以可得232223(sin cos cos sin )sin sin sin 1433A A A A A A ππ⨯=-⇒+=⇒1cos 2121sin(2)262A A A π-+=⇒-=,由27023666A A ππππ<<⇒-<-<,故 266A ππ-=或5266A ππ-=,于是可得到6A π=或2A π=。
2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x |x 2−x −2〈0},B={x |−1〈x 〈1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B)0 (C )错误! (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D 。
45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A)(1-错误!,2) (B )(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A)A +B 为1a ,2a ,…,N a 的和(B)2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D)A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )错误!π (B)4错误!π (C )4错误!π (D)6错误!π(9)已知ω〉0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C)错误! (D )错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0〈x ≤错误!时,4log x a x <,则a 的取值范围是(A )(0,错误!) (B )(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B)3660 (C)1845 (D)1830二.填空题:本大题共4小题,每小题5分。
2012高考重庆文科数学试题及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学文史类(重庆卷)本试卷满分150分.考试时间120分钟.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.命题“若p则q”的逆命题是()A.若q则p B.若p则qC.若q则p D.若p则q2.不等式12xx-<+的解集为()A.(1,+∞) B.(-∞,-2)C.(-2,1) D.(-∞,-2)∪(1,+∞)3.设A,B为直线y=x与圆x2+y2=1的两个交点,则|AB|=() A.1 B.2C.3D.24.(1-3x)5的展开式中x3的系数为()A.-270 B.-90 C.90 D.2705.sin47sin17cos30cos17︒-︒︒=︒()A.32-B.12-C.12D.326.设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|=()A.5B.10C.25D.107.已知a=log23+log23,b=log29-log23,c=log32,则a,b,c的大小关系是() A.a=b<c B.a=b>cC.a<b<c D.a>b>c8.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是()9.设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a的取值范围是()A.(0,2) B.(0,3)C.(1,2) D.(1,3)10.设函数f(x)=x2-4x+3,g(x)=3x-2,集合M={x∈R|f(g(x))>0},N={x∈R|g(x)<2},则M∩N为…()A.(1,+∞) B.(0,1)C.(-1,1) D.(-∞,1)二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.首项为1,公比为2的等比数列的前4项和S 4=__________. 12.若f (x )=(x +a )(x -4)为偶函数,则实数a =__________.13.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,1cos 4C =,则sin B =__________.14.设P 为直线3b y x a =与双曲线22221x y a b-=(a >0,b >0)左支的交点,F 1是左焦点,PF 1垂直于x 轴,则双曲线的离心率e =__________.15.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为__________(用数字作答).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值. 17.已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16. (1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值.18.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响. (1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.19 (文)设函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,-π<φ≤π)在π6x =处取得最大值2,其图象与x 轴的相邻两个交点的距离为π2. (1)求f (x )的解析式;(2)求函数426cos sin 1()π()6x x g x f x --=+的值域.20.如图,在直三棱柱ABC -A 1B 1C 1中,AB =4,AC =BC =3,D 为AB 的中点.(1)求异面直线CC 1和AB 的距离;(2)若AB 1⊥A 1C ,求二面角A 1-CD -B 1的平面角的余弦值.21.如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线交椭圆于P ,Q 两点,使PB 2⊥QB 2,求△PB 2Q 的面积.答案1. A 根据逆命题的定义,命题“若p 则q ”的逆命题为“若q 则p ”,故选A 项. 2. C 不等式102x x -<+可化为(x -1)(x +2)<0,解不等式得其解集为(-2,1),故选C 项.3. D 由已知条件可知直线y =x 过圆x 2+y 2=1的圆心,所以AB 为圆x 2+y 2=1的直径,|AB |=2,故选D 项.4. A (1-3x )5的展开式的通项为T r +1=5C r (-3)r x r ,令r =3,则x 3的系数为35C (-3)3=-270,故选A 项.5. C 因为sin47°=sin(30°+17°)=sin30°cos17°+sin17°cos30°,所以原式s i n 30c o s 17s i n 17c o s 30s i n 17c o s 301=s i n 30c o s 172︒︒+︒︒-︒︒=︒=︒,故选C 项.6. B 因为a ⊥b ,所以a ·b =x -2=0,解得x =2,a =(2,1),a +b =(3,-1),|a +b |=10,故选B 项.7.B a =log 23+2log 3=2log 33,b =log 29-2log 3=2log 33,因此a =b ,而2log 33>log 22=1,log 32<log 33=1,所以a =b >c ,故选B 项.8. C 由题意可得f ′(-2)=0,而且当x ∈(-∞,-2)时,f ′(x )<0,此时xf ′(x )>0;当x ∈(-2,+∞)时,f ′(x )>0,此时若x ∈(-2,0),xf ′(x )<0,若x ∈(0,+∞),xf ′(x )>0,所以函数y =xf ′(x )的图象可能是C 项.9.A 四面体如图1所示,设AB =AC =BD =CD =1,2AD =,BC =a ,则a >0.当A ,B ,C ,D 四点共面时,2BC =(如图2所示).而此时A ,B ,C ,D 四点不能构成四面体,所以2BC <,故选A 项.图1图210. D 函数f (x )=(x -3)(x -1),令f (x )>0得x >3或x <1,不等式f (g (x ))>0可化为g (x )>3或g (x )<1,即3x -2>3或3x -2<1,分别求解得x >log 35或x <1,即M ={x ∈R |x >log 35或x <1},N ={x ∈R |3x -2<2}={x ∈R |x <log 34},所以M ∩N ={x ∈R |x <1},故选D 项.11.答案:15解析:由等比数列前n 项和公式1(1)1n n a q S q-=-得,44121512S -==-. 12.答案:4解析:f (x )=x 2+(a -4)x -4a .因为f (x )为偶函数,所以f (-x )=x 2+(4-a )x -4a =x 2+(a -4)x -4a ,a -4=4-a ,a =4.13.答案:154解析:由余弦定理得c 2=a 2+b 2-2ab cos C =4,故c =2,而sin C =154,∵b =c ,故sin B =sin C =154. 14.答案:324解析:因为F 1为左焦点,PF 1垂直于x 轴,所以P 点坐标为(-c ,3bca-).又因为P 点为直线与双曲线的交点,所以22222291b c c a a b-=,即2819e =,所以324e =.15.答案:15解析:基本事件总数为66A 720=,事件“相邻两节文化课之间至少间隔1节艺术课”所包含的基本事件分两类,一类是相邻两节文化课之间恰好间隔1节艺术课有33332A A 72=,一类是相邻两节文化课之间间隔1节或2节艺术课有32223322A C A A 72=,由古典概型概率公式得15P =. 16.解:(1)设数列{a n }的公差为d ,由题意知11228,2412.a d a d +=⎧⎨+=⎩解得a 1=2,d =2. 所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =1()(22)22n n a a n n ++==n (n +1). 因a 1,a k ,S k +2成等比数列,所以2k a =a 1S k +2.从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0. 解得k =6或k =-1(舍去).因此k =6.17.(文)解:(1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b , 由于f (x )在点x =2处取得极值c -16, 故有(2)0,(2)16,f f c '=⎧⎨=-⎩即120,8216,a b a b c c +=⎧⎨++=-⎩化简得120,48,a b a b +=⎧⎨+=-⎩解得a =1,b =-12.(2)由(1)知f (x )=x 3-12x +c ; f ′(x )=3x 2-12=3(x -2)(x +2). 令f ′(x )=0,得x 1=-2,x 2=2.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,2)时,f ′(x )<0,故f (x )在(-2,2)上为减函数;当x ∈(2,+∞)时,f ′(x )>0,故f (x )在(2,+∞)上为增函数. 由此可知f (x )在x 1=-2处取得极大值f (-2)=16+c ,f (x )在x 2=2处取得极小值f (2)=c -16.由题设条件知16+c =28得c =12.此时f (-3)=9+c =21,f (3)=-9+c =3,f (2)=-16+c =-4, 因此f (x )在[-3,3]上的最小值为f (2)=-4.18.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3). (1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()111122112233()()()P C P A B P A B A B P A B A B A B ++==111122112233()()()()()()()()()()()()P A P B P A P B P A P B P A P B P A P B P A P B ++ =223321212113()()()()32323227⨯++=. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()112211223()()P D P A B A B P A B A B A +==112211223()()()()()()()()()P A P B P A P B P A P B P A P B P A ⋅+ =2222212114()()()()()3232327⋅+=. 19.解:(1)由题设条件知f (x )的周期T =π,即2π=πω,解得ω=2.因f (x )在π=6x 处取得最大值2,所以A =2. 从而sin(2×π6+φ)=1,所以π3+φ=π2+2k π,k ∈Z .又由-π<φ≤π得π=6ϕ.故f (x )的解析式为f (x )=2sin(2x +π6).(2)426cos sin 1()=π2sin(2)2x x g x x --+426cos cos 2=2cos2x x x+-222(2cos 1)(3cos 2)=2(2cos 1)x x x -+-=32cos 2x +1(cos 2x ≠12). 因cos 2x ∈[0,1],且cos 2x ≠12,故g (x )的值域为[1,74)∪(74,52].20.解:(1)如图所示,因AC =BC ,D 为AB 的中点,故CD ⊥AB .又直三棱柱中,CC 1⊥面ABC ,故CC 1⊥CD ,所以异面直线CC 1和AB 的距离为225CD BC BD =-=.(2)解法一:由CD ⊥AB ,CD ⊥BB 1,故CD ⊥面A 1ABB 1,从而CD ⊥DA 1,CD ⊥DB 1,故∠A 1DB 1为所求的二面角A 1-CD -B 1的平面角.因A 1D 是A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1,∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此1111=AA A B AD AA ,得2111==8AA AD A B ⋅.从而2211==23A D AA AD +,B 1D =A 1D =23, 所以在△A 1DB 1中,由余弦定理得222111111111cos ==23A D DB A B A DB A D DB +-∠⋅⋅.(2)解法二:如图,过D 作DD 1∥AA 1交A 1B 1于D 1,在直三棱柱中,由(1)知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz.设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),从而1AB =(4,0,h ),1AC =(2,5,-h ).由1AB ⊥1AC 得1AB ·1AC =0,即8-h 2=0,因此=22h . 故1DA =(-2,0,22),1DB =(2,0,22),DC =(0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC ,m ⊥1DA ,即1115=0,222=0,y x z ⎧⎪⎨-+⎪⎩ 取z 1=1,得m =(2,0,1).设平面B 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC ,n ⊥1DB ,即2225=0,222=0,y x z ⎧⎪⎨+⎪⎩取z 2=-1,得n =(2,0,-1).所以cos 〈m ,n 〉=211==||||32121⋅-⋅+⋅+m n m n .所以二面角A 1-CD -B 1的平面角的余弦值为13.21.解:(1)如图,设所求椭圆的标准方程为2222=1x y a b+(a >b >0),右焦点为F 2(c ,0).因△AB 1B 2是直角三角形,又|AB 1|=|AB 2|,故∠B 1AB 2为直角,因此|OA |=|OB 2|,得2cb =,结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率255c e a ==. 在Rt △AB 1B 2中,OA ⊥B 1B 2,故12AB B S ∆=12·|B 1B 2|·|OA |=|OB 2|·|OA |=2c·b =b 2.由题设条件124AB B S ∆=得b 2=4,从而a 2=5b 2=20,因此所求椭圆的标准方程为22=1204x y +. (2)由(1)知B 1(-2,0),B 2(2,0).由题意,直线PQ 的倾斜角不为0,故可设直线PQ 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0.(*)设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此12245my y m +=+,122165y y m -⋅=+. 又2B P =(x 1-2,y 1),2B Q =(x 2-2,y 2),所以2B P ·2B Q =(x 1-2)(x 2-2)+y 1y 2 =(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16=222216(1)16+1655m m m m -+-++ =2216645m m --+. 由PB 2⊥QB 2,知2B P ·2B Q =0,即16m 2-64=0,解得m =±2.当m =2时,方程(*)化为9y 2-8y -16=0,故144109y +=,244109y -=,128||=109y y -, △PB 2Q 的面积S =12|B 1B 2|·|y 1-y 2|=16109.当m=-2时,同理可得(或由对称性可得)△PB2Q的面积16109S .综上所述,△PB2Q的面积为1610 9.。
2012年重庆高考试题(文数,word解析版)
(0, 2)
A
B
(0, 3)
件
(1, 2)
价
(1, 3)
答案 解析
BE = 1 − (
2 2 2 ) = , BF < BE , 2 2
AB = 2 BF < 2 ,
考点定位 本题考查棱锥的结构特征,考查空间 想象能力,极限思想的应用,是中档题. . 令代 设函数 f ( x ) = x − 4 x + 3, g ( x) = 3 − 2, 集
门艺术课各 用数字作
1 5
解答题 本大题共 6 小题,共 75 分 解答应写出文字说明 证明过程或演算 骤 令6. 本小题满分 令3 分, 小问 6 分, 小问 7 分 式 已知 {an } 等差数列,且
a1 + a3 = 8, a2 + a4 = 12,
求数列 {an } 的通项
记 {an } 的前 n 项和
Sn ,
若 a1 , ak , S k + 2 成等比数列,求 整数 k 的值 答案
a=b>c
考点定位 本题考查对数函数运算. 8 设函数 f ( x ) 在 R 函数 y = xf ′( x ) 的 可导,其导函数 f ′( x ) ,且函数 f ( x ) 在 x = −2 处取得极小值,则
象可能是
答案
C
解析
函数 f ( x ) 在 x = −2 处取得极小值可知 x < −2 , f ′( x ) < 0 ,则 xf ′( x ) > 0
x > −2 , f ′( x) > 0 则 −2 < x < 0 时 xf ′( x) < 0 , x > 0 时 xf ′( x) > 0
2012学年高考文科数学年重庆卷
{|1A B x x x x ⎧⎫=<-⎨⎬⎩⎭【提示】求出集合,然后直接求解A B 。
【考点】一元二次不等式的解法,交集及其运算。
【解析】10i 10i(33i (3=+210i 13i =+,在复平面内,复数【提示】由10i =1【解析】因为2||||cos 1DE CB DE DA DE DA DE DA DA ====。
故线段1A B 上存在点Q ,使1AC DEQ ⊥平面。
(2)12(1)r A d =-,22(1)r A d =-+,12(())1c A c A d ==+,32()2c A d =-- 因为10d -≤≤,所以12()()|||10|r A r A d ≥=+≥,3|)|1(0c A d ≥+≥所以)11(k A d =+≤当0d =时,)(k A 取得最大值1(3)任给满足性质P 的数表A (如下所示)a b cd e f任意改变A 三维行次序或列次序,或把A 中的每个数换成它的相反数,所得数表A *仍满足性质P ,并且 (())k A k A *=因此,不防设112()0,0()()r A c A c A ≥≥≥0,,由()k A 的定义知,112()()()()()()k A r A k A c A k A c A ≤≤≤,,,从而112()()()()3k A r A c A c A ++≤()()()a b c a d b e =++++++()()3a b c d e f a b f a b f =+++++++-=+-≤所以()k A ≤1由(2)可知,存在满足性质P 的数表A 使()k A =1,故()k A 的最大值为1.【提示】(1)根据()i r A 为A 的第i 行各数之和(1,2)i =,()j C A 为A 的第j 列各数之和1,3)(2,j =; 记()k A 为12123()|,|()|,|()|,|()|,|||()r A r A c A c A c A 中的最小值可求出所求;(2))(k A 的定义可求出)(1k A d =+,然后根据d 的取值范围可求出所求;(3)任意改变A 三维行次序或列次序,或把A 中的每个数换成它的相反数,所得数表A *仍满足性质P ,并且(())k A k A *=因此,不防设112()0,0()()r A c A c A ≥≥≥0,,然后利用不等式的性质可知112()()()()3k A r A c A c A ++≤, 从而求出)(k A 的最大值。
2012年普通高等学校招生全国统一考试重庆卷(数学文)
2012年普通高等学校招生统一考试(重庆卷)数学试题卷(文史类)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的(1)命题“若p 则q ”的逆命题是(A )若q 则p (B )若⌝p 则⌝ q(C )若q ⌝则p ⌝ (D )若p 则q ⌝(2)不等式102x x -<+ 的解集是为 (A )(1,)+∞ (B ) (,2)-∞- (C )(-2,1)(D )(,2)-∞-∪(1,)+∞【答案】:C【解析】:10(1)(2)0212x x x x x -<⇒-+<⇒-<<+ 【考点定位】本题考查解分式不等式时,利用等价变形转化为整式不等式解.(3)设A ,B 为直线y x =与圆221x y += 的两个交点,则||AB =(A )1 (B (C (D )2【答案】:D【解析】:直线y x =过圆221x y +=的圆心(0,0)C 则||AB =2【考点定位】本题考查圆的性质,属于基础题.(4)5(13)x - 的展开式中3x 的系数为(A )-270 (B )-90 (C )90 (D )270(5)sin 47sin17cos30cos17-(A)2-(B )12-(C )12 (D)2【答案】:C【解析】:sin 47sin17cos30sin(3017)sin17cos30cos17cos17-+-= sin 30cos17cos30sin17sin17cos30sin 30cos171sin 30cos17cos172+-==== 【考点定位】本题考查三角恒等变化,其关键是利用473017=+(6)设x R ∈ ,向量(,1),(1,2),a x b ==-且a b ⊥ ,则||a b +=(A(B(C)(D )10【答案】:B(7)已知2log 3log a =+,2log 9log b =-,3log 2c =则a,b,c 的大小关系是(A ) a b c =< (B )a b c => (C )a b c << (D )a b c >>【答案】:B【解析】:222213log 3log log 3log 3log 322a =+=+=,222213log 9log 2log 3log 3log 322b =-=-=,2322log 21log 2log 3log 3c ===则a b c => 【考点定位】本题考查对数函数运算.(8)设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是。
2012年全国统一高考数学试卷(文科)(大纲版)(含解析版)
A.
B.
C.
D.
6.(5 分)已知数列{an}的前 n 项和为 Sn,a1=1,Sn=2an+1,则当 n>1 时,Sn= ( )
A.( )n﹣1
B.2n﹣1
C.( )n﹣1
D. ( ﹣1)
7.(5 分)6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则
不同的演讲次序有( )
A.240 种
第 3 页(共 24 页)
20.(12 分)乒乓球比赛规则规定:一局比赛,对方比分在 10 平前,一方连续 发球 2 次后,对方再连续发球两次,依次轮换.每次发球,胜方得 1 分,负 方得 0 分.设在甲、乙的比赛中,每次发球,发球方得 1 分的概率为 0.6,各 次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
在三棱锥 A﹣BDE 中,BD=2 ,BE= ,DE= ,∴S△EBD= ×2 × =2
∴VA﹣BDE= ×S△EBD×h= ×2 ×h= ∴h=1 故选:D.
【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥 的体积计算方法,等体积法求点面距离的技巧,属基础题
9.(5 分)△ABC 中,AB 边的高为 CD,若 = , = , • =0,| |=1,
∴
∴
=
=
故选:D.
【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用,
向量的数量积的性质的应用.
10.(5 分)已知 F1、F2 为双曲线 C:x2﹣y2=2 的左、右焦点,点 P 在 C 上, |PF1|=2|PF2|,则 cos∠F1PF2=( )
A.
B.
C.
D.
【考点】KC:双曲线的性质. 菁优网版权所有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试
数学(文)(重庆卷)
1.命题“若p则q”的逆命题是
A. 若q则p
B. 若﹃p则﹃q
C. 若﹃q则﹃p
D. 若p则﹃q
2.不等式的解集为
A.(1,+∞)
B.(- ∞,-2)
C.(-2,1)
D.(- ∞,-2)∪(1,+∞)
3.设A,B为直线y=x与圆x2+y2=1的两个交点,则|AB|=
A.1
C. D.2
4.(1-3x)5的展开式中x3的系数为
A.-270
B.-90
C.90
D.270
(5) -
A.-
2B-
1
2
C.
1
2
D.
3
2
(6)设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|=
A.
B.
C. D.10
(7)已知a=,b=,c=log32,则a,b,c的大小关系是(A)a=b<c (B)a=b>c
(C)a<b<c (D)a>b>c
(8)设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图像可能是
第1/4页
(9)设四面体的六条棱的长分别为1,1,1,1
a,且长为a
则a的取值范围是
(A )(B )(C )(D )
(10)设函数f(x)=x²-4x+3,g(x)=3x-2,集合M={x∈R|f(g(x))>0},N={x∈R g (x)g(x)<2},则M∩N为
(A)(1,﹢∞)(B)(0,1)(C)(-1,1)(D)(-∞,1)
(11)首项为1,公比为2的等比数列的前4项和S4=__________________
(12)若f(x)=(x+a)(x-4)为偶函数,则实数a=___________________
(13)设△ABC的内角A,B,C的对边分别为a,b,c,且a=1,b=2,,则sinB=________
(14)设P 为直线与双曲线(a>0,b>0)左支的交点,F1是左焦点,PF1垂直于x轴,则双曲线的离心率e=___________
(15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为____________(用数字作答)
(16)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分。
)
已知{a n}为等差数列,且a1+a3=8,a2+a4=12.
(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分。
)
已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16。
(Ⅰ)求a,b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值。
(18)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分。
)
甲、乙两人轮流投篮,每人每次投一球。
约定甲先投且先投中者获胜,一直到有人获胜或每
第2/4页
第3/4页
人都已投球三次时投篮结束。
设甲每次投篮投中的概率为,乙每次投篮投中的概率为,
且各次投篮互不影响。
(Ⅰ)求乙获胜的概率;
(Ⅱ)求投篮结束时乙只投了2个球的概率。
(19)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分。
) 设函数f (x )=Asin (
)(其中A >0,
>0,-π<
≤π)在x=6
π
处
取得最大值2,其图像与x 轴的相邻两个交点的距离为2
π。
(Ⅰ)求f (x )的解析式;
(Ⅱ)求函数g (x )=的值域。
20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分) 如图(20),在直三棱柱ABC-A 1B 1C 1中,AB=4,AC=BC=3,D 为AB 的中点。
(Ⅰ)求异面直线CC 1和AB 的距离;
(Ⅱ)若AB 1⊥A 1C ,求二面角A 1—CD —B 1的平面角的余弦值。
21. (本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)
如题(21)图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形。
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积。
第4/4页。