2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.6 抛物线 Word版含答案
2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.2 圆的方程 Word版含答案

§8.2圆的方程A组基础题组1.(2021课标Ⅱ,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2B.8C.4D.102.(2021浙江嘉兴一中阶段测试)若P(2,-1)为圆M:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( )A.2x+y-3=0B.x-y-3=0C.x+y-1=0D.2x-y-5=03.(2021浙江湖州德清高级中学月考)已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值是( )A. B.1 C. D.4.(2021黑龙江大庆铁人中学月考,4,5分)已知圆C的方程为x2+y2+2x-2y+1=0,当圆心C到直线kx+y+4=0的距离最大时,k的值为( )A. B. C.- D.-5.(2021河北衡水中学一调,5)假如直线l将圆x2+y2-2x-4y=0平分且l不通过第四象限,则l的斜率的取值范围是( )A.[0,2]B.[0,1]C. D.6.(2022福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.67.(2021浙江六校联考文,10,6分)已知点M(2,1)及圆x2+y2=4,则过M点的圆的切线方程为,若直线ax-y+4=0与该圆相交于A、B两点,且|AB|=2,则a= .8.(2022山东,14,5分)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C 的标准方程为.9.(2021湖南,13,5分)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r= .10.(2021湖北,16,5分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准..方程为;(2)圆C在点B处的切线在x轴上的截距为.11.(2021黑龙江双鸭山一中期中,20)已知圆C的半径为2,圆心在x轴正半轴上,直线3x-4y+4=0与圆C相切.(1)求圆C的方程;(2)若过点(0,-3)的直线l与圆C交于不同的两点A(x1,y1),B(x2,y2),且x1x2+y1y2=3,求三角形AOB的面积. B组提升题组1.(2021宁波十校联考,4,5分)直线x+y-2=0截圆x2+y2=4所得劣弧所对的圆心角的大小为( )A. B. C. D.2.(2021山东烟台诊断)已知P(x,y)是直线kx+y+4=0(k>0)上一动点,PA是圆C:x2+y2-2y=0的一条切线,A是切点,若线段PA长度的最小值为2,则k的值为( )A.3B.C.2D.23.(2022陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.4.(2021诸暨高中毕业班检测,12,6分)已知圆C:(x-1)2+y2=25与直线l:mx+y+m+2=0,若圆C关于直线l对称,则m= ;当m= 时,圆C被直线l截得的弦长最短.5.(2021浙江冲刺卷五,14)过点A(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于M,N两点,若|MN|=8,则l的方程为.6.(2021浙江模拟训练冲刺卷一,14)已知圆的方程为x2+y2+2mx+4y+2m2-3m=0,若过点A(1,-2)的圆的切线有两条,则实数m的取值范围是.7.(2022重庆,13,5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a= .8.(2021宁波高考模拟文,12,6分)已知实数a,b,c满足a+b=2c,则直线l:ax-by+c=0恒过定点,该直线被圆x2+y2=9所截得的弦长的取值范围为.9.(2021山东济南模拟)已知P是直线3x+4y-10=0上的动点,PA,PB是圆x2+y2-2x+4y+4=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.10.(2021湖北华中师大附中期中,14)在平面直角坐标系xOy中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围是.11.(2021河南六市一联)如图所示,在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对相互垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等.试求全部满足条件的点P的坐标.12.(2021重庆一中期中,21)已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在PQ所在直线上,且满足·=0,=-.(1)当点P在y轴上移动时,求点M的轨迹C的方程;(2)给定圆N:x2+y2=2x,过圆心N作直线l,此直线与圆N和(1)中的轨迹C共有四个交点,自上而下顺次记为A,B,C,D,假如线段AB,BC,CD的长按此挨次构成一个等差数列,求直线l的方程.A组基础题组1.C 设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b==-2.再由|PA|=|PB|,得a=1.则P(1,-2),|PA|==5,于是圆P的方程为(x-1)2+(y+2)2=25.令x=0,得y=-2±2,则|MN|=|(-2+2)-(-2-2)|=4.2.B 依题意知圆心M(1,0),MP⊥AB,而k MP==-1,所以k AB=1,由于直线AB过点P(2,-1),所以直线AB的方程为y-(-1)=x-2,即x-y-3=0.故选B.3.C 圆心(-1,-1)到点M的距离的最小值为点(-1,-1)到直线3x+4y-2=0的距离,依据点到直线的距离公式得d==,故点N到点M的距离的最小值为d-1=.故选C.4.D 圆C的方程为(x+1)2+(y-1)2=1,圆心为C(-1,1).又直线kx+y+4=0恒过定点A(0,-4),所以当圆心C到直线kx+y+4=0的距离最大时,直线CA垂直于直线kx+y+4=0,而k CA=-5,则由-5×(-k)=-1,得k=-.5.A 圆的方程x2+y2-2x-4y=0可化为(x-1)2+(y-2)2=5,其圆心坐标为(1,2),经过圆心和原点的直线的斜率为2,由题意知直线l过圆心且不过第四象限,则斜率k的取值范围是0≤k≤2.6.D 设Q(cosθ,sinθ),圆心为M,由已知得M(0,6),则|MQ|= ===≤5当sinθ=-时取等号,故|PQ|max =5+=6.7.答案x=2或3x+4y-10=0;±解析若过M点的圆的切线斜率不存在,则切线方程为x=2,阅历证满足条件.若切线斜率存在,可设切线方程为y=k(x-2)+1,由圆心到切线的距离等于半径得=2,解得k=-,故切线方程为y=-(x-2)+1,即3x+4y-10=0.综上,过M点的圆的切线方程为x=2或3x+4y-10=0.由=得a=±.8.答案(x-2)2+(y-1)2=4解析由于圆心在直线x-2y=0上,且圆C与y轴相切,所以可设圆心坐标为(2a,a),则(2a)2=a2+()2,解得a=±1.又圆C与y轴的正半轴相切,所以a=1,故圆C的标准方程为(x-2)2+(y-1)2=4.9.答案 2解析过O作OC⊥AB于C,则OC==1,在Rt△AOC中,∠AOC=60°,则r=OA==2.10.答案(1)(x-1)2+(y-)2=2(2)--1解析(1)记AB的中点为D,在Rt△BDC中,易得圆C的半径r=BC=.因此圆心C的坐标为(1,),所以圆C的标准方程为(x-1)2+(y-)2=2.(2)由于点B的坐标为(0,+1),C的坐标为(1,),所以直线BC的斜率为-1,所以所求切线的斜率为1.由点斜式得切线方程为y=x++1,故切线在x轴上的截距为--1.11.解析(1)设圆心C的坐标为(a,0)(a>0),则圆C的方程为(x-a)2+y2=4.由于圆C与直线3x-4y+4=0相切,所以=2,解得a=2或a=-(舍),所以圆C的方程为(x-2)2+y2=4.(2)依题意知直线l的斜率存在,设直线l的方程为y=kx-3,由得(1+k2)x2-(4+6k)x+9=0,∵l与圆C相交于不同的两点A(x1,y1),B(x2,y2),∴Δ=[-(4+6k)]2-4(1+k2)×9>0,且x1+x2=,x1x2=,∴y1y2=(kx1-3)(kx2-3)=k2·x1x2-3k(x1+x2)+9=-+9,又∵x1x2+y1y2=3,∴+-+9=3,整理得k2+4k-5=0,解得k=1或k=-5(不满足Δ>0,舍去). ∴直线l的方程为y=x-3.∴圆心C到l的距离d==,易得|AB|=2=,又△AOB的边AB上的高h==,所以S△AOB=|AB|·h=××=.B组提升题组1.C 以直线x+y-2=0与圆x2+y2=4的两个交点及圆心为顶点的三角形为等腰三角形.圆x2+y2=4的圆心为原点,由点到直线的距离公式,得原点到直线x+y-2=0的距离为=,所以直线被圆截得的弦长为2=2,所以该三角形为等边三角形,所以劣弧所对的圆心角的大小为.故选C.2.D 圆C:x2+(y-1)2=1,圆心C(0,1),半径r=1,由题意得=,解得k=2或k=-2(舍去),故选D.3.答案x2+(y-1)2=1解析点(1,0)关于直线y=x对称的点(0,1)为圆心,又半径r=1,所以圆C的标准方程为x2+(y-1)2=1.4.答案-1;1解析当圆C关于l对称时,圆心(1,0)在直线mx+y+m+2=0上,得m=-1.直线l:m(x+1)+y+2=0恒过圆C内的点M(-1,-2),当圆心到直线l的距离最大,即MC⊥l时,圆C被直线l截得的弦长最短,k MC==1,由(-m)×1=-1,得m=1.5.答案x=-4或5x+12y+20=0解析当直线l的斜率不存在时,其方程为x=-4,可得交点坐标为(-4,6),(-4,-2),此时|MN|=8,符合题意. 当直线l的斜率存在时,设其方程为y=k(x+4),圆的标准方程为(x+1)2+(y-2)2=25,则圆心到直线l的距离d=,由|MN|=2=8,得25-=16,解得k=-,故l的方程为5x+12y+20=0.综上,直线l的方程为x=-4或5x+12y+20=0.6.答案解析将圆的方程配方得(x+m)2+(y+2)2=-m2+3m+4,则有-m2+3m+4>0;由题意知点A(1,-2)在圆外,则(1+m)2+(-2+2)2>-m2+3m+4,即2m2-m-3>0.由得故实数m的取值范围是<m<4.7.答案4±解析易知△ABC是边长为2的等边三角形,故圆心C(1,a)到直线AB的距离为,即=,解得a=4±.经检验均符合题意,故a=4±.8.答案;[,6]解析依题意,c=,故ax-by+c=0⇔ax-by+=0,即(2x+1)a-(2y-1)b=0,可知直线l过定点.圆心到直线的距离d=,故弦长为2≥2=,当且仅当a=b时等号成立.又弦长≤6,故弦长的取值范围为[,6].9.答案 2解析圆的标准方程为(x-1)2+(y+2)2=1,其圆心为C(1,-2),半径为1,且直线与圆相离,如图所示,四边形PACB的面积等于2S△PAC,而S△PAC=|PA|·|AC|=|PA|=,又|PC|min==3,∴(S△PAC)min==,故四边形PACB面积的最小值为2. 10.答案(3-2,3-2]∪[3+2,3+2)解析圆C的标准方程为(x-m)2+(y-2)2=32,则圆心C(m,2),半径r=4,S△ABC=r2sin∠ACB=16sin∠ACB,∴当∠ACB=90°时,S△ABC取得最大值16,此时△ABC为等腰直角三角形,∴AB=8,则C到AB的距离为4,∴4≤PC<4,即4≤<4,∴16≤(m-3)2+4<32,即12≤(m-3)2<28,∴解得3-2<m≤3-2或3+2≤m<3+2.故实数m的取值范围是(3-2,3-2]∪[3+2,3+2).11.解析(1)由于直线x=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(x-4),圆C1的圆心到直线l的距离为d,由于直线l被圆C1截得的弦长为2,所以d==1.由点到直线的距离公式得d=,从而=1,化简得k(24k+7)=0,所以k=0或k=-,所以直线l的方程为y=0或7x+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(x-a),k≠0,则直线l2的方程为y-b=-(x-a).由于圆C1和C2的半径相等,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即=,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,由于k的取值有无穷多个,所以或解得或这样点P的坐标为或.经检验,上述坐标均满足题目条件.12.解析(1)设M(x,y),P(0,y'),Q(x',0)(x'>0),∵·=0,=-,∴(3,y')·(x,y-y')=0,(x,y-y')=-(x'-x,-y),∴3x+y'y-y'2=0,x'=x,y'=-y,将y'=-y代入3x+y'y-y'2=0,整理得y2=4x,又由x'>0得x>0,∴点M的轨迹C的方程为y2=4x(x>0).(2)圆N:(x-1)2+y2=1,直径为2,圆心为N(1,0),由题意设l的方程为x=my+1,将x=my+1代入y2=4x(x>0),得y2-4my-4=0,设A(x1,y1),D(x2,y2),则y1+y2=4m,y1y2=-4,则|AD|=·=4(m2+1),∵线段AB,BC,CD的长按此挨次构成一个等差数列,∴2|BC|=|AB|+|CD|=|AD|-|BC|,∴|AD|=3|BC|,又|AD|=4(m2+1),|BC|=圆N的直径=2,∴4(m2+1)=6,解得m=±,∴直线l的方程为x-y-=0或x+y-=0.。
2020-2021学年浙江省高考数学二模试卷(理)及答案解析

2020-2021学年浙江省⾼考数学⼆模试卷(理)及答案解析浙江省⾼考数学⼆模试卷(理科)⼀、选择题(本⼤题共8⼩题,每⼩题5分,共40分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(?U B)=()A.{2} B.{2,3} C.{3} D.{1,3}2.设l,m是两条不同的直线,α是⼀个平⾯,则下列命题正确的是()A.若l⊥m,m?α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m?α,则l∥m D.若l∥α,m∥α,则l∥m3.“”是“tanθ=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数(其中a∈R)的图象不可能是()A.B.C.D.5.已知{a n}是等差数列,公差为2,{b n}是等⽐数列,公⽐为2.若{b n}的前n项和为,则a1+b1等于()A.1 B.2 C.3 D.46.如图,⼩于90°的⼆⾯⾓α﹣l﹣β中O∈l,A,B∈α,且∠AOB为钝⾓,∠A′OB′是∠AOB在β内的射影,则下列结论错误的是()A.∠A′OB′为钝⾓ B.∠A′OB′>∠AOBC.∠AOB+∠AOA′<πD.∠B′OB+∠BOA+∠AOA′>π7.如图,双曲线﹣=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点p是双曲线右⽀上⼀点,PF1交左⽀于点Q,交渐近线y=x于点R,M是PQ的中点,若RF2⊥PF1,且AM ⊥PF1,则双曲线的离⼼率是()A.B.C.2 D.8.已知0<x<y,2<x2,则下列不正确的是()A.sinx2<sin(﹣y)B.sinx2>sin(2﹣y)C.sin(2﹣x2)<siny D.sinx2<cos(y﹣1)⼆、填空题(本⼤题共7⼩题,多空题每题6分,单空题每题4分,共36分)9.已知φ∈[0,π),函数f(x)=cos2x+cos(x+φ)是偶函数,则φ= ,f(x)的最⼩值为.10.已知函数,则= ,⽅程f(x)=2的解为.11.某⼏何体的三视图如图所⽰(单位:cm),则该⼏何体的体积为cm3,表⾯积为cm2.12.已知x,y∈R且满⾜不等式组,当k=1时,不等式组所表⽰的平⾯区域的⾯积为,若⽬标函数z=3x+y的最⼤值为7,则k的值为.13.已知a>0,f(x)=acosπx+(1﹣x)sinπx,x∈[0,2],则f(x)所有的零点之和为.14.设,已知x,y∈R,m+n=6,则F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最⼩值为.15.如图,设正△BCD的外接圆O的半径为R(<R<),点A在BD下⽅的圆弧上,则(﹣﹣)?的最⼩值为.三、解答题(本⼤题共5⼩题,共74分,解答应写出⽂字说明、证明过程或演算步骤)16.在△ABC中,设边a,b,c所对的⾓为A,B,C,且A,B,C都不是直⾓,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC⾯积的最⼤值.17.如图,长⽅体ABCD﹣A1B1C1D1中,AB=2,BC=CC1=1,点P是CD上的⼀点,PC=λPD.(Ⅰ)若A1C⊥平⾯PBC1,求λ的值;(Ⅱ)设λ1=1,λ2=3所对应的点P为P1,P2,⼆⾯⾓P1﹣BC1﹣P2的⼤⼩为θ,求cosθ的值.18.已知m∈R,函数f(x)=﹣x2+(3﹣2m)x+2+m.(1)若0<m≤,求|f(x)|在[﹣1,1]上的最⼤值g(m);(2)对任意的m∈(0,1],若f(x)在[0,m]上的最⼤值为h(m),求h(m)的最⼤值.19.已知椭圆C1:=1,直线l1:y=kx+m(m>0)与圆C2:(x﹣1)2+y2=1相切且与椭圆C1交于A,B两点.(Ⅰ)若线段AB中点的横坐标为,求m的值;(Ⅱ)过原点O作l1的平⾏线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最⼩值.20.已知点列P n(x n,)与A n(a n,0)满⾜x n+1>x n,⊥,且||=||,其中n∈N*,x1=1.(I)求x n+1与x n的关系式;(Ⅱ)求证:n2<++…+≤4n2.参考答案与试题解析⼀、选择题(本⼤题共8⼩题,每⼩题5分,共40分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(?U B)=()A.{2} B.{2,3} C.{3} D.{1,3}【考点】交、并、补集的混合运算.【分析】由题意全集U={1,2,3,4,5},B={2,5},可以求出集合C U B,然后根据交集的定义和运算法则进⾏计算.【解答】解:∵U={1,2,3,4,5},B={2,5},∴C U B={1,3,4}∵A={3,1,2}∴A∩(C U B)={1,3}故选D.2.设l,m是两条不同的直线,α是⼀个平⾯,则下列命题正确的是()A.若l⊥m,m?α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m?α,则l∥m D.若l∥α,m∥α,则l∥m【考点】直线与平⾯平⾏的判定.【分析】根据题意,依次分析选项:A,根据线⾯垂直的判定定理判断.C:根据线⾯平⾏的判定定理判断.D:由线线的位置关系判断.B:由线⾯垂直的性质定理判断;综合可得答案.【解答】解:A,根据线⾯垂直的判定定理,要垂直平⾯内两条相交直线才⾏,不正确;C:l∥α,m?α,则l∥m或两线异⾯,故不正确.D:平⾏于同⼀平⾯的两直线可能平⾏,异⾯,相交,不正确.B:由线⾯垂直的性质可知:平⾏线中的⼀条垂直于这个平⾯则另⼀条也垂直这个平⾯.故正确.故选B3.“”是“tanθ=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由tanθ=1,解得θ=(k∈Z),即可判断出结论.【解答】解:由tanθ=1,解得θ=(k∈Z),∴“”是“tanθ=1”的充分不必要条件.故选:A.4.函数(其中a∈R)的图象不可能是()A.B.C.D.【考点】函数的图象.【分析】分三种情况讨论,根据函数的单调性和基本不等式即可判断.【解答】解:当a=0时,f(x)=|x|,且x≠0,故A符合,当x>0时,且a>0时,f(x)=x+≥2,当x<0时,且a>0时,f(x)=﹣x+在(﹣∞,0)上为减函数,故B符合,当x<0时,且a<0时,f(x)=﹣x+≥2=2,当x>0时,且a<0时,f(x)=x+在(0,+∞)上为增函数,故D符合,故选:C.5.已知{a n}是等差数列,公差为2,{b n}是等⽐数列,公⽐为2.若{b n}的前n项和为,则a1+b1等于()A.1 B.2 C.3 D.4【考点】等差数列的通项公式.【分析】由已知写出等差数列和等⽐数列的通项公式,得到,再写出等⽐数列的前n项和,列等式求得a1+b1的值.【解答】解:由题意可得a n=a1+2(n﹣1),,∴=,{b n}的前n项和,由,得,∴a1+b1=2.故选:B.6.如图,⼩于90°的⼆⾯⾓α﹣l﹣β中O∈l,A,B∈α,且∠AOB为钝⾓,∠A′OB′是∠AOB在β内的射影,则下列结论错误的是()A.∠A′OB′为钝⾓ B.∠A′OB′>∠AOBC.∠AOB+∠AOA′<πD.∠B′OB+∠BOA+∠AOA′>π【考点】与⼆⾯⾓有关的⽴体⼏何综合题.【分析】由题意画出图形,由已知⼆⾯⾓α﹣l﹣β⼩于90°,∠AOB为钝⾓,结合余弦定理可得∠A′OB′是钝⾓,由此可得答案.【解答】解:如图,在α内射线OA上取点A,过A作交线l的平⾏线AB交射线OB于点B,过A作AA′⊥β,垂⾜为A′,过B作BB′垂直于β,垂⾜为B′,连接A′B′,则有AB∥A′B′,且AB=A′B′,设OA=a,OB=b,AB=c,则OA′<a,OB′<b,∵∠AOB为钝⾓,∴a2+b2<c2,则(OA′)2+(OB′)2<a2+b2<c2=(A′B′)2,在△A′OB′中,由余弦定理可得∠A′OB′>∠AOB为钝⾓.∴∠AOB+∠AOA′>π.∴错误的选项是C,故选:C.7.如图,双曲线﹣=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点p是双曲线右⽀上⼀点,PF1交左⽀于点Q,交渐近线y=x于点R,M是PQ的中点,若RF2⊥PF1,且AM ⊥PF1,则双曲线的离⼼率是()A.B.C.2 D.【考点】双曲线的简单性质.【分析】设PF1的⽅程为y=k(x+c),k>0,联⽴渐近线⽅程求得R的坐标,代⼊双曲线的⽅程,运⽤韦达定理和中点坐标公式,可得M的坐标,再由两直线垂直的条件:斜率之积为﹣1,求得k=,代⼊化简整理,再由离⼼率公式计算即可得到所求值.【解答】解:设PF1的⽅程为y=k(x+c),k>0,联⽴渐近线⽅程y=x,可得R(,),由直线y=k(x+c)代⼊双曲线﹣=1,可得(b2﹣a2k2)x2﹣2ca2k2x﹣a2c2k2﹣a2b2=0,设P(x1,y1),Q(x2,y2),可得x1+x2=,即有中点M(,),由A(a,0),F2(c,0),RF2⊥PF1,可得==﹣,即有bk2+2ak﹣b=0,解得k=(负的舍去),由AM⊥PF1,可得k AM==﹣,即为(c3+a3)k2=a(c2﹣a2),即有(c3+a3)(c﹣a)2=ab2(c2﹣a2)=a(c2﹣a2)2,化为c=2a,即e==2.故选:C.8.已知0<x<y,2<x2,则下列不正确的是()A.sinx2<sin(﹣y)B.sinx2>sin(2﹣y)C.sin(2﹣x2)<siny D.sinx2<cos(y﹣1)【考点】正弦函数的图象;基本不等式.【分析】利⽤基本不等式的性质和正弦函数的单调性得出答案.【解答】解:∵0<x<y,2<x2+y<,∴1<y,∴x2<﹣y<,∴sinx2<sin().故A正确.∵2<x2,∴x2<,y<,∴>>x2>2﹣y,∴sinx2>sin(2﹣y),故B正确.∵2<x2,∴x2<<=<.∴sinx2<sin()=cos(y﹣1).故D正确.故选:C.⼆、填空题(本⼤题共7⼩题,多空题每题6分,单空题每题4分,共36分)9.已知φ∈[0,π),函数f(x)=cos2x+cos(x+φ)是偶函数,则φ= 0 ,f(x)的最⼩值为.【考点】三⾓函数中的恒等变换应⽤.【分析】由函数为偶函数求得φ值,得到f(x)=cos2x+cosx,展开⼆倍⾓余弦,然后利⽤配⽅法求得最值.【解答】解:∵函数f(x)=cos2x+cos(x+φ)是偶函数,∴f(﹣x)﹣f(x)=cos(﹣2x)+cos(﹣x+φ)﹣cos2x﹣cos(x+φ)=0恒成⽴,即cos(﹣x+φ)﹣cos(x+φ)=﹣2sinφ?sin(﹣x)=2sinφ?sinx=0恒成⽴,∵φ∈[0,π),∴φ=0;f(x)=cos2x+cosx=2cos2x+cosx﹣1=.∴f(x)的最⼩值为.故答案为:0,.10.已知函数,则= 0 ,⽅程f(x)=2的解为﹣2或4 .【考点】函数的值.【分析】由,利⽤分段函数的性质能求出的值;由⽅程f (x)=2,得到当x>0时,log2x=2;当x≤0时,x2+x=2.由此能求出结果.【解答】解:∵,∴f()==﹣1,∴=f(﹣1)=(﹣1)2+(﹣1)=0,∵⽅程f(x)=2,∴当x>0时,log2x=2,解得x=4;当x≤0时,x2+x=2,解得x=﹣1或x=1(舍).∴x=﹣2或x=4.故答案为:0;﹣2或4.11.某⼏何体的三视图如图所⽰(单位:cm),则该⼏何体的体积为cm3,表⾯积为cm2.【考点】由三视图求⾯积、体积.【分析】由三视图可知:该⼏何体是由⼀个半球去掉后得到的⼏何体.【解答】解:由三视图可知:该⼏何体是由⼀个半球去掉后得到的⼏何体.∴该⼏何体的体积==cm3,表⾯积=++=cm2.故答案分别为:;.12.已知x,y∈R且满⾜不等式组,当k=1时,不等式组所表⽰的平⾯区域的⾯积为,若⽬标函数z=3x+y的最⼤值为7,则k的值为 2 .【考点】简单线性规划.【分析】作出不等式组对应的平⾯区域,根据z的⼏何意义,利⽤数形结合即可得到k的值.然后即可得到结论.【解答】解:若k=1,则不等式组对应的平⾯区域如图:则A(1,﹣1),B(1,3),由得,即C(,),不等式组所表⽰的平⾯区域的⾯积为S=×4×(﹣1)=2×=,由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,则由图象可知当直线y=﹣3x+z经过点C时,直线y=﹣3x+z的截距最⼤,此时z最⼤,为3x+y=7由,解得,即A(2,1),此时A在kx﹣y﹣k﹣1=0上,则2k﹣1﹣k﹣1=0,得k=2.故答案为:;2;13.已知a>0,f(x)=acosπx+(1﹣x)sinπx,x∈[0,2],则f(x)所有的零点之和为 2 .【考点】函数零点的判定定理.【分析】x=1,,时,f(x)≠0,因此都不是函数f(x)的零点.由f(x)=acosπx+(1﹣x)sinπx=0,化为:tanπx=,(x≠1).分别作出函数y=tanπx,y=,(x≠1)的图象,则此两函数的图象都关于(1,0)成中⼼对称,即可得出.【解答】解:x=1时,f(1)=acosπ=﹣a<0,因此1不是函数f(x)的零点.同理x=,,也不是函数f(x)的零点.由f(x)=acosπx+(1﹣x)sinπx=0,化为:tanπx=,(x≠1,,).作出函数y=tanπx,y=,(x≠1)的图象,则此两函数的图象都关于(1,0)成中⼼对称,由函数的单调性与对称性可得:x∈[0,2],两函数y=tanπx,y=,(x≠1)的图象有且仅有两个交点,并且关于(1,0)成中⼼对称,不妨设交点的横坐标分别为x1,x2,∴x1+x2=2.故答案为:2.14.设,已知x,y∈R,m+n=6,则F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最⼩值为.【考点】函数的最值及其⼏何意义.【分析】由题意可得F≥|x2﹣4y+m|,F≥|y2﹣2x+n|,相加,由绝对值不等式的性质和配⽅⽅法,可得最⼩值.【解答】解:F=max{|x2﹣4y+m|,|y2﹣2x+n|},可得F≥|x2﹣4y+m|,F≥|y2﹣2x+n|,即有2F≥|x2﹣4y+m|+|y2﹣2x+n|≥|x2﹣4y+m+y2﹣2x+n|=|x2﹣2x+y2﹣4y+6|=|(x﹣1)2+(y﹣2)2+1|≥1,即有2F≥1,即F≥,可得x=1,y=2时,F取得最⼩值.故答案为:.15.如图,设正△BCD的外接圆O的半径为R(<R<),点A在BD下⽅的圆弧上,则(﹣﹣)?的最⼩值为﹣.【考点】平⾯向量数量积的运算.【分析】先根据三⾓形为正三⾓形,再设∠CAO=θ,得到AC=2Rcosθ,根据向量的数量的运算得到(﹣﹣)?得到2R2cos2θ﹣2Rcosθ,再构造函数y=2t2﹣2t=2(t﹣)2﹣,即可求出最值.【解答】解:∵△BCD为正三⾓形,∴∠CAD=∠CAB=∠DAB=∠CBD=60°,设∠CAO=θ,∴AC=2Rcosθ,∴(﹣﹣)?=?﹣?﹣=2R2cos2θ﹣×2Rcosθ﹣×2Rcosθ=2R2cos2θ﹣2Rcosθ,设Rcosθ=t,∵<R<,0°≤θ<60°,即<cosθ≤1,∴<t<则y=2t2﹣2t=2(t﹣)2﹣∴当t=,y有最⼩值,即为﹣,故答案为:﹣.三、解答题(本⼤题共5⼩题,共74分,解答应写出⽂字说明、证明过程或演算步骤)16.在△ABC中,设边a,b,c所对的⾓为A,B,C,且A,B,C都不是直⾓,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC⾯积的最⼤值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知利⽤余弦定理化简已知等式可得,⼜△ABC不是直⾓三⾓形,解得bc=4,⼜b+c=5,联⽴即可解得b,c的值.(Ⅱ)由余弦定理,基本不等式可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,解得,可求,利⽤三⾓形⾯积公式即可得解三⾓形⾯积的最⼤值.【解答】(本题满分14分)解:(Ⅰ)∵,∴,∴,∵△ABC不是直⾓三⾓形,∴bc=4,⼜∵b+c=5,∴解得或…(Ⅱ)∵,由余弦定理可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,∴,∴,所以.∴△ABC⾯积的最⼤值是,当时取到…17.如图,长⽅体ABCD﹣A1B1C1D1中,AB=2,BC=CC1=1,点P是CD上的⼀点,PC=λPD.(Ⅰ)若A1C⊥平⾯PBC1,求λ的值;(Ⅱ)设λ1=1,λ2=3所对应的点P为P1,P2,⼆⾯⾓P1﹣BC1﹣P2的⼤⼩为θ,求cosθ的值.【考点】⼆⾯⾓的平⾯⾓及求法;直线与平⾯垂直的判定.【分析】(Ⅰ)法⼀:若A1C⊥PB,则A1C⊥平⾯PBC1,只要AC⊥PB即可,由此能求出结果.法⼆:以D为原点,DA,DC,DD1所在直线为x,y,z轴,建⽴空间直⾓坐标系O﹣xyz,利⽤向量法能求出结果.(Ⅱ)过C作CH⊥BC1交BC1于H,连接P1H,P2H,则∠P1HP2就是所求⼆⾯⾓的⼀个平⾯⾓θ,由此能求出cosθ.【解答】解:(Ⅰ)解法⼀∵A1C⊥BC1若A1C⊥PB,则A1C⊥平⾯PBC1,只要AC⊥PB即可,在矩形ABCD中,,解得,;解法⼆:以D为原点,DA,DC,DD1所在直线为x,y,z轴,建⽴如图空间直⾓坐标系O﹣xyz,B(1,2,0),C1(0,2,1),A1(1,0,1),C(0,2,0),设,若A1C⊥平⾯PBC1,=(﹣1,2,﹣1),=(﹣1,0,1),=(﹣1,﹣2,0),则,解得.(Ⅱ)过C作CH⊥BC1交BC1于H,连接P1H,P2H,∵长⽅体ABCD﹣A1B1C1D1中,AB=2,BC=CC1=1,∴BH=C1H,P1B=P1C1,P2B=P2C1,∴P2H⊥BC1,P1H⊥BC1,则∠P1HP2就是所求⼆⾯⾓的⼀个平⾯⾓θ∵P1C=1,,∴,tanα=tan(∠P2HC﹣∠P1HC)=,所求余弦值cosθ=.。
2021届浙江省新高考测评第三模拟考试数学试题(解析版)

可得 ,
解得 ,所以椭圆 的长轴长为4.
故答案为: .
12.在生物学研究过程中,常用高倍显微镜观察生物体细胞.已知某研究小组利用高倍显微镜观察某叶片的组织细胞,获得显微镜下局部的叶片细胞图片,如图所示,为了方便研究,现在利用甲、乙等四种不同的试剂对 、 、 、 、 、 这六个细胞进行染色,其中相邻的细胞不能用同种试剂染色,且甲试剂不能对 细胞染色,则共有______种不同的染色方法(用数字作答).
则 , ,
因为 ,
所以 , ,
故选:B.
9.已知数列 满足 , ,则 ()
A. B. C.35D.
【答案】A
【分析】对递推公式进行变形得 ,应用该递推关系可以得到该数列的周期,利用周期性进行求解即可.
【详解】因为 ,所以 ,
因此 ,同理 , , ,则 ,因此 , , , ,其中 ,则 ,则 故选:A
2021届浙江省新高考测评第三模拟考试数学试题
一、单选题
1.已知全集 ,集合 , ,则 ()
A. B. C. D.
【答案】B
【分析】首先求解集合 ,再求集合的混合运算.
【详解】由题可得 ,则 ,因此 .
故选:B.
2.已知复数 满足 ,则复数 (其中 为虚数单位)的模为()
A. B. C.1D.2
【答案】C
【点睛】关键点睛:求解本题的关键是对 的化简,进而得到数列 的周期为4,从而得到 即可求得结果.
10.已知定义在 上的函数 满足:①对任意的 , , ;②当 时, ;③ .若对于任意的两个正实数 , ,不等式 恒成立,则实数 的最小值是()
A. B. C. D.
【答案】C
2021版《3年高考2年模拟》高考数学(浙江版理)检测:6.4 基本不等式 Word版含答案

§6.4基本不等式A组基础题组1.若圆(x-1)2+(y+2)2=1上总存在两点关于直线ax-by-2=0(a>0,b>0)对称,则+的最小值为( )A.2B.+C.D.2+2.(2021金丽衢十二校一联,10,5分)设实数a,b,c满足若的最大值和最小值分别为M,m,则M+m的值为( )A.9B.C.D.193.(2022超级中学原创猜测卷六,13)已知正数x,y满足x2+4y2+x+2y≤2-4xy,则+的最小值为.4.(2021上海文)设常数a>0,若9x+≥a+1对一切正实数x 成立,则a 的取值范围为.5.(2021杭州一模,10,6分)设函数f(x)=x2-(k+1)x+2(k∈R),则f= ;若当x>0时,f(x)≥0恒成立,则k的取值范围为.6.(2021台州一模,10,6分)设正实数a,b满足a+2b=2,则ab的最大值为;a2+b2的最小值为.7.(2021浙江丽水期末统测,11,6分)设0<a<1,则+的最小值为,此时a= .8.(2021四川,13,5分)已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a= .9.(2021宁波高三模拟冲刺,14,4分)设正数a,b,c满足++≤,则= .10.(2021衢州二模,13,4分)已知x,y满足方程x 2-y-1=0,当x>时,则m=+的最小值为.11.(2021浙江冲刺卷二,16)对一切实数x,不等式4x2+a|x-1|+5≥8x恒成立,则实数a的取值范围是.12.(2022领航高考冲刺卷二文,13,4分)若实数a,b满足a2+ab=1,则3a2+b2的最小值为.B组提升题组1.(2021福建文,5,5分)若直线+=1(a>0,b>0)过点(1,1),则a+b的最小值等于( )A.2B.3C.4D.52.(2021湖南文,7,5分)若实数a,b满足+=,则ab的最小值为( )A. B.2 C.2 D.43.(2021陕西,9,5分)设f(x)=lnx,0<a<b,若p=f(),q=f,r=(f(a)+f(b)),则下列关系式中正确的是( )A.q=r<pB.q=r>pC.p=r<qD.p=r>q4.(2021福建质量检测)若直线ax+by-1=0(a>0,b>0)过曲线y=1+sinπx(0<x<2)的对称中心,则+的最小值为( )A.+1B.4C.3+2D.65.(2021浙江建人高复学校,9,5分)若正实数x,y满足+=1,则x+y的最小值是( )A.15B.16C.18D.196.(2021浙江杭州二中新课标模拟测试)关于x的不等式+≥4在[1,2]上恒成立,则实数a的取值范围是( )A. B. C. D.7.(2021天津文,12)已知a>0,b>0,ab=8,则当a的值为时,log2a·log2(2b)取得最大值.8.(2021杭州重点中学期末,12,6分)设a,b为正实数,且a+b-2a2b2=4,则+的最小值为,此时ab的值为.9.(2022江苏,14,5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.10.(2021温州一模,13,4分)已知a,b∈R,若a2+b2-ab=2,则ab的取值范围是.11.(2021浙江一级重点中学5月联考,11,6分)已知正数x,y满足+=1,则y的取值范围是,2x+y的最小值为.A组基础题组1.B 由题意可知,圆心(1,-2)在直线ax-by-2=0(a>0,b>0)上,所以a+2b-2=0(a>0,b>0),即+b=1(a>0,b>0),所以+==++≥+2=+,当且仅当=,即a=2-2,b=2-时取等号,即+的最小值为+,故选B.2.D 由b2=ac得c=,由5b≥2(a+c)=2,又a>0,所以2-5+2≤0,解得≤≤2,令x=1+,x∈,====4x+,y=4x+在x∈内递增,所以最大值M和最小值m分别为,,∴M+m==19.3.答案3+2解析由题意得(x+2y)2+(x+2y)-2≤0,且x>0,y>0,所以0<x+2y≤1,所以+=·1≥·(x+2y)=3++≥3+2,当且仅当即时,+取得最小值3+2.4.答案解析常数a>0,若9x+≥a+1对一切正实数x成立,则≥a+1.∴9x+≥6a,当且仅当9x=,即x=时,等号成立.故6a≥a+1,解得a≥.5.答案--+;(-∞,2-1]解析f=-(k+1)×+2=--+.当x>0时,f(x)≥0恒成立,等价于当x>0时,k+1≤恒成立.∵x>0,∴=x+≥2(当且仅当x=时,“=”成立),故k ≤2-1.6.答案;解析由于a+2b=2≥2,所以ab≤,即ab的最大值为;a2+b2表示原点到线段a+2b=2(a>0,b>0)上的点的距离的平方,结合图形知最小值为=,即a2+b2的最小值为.7.答案9;解析+=[a+(1-a)]=5++≥5+2=9,当且仅当=,即a=时,等号成立.8.答案36解析∵x>0,a>0,∴f(x)=4x+≥2=4,当且仅当4x=时等号成立,此时a=4x2,由于x=3时函数取得最小值,所以a=4×9=36.9.答案解析a,b,c均为正数,则(a+b+c)=14++++++≥14+2+2+2=36,当且仅当a∶b∶c=1∶2∶3时等号成立,又++≤,所以++=,因此==.10.答案8解析m=+=+=6++=6++.又t===(x-1)-+2,x-1∈(-1,+∞),而f(s)=s-+2在(-1,+∞)内递增,所以t>0,所以m=6+t+≥8,当且仅当t=1,即x=2时取到最小值.11.答案[-4,+∞)解析设x-1=t,转化为对一切实数t,不等式4t2+a|t|+1≥0恒成立.当t=0时,不等式4t2+a|t|+1≥0恒成立,此时a∈R.当t≠0时,有-a≤=4|t|+恒成立.当t≠0时,函数f(t)=4|t|+的最小值为4,故有-a≤4,即a≥-4.综合有a≥-4.12.答案 2解析由题意可知,a不为0,由a2+ab=1得b=-a,所以3a2+b2=3a2+=4a2+-2≥2-2=2,当且仅当4a2=,即a2=时取“=”,所以3a2+b2的最小值为2.B组提升题组1.C 由于直线+=1(a>0,b>0)过点(1,1),所以+=1.所以a+b=(a+b)·=2++≥2+2=4,当且仅当a=b=2时取“=”,故选C.2.C 依题意知a>0,b>0,则+≥2=,当且仅当=,即b=2a时,“=”成立.由于+=,所以≥,即ab≥2,所以ab的最小值为2,故选C.3.C 由题意得p=ln,q=ln,r=(lna+lnb)=ln=p,∵0<a<b,∴>,∴ln>ln,∴p=r<q.4.C 留意到曲线y=1+sinπx(0<x<2)的对称中心是点(1,1),于是有a+b=1,+=(a+b)=3++≥3+2,当且仅当=,即b=a=(-1)时取等号,因此+的最小值是3+2,故选C.5.A x+y=(x+1)+y-1=[(x+1)+y]·-1=9++≥9+2=15,当且仅当=,即x=3,y=12时等号成立.6.A 由题意可知a>0,由x∈[1,2],则+≥4可化为a≤,又==++,令t=x-,则t∈,又f(t)=t++在t∈内递增,所以f(t)∈,所以a∈.7.答案 4解析由已知条件得b=,令f(a)=log2a·log2(2b),则f(a)=log2a·log2=log2a(log216-log2a)=log2a(4-log2a)=-(log2a)2+4log2a=-(log2a-2)2+4,当log2a=2,即a=4时,f(a)取得最大值.8.答案4;解析由a+b-2a2b2=4得a+b=2a2b2+4.所以+===2ab+≥2=4,当且仅当2ab=,即ab=时等号成立.9.答案解析∵sinA+sinB=2sinC,由正弦定理得a+b=2c,∴cosC====≥=,当且仅当a=b时等号成立,故cosC的最小值为.10.答案解析2+ab=a2+b2≥2|ab|,当ab≥0时,解得ab≤2;当ab<0时,解得ab≥-.综上可得ab∈.11.答案(4,+∞);20解析+=1可化为4x+2y+10=xy,明显y≠4,所以x=>0,且y为正数,解得y>4.由4x+2y+10=xy=×(2x)y≤,得(2x+y)2-2(2x+y)-10≥0,解得2x+y≥20(负值舍去).。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:1.2 命题与充要条件 Word版含答案

§1.2命题与充要条件A组基础题组1.(2021浙江延安中学段考)命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是( )A.若a≠b≠0,a,b∈R,则a2+b2=0B.若a=b≠0,a,b∈R,则a2+b2≠0C.若a≠0且b≠0,a,b∈R,则a2+b2≠0D.若a≠0或b≠0,a,b∈R,则a2+b2≠02.(2021湖南,2,5分)设A,B是两个集合,则“A∩B=A”是“A⊆B”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021四川文,4,5分)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(2021浙江文,3,5分)设a,b是实数,则“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D .既不充分也不必要条件5.(2021杭州学军中学第五次月考,1,5分)>1的一个充分不必要条件是( )A.x>yB.x>y>0C.x<yD.y<x<06.(2021桐乡一中等四校联考,3,5分)设a,b为非零实数,命题甲:ab>b2,命题乙:<<0,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2022浙江新高考争辩联盟一联,2,5分)已知m>0且m≠1,则log m n>0是(1-m)(1-n)>0的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(2022广东文,7,5分)在△ABC中,角A,B,C所对的边分别为a,b,c,则“a≤b”是“sinA≤sinB”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件9.(2021青岛诊断)“0≤m≤1”是“函数f(x)=sinx+m-1有零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件B组提升题组1.(2021安徽,3,5分)设p:1<x<2,q:2x>1,则p是q成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(2021湖北文,5,5分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则( )A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件3.(2021浙江金华一中期中检测)在△ABC中,“·>0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2021四川,8,5分)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(2021金华十校一模,2,5分)若a,b∈R,则>的一个充要条件是( )A.a>bB.ab(a-b)<0C.a<b<0D.a<b6.(2021金华一中全真模拟考,1,5分)设a,b∈R,则“0<a<1且0<b<1”是“ab+1>a+b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2021宁波一模,2,5分)在△ABC中,“A>”是“sinA>”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件8.(2022领航高考冲刺卷二,3,5分)已知p:x>k,q:≥1,若p是q的必要不充分条件,则实数k的取值范围是( )A.(2,+∞)B.[2,+∞)C.(-∞,-1)D.(-∞,-1]9.(2022领航高考冲刺卷六,3,5分)设x、y是两个实数,命题“x、y中至少有一个大于1”成立的充分不必要条件是( )A.x+y=2B.x+y>2C.x2+y2>2D.xy>110.(2021嘉兴一模,5,5分)已知p:x2-3x-4≤0,q:x2-6x+9-m2≤0.若p是q的充分不必要条件,则m的取值范围是( )A.[-1,1]B.[-4,4]C.(-∞,-4]∪[4,+∞)D.(-∞,-1]∪[4,+∞)11.(2022超级中学原创猜测卷六,3,5分)已知a,b∈R,则“a2+b2<1”是“ab+1>a+b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A组基础题组1.D “若p,则q”的逆否命题为“若¬q,则¬p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.故选D.2.C 若A∩B=A,任取x∈A,则x∈A∩B,∴x∈B,故A⊆B;若A⊆B,任取x∈A,都有x∈B,∴x∈A∩B,∴A⊆(A∩B),又A∩B⊆A明显成立,∴A∩B=A.综上,“A∩B=A”是“A⊆B”的充要条件,故选C.3.A ∵y=log2x是增函数,∴当a>b>1时,有log2a>log2b>log21=0.另一方面,当log2a>log2b>0=log21时,有a>b>1.故选A.4.D 当a=2,b=-1时,a+b=1>0,但ab=-2<0,所以充分性不成立;当a=-1,b=-2时,ab=2>0,但a+b=-3<0,所以必要性不成立,故选D.5.B >1⇔x>y>0或x<y<0,知>1的一个充分不必要条件是x>y>0.6.B 命题甲等价于:若b>0,则a>b,若b<0,则a<b,命题乙等价于a<b<0,所以甲是乙的必要不充分条件,故选B.7.A log m n>0等价于m>1,且n>1,或0<m<1,且0<n<1,此时有(1-m)(1-n)>0,即充分性成立.当0<m<1,n≤0时,有(1-m)(1-n)>0,此时log m n无意义,即必要性不成立,故选A.8.A 设R为△ABC外接圆的半径.由正弦定理可知,若a≤b,则2RsinA≤2RsinB⇒sinA≤sinB,故“a≤b”是“sinA≤sinB”的充分条件;若sinA≤sinB,则≤⇒a≤b,故“a≤b”是“sinA≤sinB”的必要条件.综上所述,“a≤b”是“sinA≤sinB”的充要条件.故选A.9.A 函数f(x)=sinx+m-1有零点,则m-1=-sinx∈[-1,1],所以0≤m≤2,故选A.B组提升题组1.A 由2x>1,得x>0.∵{x|1<x<2}⫋{x|x>0},∴p是q成立的充分不必要条件.2.A 在空间中,两条直线的位置关系有平行、相交、异面.直线l1、l2是异面直线,肯定有l1与l2不相交,因此p是q的充分条件;若l1与l2不相交,那么l1与l2可能平行,也可能是异面直线,所以p不是q的必要条件.故选A.3.B ·>0只能说明△ABC中的角A是锐角,不能说明△ABC为锐角三角形;但反过来,若△ABC为锐角三角形,则角A肯定是锐角,从而·>0,故选B.4.B “3a>3b>3”等价于“a>b>1”,“log a3<log b3”等价于“a>b>1或0<a<1<b或0<b<a<1”,从而“3a>3b>3”是“log a3<log b3”的充分不必要条件.故选B.5.B >⇔->0⇔<0⇔ab(a-b)<0,故选B.6.A ab+1>a+b⇔(a-1)(b-1)>0,则a>1,且b>1,或a<1,且b<1,故选A.7.B △ABC中,由A>得不到sinA>.由sinA>可推出A>.故选B.8.D ∵≥1,∴≥0,∴-1<x≤2,又p是q的必要不充分条件,即q能推出p,但p不能推出q,∴k∈(-∞,-1],选D.9.B 命题“x、y中至少有一个大于1”等价于“x>1或y>1”,若x+y>2,则必有x>1或y>1,否则x+y≤2;而当x=2,y=-1时,2-1=1<2,所以由x>1或y>1不能推出x+y>2.当x=1,且y=1时,满足x+y=2,不能推出x>1或y>1,所以A错;对于x2+y2>2,当x<-1,y<-1时,满足x2+y2>2,不能推出x>1或y>1,故C错;对于xy>1,当x<-1,y<-1时,满足xy>1,不能推出x>1或y>1,故D错.综上知选B.10.C p:-1≤x≤4;在x2-6x+9-m2≤0中,当m>0时,解得3-m≤x≤3+m,要满足条件应满足且两个等号不能同时取到,解得m≥4.当m<0时,解得m≤-4.当m=0时,不满足条件.故m的取值范围是(-∞,-4]∪[4,+∞).11.A a2+b2<1⇒-1<a<1,-1<b<1⇒(a-1)·(b-1)>0⇒ab+1>a+b,反之,取a=2,b=2,满足ab+1>a+b,但不能得出a2+b2<1,故选A.。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.5 双曲线 Word版含答案

§8.5双曲线A组基础题组1.(2021安徽,6,5分)下列双曲线中,渐近线方程为y=±2x的是( )A.x2-=1B.-y2=1C.x2-=1D.-y2=12.(2022广东,4,5分)若实数k满足0<k<9,则曲线-=1与曲线-=1的( )A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等3.(2021广东,7,5分)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( )A.-=1B.-=1C.-=1D.-=14.(2021四川,5,5分)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=( )A. B.2 C.6 D.45.(2021课标Ⅰ,5,5分)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若·<0,则y0的取值范围是( )A. B.C. D.6.(2021课标Ⅱ,11,5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. B.2 C. D.7.(2021浙江冲刺卷四,6)已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,A和B是以坐标原点O为圆心,以|OF2|为半径的圆与该双曲线的渐近线在y轴右侧的两个交点,且△AF1B是正三角形,则双曲线的离心率为( )A. B. C.2 D.8.(2021绍兴一模,6,5分)曲线x2-3y2=0与双曲线C:-=1(a>0,b>0)的四个交点与C的两个虚轴顶点构成一个正六边形,则双曲线C的离心率为( )A. B. C. D.9.(2021杭州二中仿真考,7,5分)已知点P为双曲线-=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左,右焦点,且|F1F2|=,I为三角形△PF1F2的内心,若=+λ成立,则λ的值为( )A. B.2-1 C.+1 D.-110.(2021浙江名校(柯桥中学)沟通卷三,6)若双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,点P是第一象限内双曲线上的点,若直线PA,PB的倾斜角分别为α,β,则α+β的值是( ) A. B. C. D.11.(2021浙江测试卷,6)已知双曲线x2-=1,点A(-1,0),在双曲线上任取两点P,Q满足AP⊥AQ,则直线PQ恒过点( )A.(3,0)B.(1,0)C.(-3,0)D.(4,0)12.(2021哈三中二模)过双曲线-=1(a>0,b>0)的右焦点F作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同交点,则双曲线离心率的取值范围为( )A.(1,)B.(1,+1)C.(+1,)D.(,)13.(2021江苏,12,5分)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为.14.(2022领航高考冲刺卷五,15,4分)若等轴双曲线C的左,右顶点A,B分别为椭圆+y2=1(a>0)的左,右焦点,点P是双曲线上异于A,B的点,直线PA,PB的斜率分别为k PA,k PB,则k PA·k PB= .15.(2022超级中学原创猜测卷十,13,4分)设F1,F2分别是双曲线-=1(a>0,b>0)的左,右焦点,若双曲线的右支上存在一点P,使点P在以F1F2为直径的圆上,且|PF1|=|PF2|,则该双曲线的离心率为.16.(2021浙江镇海中学测试卷二,14)双曲线x2-y2=2021的左、右顶点分别为A1、A2,P为其右支上不同于A2的一点,且∠A1PA2=4∠PA1A2,则∠PA1A2= .B组提升题组1.(2021福建,3,5分)若双曲线E:-=1的左、右焦点分别为F1、F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于( )A.11B.9C.5D.32.(2021浙江名校(绍兴一中)沟通卷五,6)已知双曲线-=1的右焦点为F,左顶点为P,上,下虚轴端点为M,N,若FM与PN交于点A,已知|AF|=|AP|,则此双曲线的离心率为( )A. B. C. D.3.(2021杭州一模,7,5分)设F为双曲线C:-=1(a>0,b>0)的右焦点,过点F且斜率为-1的直线l与双曲线C 的两条渐近线分别交于A,B两点,若=-3,则双曲线C的离心率e=( )A. B. C. D.4.(2022领航高考冲刺卷六,7,5分)设A1、A2分别为双曲线C:-=1(a>0,b>0)的左、右顶点,若在双曲线C上存在点M,使得·<2,则双曲线C的离心率的取值范围是( )A.(,3)B.(1,)C.(,+∞)D.(1,3)5.(2022山西八校联考,12,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.26.(2021温州二模,8,5分)如图所示,A,B,C是双曲线-=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是( )A. B. C. D.37.(2021浙江六校联考,7,5分)已知双曲线-=1(a>0,b>0)的左,右焦点分别为F1,F2,P为双曲线上任一点,且·最小值的取值范围是,则该双曲线的离心率的取值范围为( )A.(1,]B.[,2]C.(1,2]D.[2,+∞)8.(2021浙江名校(衢州二中)沟通卷二,7)过双曲线-=1(b>a>0)的左焦点F(-c,0)(c>0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为坐标原点,若E为FP的中点,则双曲线的离心率为( )A. B. C. D.9.已知双曲线-=1的左、右焦点分别为F1、F2,P为双曲线左支上一点,M为双曲线渐近线上一点(渐近线的斜率大于零),则|PF2|+|PM|的最小值为( )A.2-B.2C.2+D.2+210.(2021湖北,8,5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则( )A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e211.(2021浙江测试卷,10,5分)设动点A,B均在双曲线C:-=1(a>0,b>0)的右支上,O为坐标原点,双曲线C的离心率为e,则( )A.若e>,则·存在最大值B.若1<e≤,则·存在最大值C.若e>,则·存在最小值D.若1<e≤,则·存在最小值12.(2021太原二模)已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1、F2,点O为双曲线的中心,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )A.|OA|>|OB|B.|OA|<|OB|C.|OA|=|OB|D.|OA|与|OB|大小关系不确定13.(2021湖南,13,5分)设F是双曲线C:-=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为. 14.(2021山东文,15,5分)过双曲线C:-=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为.15.(2022山东,15,5分)已知双曲线-=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F.若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.A组基础题组1.A A选项中,渐近线方程为x2-=0,即y=±2x.故选A.2.A ∵0<k<9,∴9-k>0,25-k>0.∴-=1与-=1均表示双曲线,又25+(9-k)=34-k=(25-k)+9,∴它们的焦距相等,故选A.3.C 由已知得解得故b=3,从而所求的双曲线方程为-=1,故选C.4.D 双曲线x2-=1的右焦点为F(2,0),其渐近线方程为x±y=0.不妨设A(2,2),B(2,-2),所以|AB|=4,故选D.5.A 若·=0,则点M在以原点为圆心,半焦距c=为半径的圆上,则解得=.可知:·<0⇒点M在圆x2+y2=3的内部⇒<⇒y0∈.故选A.6.D 设双曲线E的标准方程为-=1(a>0,b>0),则A(-a,0),B(a,0),不妨设点M在第一象限内,则易得M(2a,a),又M点在双曲线E上,于是-=1,解得b2=a2,∴e==.7.C 设点A(x,y)在第一象限,由得即得A(a,b).同理得B(a,-b).由|AB|=|AF1|,得2b=,即(c+a)2=3b2=3(c2-a2).又c+a≠0,从而c+a=3(c-a),即c=2a,故离心率e==2.8.B 设曲线x2-3y2=0与双曲线C:-=1(a>0,b>0)在第一象限的交点为A(x A,y A),则正六边形的边长为2|y A|=b.又由曲线方程与双曲线方程联立消去x得|y A|2=,所以|y A|2==⇒5a2=3b2,所以=,所以双曲线C的离心率为==,故选B.9.D 设△PF1F2的内切圆半径为r,由双曲线的定义得|PF1|-|PF2|=2a,|F1F2|=2c,=r|PF1|,=r|PF2|,=r·2c=cr.由题意得r|PF1|=r|PF2|+λcr,所以λ==.由于|F1F2|=,所以2c==,即+-1=0,解得=-1或=--1(舍去),故选D.10.D 双曲线的左顶点为A(-a,0),右顶点为B(a,0).设P(m,n)(m>a,n>0),则直线PA的斜率k PA=,直线PB的斜率k PB=,∴k PA·k PB=①.∵P(m,n)是双曲线x2-y2=a2上的点,∴m2-n2=a2,将n2=m2-a2代入①式得k PA·k PB=1.∴α+β=.11.A 明显直线AP,AQ的斜率存在,且不为0,设直线AP的斜率为k,k≠±.则AP的方程为y=k(x+1).由得(k2-2)x2+2k2x+k2+2=0,则-1·x P=,故x P=,则有P.以-代替k,得Q.当k≠±1且k≠±时,k PQ=,直线PQ的方程为y=(x-3),此时直线PQ过点(3,0).当k=±1时,有x P=x Q=3,直线PQ的方程为x=3,此时,直线PQ也过点(3,0).故选A.12.D 由题意可得2<<3,则双曲线的离心率e===∈(,),故选D.13.答案解析双曲线x2-y2=1的一条渐近线为直线y=x,明显直线y=x与直线x-y+1=0平行,且两直线之间的距离为=.由于点P为双曲线x2-y2=1的右支上一点,所以点P到直线y=x的距离恒大于0,结合图形可知点P到直线x-y+1=0的距离恒大于,结合已知可得c的最大值为.14.答案 1解析由题意得,等轴双曲线C的方程为x2-y2=a2(a>0),∴双曲线的左顶点为A(-a,0),右顶点为B(a,0),设P(m,n),则直线PA的斜率为k PA=,直线PB的斜率为k PB=,∴k PA·k PB=①,∵P(m,n)是双曲线x2-y2=a2(a>0)上的点,∴m2-n2=a2,∴n2=m2-a2,代入①式得k PA·k PB=1.15.答案+解析由点P在以F1F2为直径的圆上,可知PF1⊥PF2.在Rt△F1PF2中,|PF1|2+|PF2|2=|F1F2|2=4c2.由已知|PF1|=|PF2|,得|PF1|=c,|PF2|=c.由双曲线的定义知|PF1|-|PF2|=2a,即c-c=c=2a,所以双曲线的离心率e===+.16.答案解析设∠PA1A2=α,则∠PA2x=5α.又设P(x0,y0),则-=2021.tan5α==,tanα==,∴tan5α·tanα=·==1,从而sin5αsinα=cos5αcosα,即cos6α=0,∴α=.B组提升题组1.B |PF1|=3<a+c=8,故点P在双曲线的左支上,由双曲线的定义得|PF2|-|PF1|=2a=6,所以|PF2|=9,故选B.2.C 设双曲线的左焦点为F',连结NF',则必有FM∥F'N,所以==⇒=⇒3c2=4a2⇒e=.3.D F(c,0),直线l的方程为y=-x+c,而渐近线的方程是y=±x,由得A,由得B.∴=,=.由=-3,得=-,得5a=3b,结合c2=a2+b2得c2=a2+a2,解得e=.4.B 由题意知A1(-a,0),A2(a,0),设M(x,y),则=,=,∴·=(*).∵M(x,y)在双曲线-=1上,∴y2=b2,代入(*)式得,=,则<2,即=e2-1<2,又e>1,故1<e<.5.A 解法一:设椭圆方程为+=1(a1>b1>0),离心率为e1,双曲线的方程为-=1(a2>0,b2>0),离心率为e2,它们的焦距为2c,不妨设P为两曲线在第一象限的交点,F1,F2分别为左,右焦点,则易知解得在△F1PF2中,由余弦定理得(a1+a2)2+(a1-a2)2-2(a1+a2)·(a1-a2)cos60°=4c2,整理得+3=4c2,所以+=4,即+=4.设a=,b=,∴+=a·b≤|a|·|b|=×=×=,故+的最大值是,故选A.解法二:不妨设P在第一象限,|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理得m2+n2-mn=4c2.设椭圆的长轴长为2a1,离心率为e1,双曲线的实轴长为2a2,离心率为e2,它们的焦距为2c,则+===.∴===,易知-+1的最小值为.故=.故选A.6.A 如图所示,设左焦点为F',由OA=OB,OF=OF',BF⊥AC以及双曲线的对称性可知四边形AFBF'为矩形,设AF=m,则|FC|=|FB|=|AF'|=2a+m,|CF'|=4a+m.在Rt△ACF'中,|AF'|2+|AC|2=|CF'|2,即(2a+m)2+(2a+2m)2=(4a+m)2,整理得m=a.在Rt△FAF'中,|AF|2+|AF'|2=|F'F|2,即a2+(3a)2=(2c)2,整理得4c2=10a2,故e=,故选A.7.B 设P(x,y),则·=(x+c,y)·(x-c,y)=x2-c2+y2=x2-c2-b2,|x|≥a,所以当|x|=a时,(·)min=a2-c2∈,则即所以离心率e=∈[,2],故选B.8.D 设右焦点为F2,连结F2P,OE,则F2P⊥FP,且|PF2|=2|OE|=2a,∴|EF|=b.∴|PF|=2b.过点P作直线x=-c的垂线,垂足为M,则|PM|=|PF2|=2a.∴|MF|==2.在Rt△FPF2中,2=|PF|·|PF2|=|FF2|·|MF|,即2b·2a=2c·2,平方整理得a2c2=(c2-a2)b2=(c2-a2)2,即有ac=c2-a2,∴e2-e-1=0,∴e=,故选D.9.C 由题意,知双曲线的焦点为F1(-4,0),F2(4,0),符合题意的渐近线方程为y=x,即x-y=0.作出符合题意的几何图形如图所示,连结PF1,F1M,由双曲线的定义,可知|PF2|-|PF1|=2,所以|PF2|+|PM|=|PF1|+|PM|+2.由图形可知|PF1|+|PM|≥|F1M|,所以当F1,P,M三点共线时,|PF1|+|PM|的值最小,即|F1M|最小,故依据点到直线的距离公式可得此时的最小值为d==,故所求的最小距离为2+.10.D 依题意有e1==,e2==.而-=,∵a>0,b>0,m>0,∴当a>b时,<,有e1<e2;当a<b时,>,有e1>e2.故选D.11.D 设A(x1,y1),B(x2,y2),其中x1≥a,x2≥a,则·=x1x2+y1y2=x1x2±.若·=x1x2+,明显没有最大值,而当x1=x2=a时,·有最小值a2.若·=x1x2-=x1x2-,由+≥2x1x2,得·≥x1x2-·=x1x2-(x1x2-a2),即·≥x1x2+b2,若a2≥b2,即1<e≤,则·≥·a2+b2=a2. 当x1=x2=a时,·有最小值a2.故若1<e≤,则·存在最小值.12.C 由于点Q为三角形PF1F2内切圆的圆心,故过点F2作PQ的垂线并延长交PF1于点N,易知垂足B为F2N的中点,连结OB,则|OB|=|F1N|=(|F1P|-|F2P|)=a.设内切圆与PF1,PF2分别切于G,H,则由内切圆性质可得|PG|=|PH|,|F1G|=|F1A|,|F2A|=|F2H|,故|F1P|-|F2P|=|F1A|-|F2A|=2a,设|OA|=x,则有x+c-(c-x)=2a,解得|OA|=a,故有|OA|=|OB|=a,故选C.13.答案解析不妨设F为左焦点(-c,0),点P在第一象限,由于线段PF的中点恰为双曲线C虚轴的一个端点,由中点坐标公式得P(c,2b),又P在双曲线C上,∴-=1,∴=5,∴e==.14.答案2+解析如图,F1,F2为双曲线C的左,右焦点,将点P的横坐标2a代入-=1中,得y2=3b2,不妨令点P的坐标为(2a,-b),此时==,得到c=(2+)a,即双曲线C的离心率e==2+.15.答案x±y=0解析c2=a2+b2,①由双曲线截抛物线的准线所得线段长为2c知,双曲线过点,即-=1.②由|FA|=c,得c2=a2+,③由①③得p2=4b2.④将④代入②,得=2.∴=2,即=1,故双曲线的渐近线方程为y=±x,即x±y=0.。
浙江省台州市2021届新高考数学三模试卷含解析

浙江省台州市2021届新高考数学三模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{2,0,1,9}的真子集的个数是( )A .13B .14C .15D .16 【答案】C【解析】【分析】根据含有n 个元素的集合,有2n 个子集,有21n -个真子集,计算可得;【详解】解:集合{2,0,1,9}含有4个元素,则集合{2,0,1,9}的真子集有42115-=(个),故选:C【点睛】考查列举法的定义,集合元素的概念,以及真子集的概念,对于含有n 个元素的集合,有2n 个子集,有21n -个真子集,属于基础题.2.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( )A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦B .932,2ln 2ln 5⎛⎫ ⎪⎝⎭C .932,2ln 2ln 5⎛⎤ ⎥⎝⎦D .9,2ln 2⎛⎫+∞⎪⎝⎭ 【答案】C【解析】【分析】由题可知,设函数()ln(1)f x a x =+,32()2g x x x =-,根据导数求出()g x 的极值点,得出单调性,根据32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,转化为()()f x g x >在区间(0,)+∞内的解集中有且仅有三个整数,结合图象,可求出实数a 的取值范围.【详解】设函数()ln(1)f x a x =+,32()2g x x x =-,因为2()34g x x x '=-,所以()0g x '=,0x ∴=或43x =, 因为403x << 时,()0g x '<, 43x >或0x <时,()0g x '>,(0)(2)0g g ==,其图象如下:当0a …时,()()f x g x >至多一个整数根;当0a >时,()()f x g x >在(0,)+∞内的解集中仅有三个整数,只需(3)(3)(4)(4)f g f g >⎧⎨⎩…, 3232ln 4323ln 5424a a ⎧>-⨯∴⎨-⨯⎩…, 所以9322ln 2ln 5a <…. 故选:C.【点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.3.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B【解析】【分析】 计算出3a 的值,推导出()3n n a a n N*+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}na 的前2020项和.【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=. 故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.4.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A .413B .213C .926D 313【答案】A【解析】【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒所以13DF AB =. 所以所求概率为24=1313DEF ABC S S ∆∆=.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.5.已知ABC V 是边长为3的正三角形,若13BD BC =u u u r u u u r ,则AD BC ⋅=uuu r uu u r A .32-B .152 C .32 D .152- 【答案】A【解析】【分析】【详解】 由13BD BC =u u u r u u u r 可得13AD AB BD AB BC =+=+u u u r u u u r u u u r u u u r u u u r ,因为ABC V 是边长为3的正三角形,所以221113()33cos12033332AD BC AB BC BC AB BC BC ⋅=+⋅=⋅+=⨯︒+⨯=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,故选A . 6.已知3sin 2cos 1,(,)2παααπ-=∈,则1tan 21tan 2αα-=+( ) A .12- B .2- C .12 D .2 【答案】B【解析】【分析】结合22sin cos 1αα+=求得sin ,cos αα的值,由此化简所求表达式,求得表达式的值.【详解】由22sin 2cos 1sin cos 1αααα-=⎧⎨+=⎩,以及3(,)2παπ∈,解得34sin ,cos 55αα=-=-. 1tan 21tan 2αα-=+222sin 21cos sin cos cos sin 12cos sin 2222222sin cos sin cos sin cos sin cos sin 2222222221cos 2αααααααααααααααααα-⎛⎫--- ⎪⎝⎭===⎛⎫⎛⎫+--+ ⎪⎪⎝⎭⎝⎭+311sin 524cos 5αα+-===--.【点睛】本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题.7.设(1)1i z i +⋅=-,则复数z 的模等于( )AB .2C .1 D【答案】C【解析】【分析】利用复数的除法运算法则进行化简,再由复数模的定义求解即可.【详解】因为(1)1i z i +⋅=-, 所以()()()211111i i z i i i i --===-++⋅-,由复数模的定义知,1z ==. 故选:C【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.8.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递增,则( )A .()()0.63(3)log 132f ff -<-<B .()()0.63(3)2log 13f f f -<<- C .()()0.632log 13(3)f f f <-<- D .()()0.632(3)log 13f f f <-<-【答案】C【解析】【分析】根据题意,由函数的奇偶性可得()()33f f -=,()()33log 13log 13f f -=,又由0.63322log 13log 273<<<=,结合函数的单调性分析可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,则()()33f f -=,()()33log 13log 13f f -=, 有0.63322log 13log 273<<<=,又由()f x 在()0,∞+上单调递增,则有()()()0.632log 133f f f <-<-,故选C.本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题.9.已知集合{}{}2340,13A x x x B x x =-->=-≤≤,则R ()A B =I ð( )A .()1,3-B .[]1,3-C .[]1,4-D .()1,4-【答案】B【解析】【分析】先由2340x x -->得4x >或1x <-,再计算R ()ðA B I 即可.【详解】由2340x x -->得4x >或1x <-,()(),14,A ∴=-∞-⋃+∞,[]R 1,4ðA =-,又{}13B x x =-≤≤,[]R ()1,3A B ∴=-I ð.故选:B【点睛】本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.10.设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围是() A .10,e ⎛⎫⎪⎝⎭ B .211,e e ⎛⎫ ⎪⎝⎭ C .222,e e ⎛⎫ ⎪⎝⎭ D .221,e e ⎛⎫ ⎪⎝⎭【答案】D【解析】令()()0g x f x ax =-=,可得()f x ax =.在坐标系内画出函数()ln f x x =的图象(如图所示).当1x >时,()ln f x x =.由ln y x =得1y x '=.设过原点的直线y ax =与函数y x ln =的图象切于点00(,ln )A x x , 则有000ln 1x ax a x =⎧⎪⎨=⎪⎩,解得01x e a e =⎧⎪⎨=⎪⎩. 所以当直线y ax =与函数y x ln =的图象切时1a e=. 又当直线y ax =经过点()2B ,2e 时,有22a e =⋅,解得22a e=. 结合图象可得当直线y ax =与函数()ln f x x =的图象有3个交点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭. 即函数()()g x f x ax =-在区间()20,e 上有三个零点时,实数a 的取值范围是221,e e ⎛⎫ ⎪⎝⎭.选D. 点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.11.设复数z 满足12z z z +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+B .221y x =+C .221x y =-D .221y x =- 【答案】B【解析】【分析】根据共轭复数定义及复数模的求法,代入化简即可求解.【详解】z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-, ∵12z z z +=+,1x =+,解得221y x =+.故选:B.【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.12.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大正整数,则下列结论正确的是( ) A .()f x 的值域是[]0,1B .()f x 是奇函数C .()f x 是周期函数D .()f x 是增函数 【答案】C【解析】【分析】根据[]x 表示不超过x 的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由[]x 表示不超过x 的最大正整数,其函数图象为选项A ,函数()[)0,1f x ∈,故错误;选项B ,函数()f x 为非奇非偶函数,故错误;选项C ,函数()f x 是以1为周期的周期函数,故正确;选项D ,函数()f x 在区间[)[)[)0,1,1,2,2,3L L 上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干[]x 的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。
浙江省2021版高考数学三模试卷(理科)(I)卷

浙江省2021版高考数学三模试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知集合,则()A .B .C .D .2. (2分) (2020高三上·合肥月考) 若复数满足,其中是虚数单位,则复数的模为()A .B .C .D . 33. (2分) (2017高二下·咸阳期末) 已知随机变量ξ服从正态分布N(2017,σ2),则P(ξ<2017)等于()A .B .C .D .4. (2分)“”是“直线与直线平行”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分)执行右面的程序框图.若输入n=7,则输出的值为A . 2B . 3C . 4D . 56. (2分)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1﹣50号,并分组,第一组1﹣5号,第二组6﹣10号,…,第十组46﹣50号,若在第三组中抽得号码为12,则在第八组中抽得号码为()A . 37B . 38C . 39D . 407. (2分)下列函数中,图象关于点(, 0)对称的是()A . y=sin(x+)B . y=cos(x﹣)C . y=sin(x+)D . y=tan(x+)8. (2分) (2016高二上·乐清期中) 若变量x,y满足约束条件,则z=2x+y的最大值和最小值分别为()A . 4和3B . 4和2C . 3和2D . 2和09. (2分) (2020高一下·荆州期末) 方程的解的个数是().A . 0个B . 1个C . 2个D . 3个10. (2分)(2020·嘉兴模拟) 分别将椭圆的长轴、短轴和双曲线的实轴、虚轴都增加m个单位长度(),得到椭圆和双曲线.记椭圆和双曲线的离心率分别是,则()A . ,B . ,与的大小关系不确定C . ,D . ,与的大小关系不确定二、填空题 (共5题;共6分)11. (1分) (2017高一上·西安期末) 与圆C:(x﹣2)2+(y+1)2=4相切于点(4,﹣1)且半径为1的圆的方程是________.12. (1分)某几何体的三视图如图所示,则该几何体的体积为________13. (1分)公共汽车在8:00到8:20内随机地到达某站,某人8:15到达该站,则他能等到公共汽车的概率为________14. (1分) (2019高二下·景德镇期中) 已知函数则 =________.15. (2分) (2016高一上·湖州期中) 已知函数f(x)=(x﹣a)(x+2)为偶函数,若g(x)= ,则a=________,g[g(﹣)]=________三、解答题 (共6题;共45分)16. (15分) (2017高一上·吉林期末) 已知函数f(x)=2sin(3ωx+ ),其中ω>0(1)若f(x+θ)是周期为2π的偶函数,求ω及θ的值;(2)若f(x)在(0, ]上是增函数,求ω的最大值;(3)当ω= 时,将函数f(x)的图象向右平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.17. (5分)(2017·山西模拟) 已知如图所示的几何体中,四边形ABCD是边长为2的菱形,面PBC⊥面A BCD,点E是AD 的中点,PQ∥面ABCD且点Q在面ABCD上的射影Q′落在AB的延长线上,若PQ=1,PB= ,且()• =0, =2(Ⅰ)求证面PBC⊥面PBE(Ⅱ)求平面PBQ与平面PAD所成钝二面角的正切值.18. (10分)(2013·江西理) 正项数列{an}的前n项和Sn满足:Sn2(1)求数列{an}的通项公式an;(2)令b ,数列{bn}的前n项和为Tn .证明:对于任意n∈N* ,都有.19. (5分)(2017·怀化模拟) 为了政府对过热的房地产市场进行调控决策,统计部门对城市人和农村人进行了买房心理预测调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表:买房不买房纠结城市人515农村人2010已知样本中城市人数与农村人数之比是3:8.(Ⅰ)分别求样本中城市人中的不买房人数和农村人中的纠结人数;(Ⅱ)从参与调研的城市人中用分层抽样方法抽取6人,进一步统计城市人的某项收入指标,假设一个买房人的指标算作3,一个纠结人的指标算作2,一个不买房人的指标算作1,现在从这6人中再随机选取3人,令X=再抽取3人指标之和,求X的分布列和数学期望.20. (5分)(2020·南昌模拟) 已知函数(,且,e为自然对数的底).(I)求函数的单调区间(Ⅱ)若函数在有两个不同零点,求a的取值范围.21. (5分)(2017·四川模拟) 已知直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.(Ⅰ)求点P的坐标;(Ⅱ)证明直线AB恒过定点,并求这个定点的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共45分)16-1、16-2、16-3、18-1、18-2、19-1、20-1、21-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.6抛物线A组基础题组1.(2022安徽,3,5分)抛物线y=x2的准线方程是( )A.y=-1B.y=-2C.x=-1D.x=-22.(2021浙江杭州六中期末)已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是( )A. B. C.2 D.-13.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.4.(2021浙江嘉兴桐乡第一中学调研卷一,9,5分)抛物线y2=x的焦点为F,点P(x,y)为该抛物线上的动点,点A,则的最小值是( )A. B. C. D.5.(2022四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.6.(2021陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p= .7.(2021浙江名校(镇海中学)沟通卷一,14)过抛物线y2=2x的焦点的直线与该抛物线交于A,B两点,且|AB|=4,则AB的中点的横坐标是.8.(2021浙江模拟训练冲刺卷一,11)已知点F为抛物线x2=4y的焦点,O为坐标原点,点M是抛物线准线上一动点,A在抛物线上,且|AF|=2,则|OA|= ;|MA|+|MO|的最小值是.9.(2021浙江新高考争辩卷四(舟山中学),11)已知抛物线C:y2=2px(p>0),抛物线C上横坐标为的点到焦点的距离为3.(1)p= ;(2)点M在抛物线C上运动,点N在直线x-y+5=0上运动,则|MN|的最小值等于.10.(2022超级中学原创猜测卷七,11,6分)已知正六边形ABCDEF的边长是2,抛物线y2=2px(p>0)恰好经过该正六边形的四个顶点,,过抛物线的焦点Q的直线交抛物线于M,N两点.若焦点Q是弦MN靠近点N的三等分点,则该抛物线的标准方程是,直线MN的斜率k等于.11.(2021浙江冲刺卷一,14,4分)已知直线x=my+2与抛物线y2=8x交于A,B两点,点C(-1,0),若∠ACB=90°,则m= .12.(2021浙江名校(绍兴一中)沟通卷五,14)已知M(a,4)为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,N 为y轴上的动点,当sin∠MNF的值最大时,△MNF的面积为5,则p的值为.13.(2021浙江七校联考,18)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值. 14.(2021福建,19,12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.15.(2021浙江,22,14分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.16.(2021浙江模拟训练冲刺卷一,19)已知抛物线C1:x2=4y的焦点为F,过点F且斜率不为零的直线l与抛物线C1相交于不同的两点A,C,并与曲线C2:x2=-4(y-2)相交于不同的两点B,D,其中A,B两点在y轴右侧.(1)求A,B两点的横坐标之积;(2)记直线OA,OB,OC,OD的斜率分别为k1,k2,k3,k4,是否存在常数λ,使得k1+k3=λ(k2+k4)?若存在,求出λ的值;若不存在,请说明理由.B组提升题组1.(2021陕西,3,5分)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)2.(2022课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=( )A.1B.2C.4D.83.(2021宁波高考模拟考试,5,5分)已知F是抛物线y2=4x的焦点,A,B是抛物线上的两点,|AF|+|BF|=12,则线段AB的中点到y轴的距离为( )A.4B.5C.6D.114.(2021河南焦作期中,11)已知点P在抛物线y2=4x上,点M在圆(x-3)2+(y-1)2=1上,点N的坐标为(1,0),则|PM|+|PN|的最小值为( )A.5B.4C.3D.+15.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )A. B.6 C.12 D.76.已知点P为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线l、直线PF、x轴相切且位于直线PF左侧的圆与x轴相切于点Q,则( )A.Q点位于原点的左侧B.Q点与原点重合C.Q点位于原点的右侧D.以上均有可能7.(2021四川,10,5分)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)8.(2021稽阳联考,13,6分)过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.9.(2021浙江六校联考,13,4分)已知F为抛物线C:y2=2px(p>0)的焦点,过F作斜率为1的直线交抛物线C于A、B两点,设|FA|>|FB|,则= . 10.(2021杭州二中高三仿真考,13,4分)已知点A在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若·=3,则点A到动直线MN的最大距离为.11.(2021嘉兴教学测试二,14,4分)抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为.12.(2022超级中学原创猜测卷五,14,6分)已知抛物线y2=4x的焦点为F,则点F的坐标为,若A,B是抛物线上横坐标不相等的两点,且线段AB的垂直平分线与x轴的交点为M(4,0),则|AB|的最大值为.13.(2021稽阳联考文,19,15分)点P是在平面坐标系中不在x轴上的一个动点,满足:过点P可作抛物线x2=y 的两条切线,切点分别为A,B.(1)设点A(x1,y1),求证:切线PA的方程为y=2x1x-;(2)若直线AB交y轴于R,OP⊥AB于点Q,求证:R是定点并求的最小值.14.(2021浙江五校二联文,19,15分)已知抛物线y2=2x上有四点A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),点M(3,0),直线AB、CD都过点M,且都不垂直于x轴,直线PQ过点M且垂直于x轴,交AC于点P,交BD于点Q.(1)求y1y2的值;(2)求证:MP=MQ.15.(2021浙江冲刺卷一,22)已知点M(0,-1),抛物线E:x2=4y,过点N(-4,1)的直线l交抛物线E于A,B两点,点A在第一象限.(1)若直线MA与抛物线相切,求直线MA的方程;(2)若直线MA交抛物线E于另一点C,问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.16.(2022浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值. A组基础题组1.A 由y=x2得x2=4y,焦点在y轴正半轴上,且2p=4,即p=2,因此准线方程为y=-=-1.故选A.2.D 由题意知,抛物线的焦点为F(1,0),设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1,易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为=,所以d+|PF|-1的最小值为-1.3.D 易知直线AB的方程为y=,与y2=3x联立并消去x得4y2-12y-9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=-.S△OAB=|OF|·|y1-y2|=×==.故选D.4.C 点A是抛物线的准线与x轴的交点,过P作抛物线准线的垂线,记垂足为B,则由抛物线的定义可得==sin∠PAB,当∠PAB最小时,的值最小,此时,直线PA与抛物线相切,可求得直线PA的斜率k=±1,所以∠PAB=45°,的最小值为,故选C.5.B 依题意不妨设A(x1,),B(x2,-),·=2⇒x1x2-=2⇒=2或=-1(舍去).当x1=x2时,有x1=x2=2,则S△ABO+S△AFO=2+=;当x1≠x2时,直线AB的方程为y-=(x-x1),则直线AB与x轴的交点坐标为(2,0).于是S△ABO+S△AFO=×2×(+)+×=+≥2=3当且仅当=时取“=”,而>3.故选B.6.答案 2解析抛物线y2=2px(p>0)的准线方程为x=-(p>0),故直线x=-过双曲线x2-y2=1的左焦点(-,0),从而-=-,得p=2.7.答案解析由已知得AB为抛物线的焦点弦,则|AB|=x A+x B+1=4,∴x A+x B=3,故AB的中点的横坐标是.8.答案;解析易知F(0,1).设A(x,y),由|AF|=2,得y+1=2,∴y=1,代入x2=4y得x=±2,所以A(±2,1),则|OA|=.设B(0,-2),因点M在抛物线准线上,则|MO|=|MB|,从而|MA|+|MO|的最小值就是|MA|+|MB|的最小值.因A,B为定点,则|MA|+|MB|的最小值即为|AB|=,故|MA|+|MO|的最小值是.9.答案(1)1 (2)解析(1)依题意得+=3,解得p=1.(2)设M(x,y),则y2=2x.则|MN|的最小值等于点M到直线x-y+5=0的距离d的最小值.而d====,则当y=1时,d min=,故|MN|的最小值等于.10.答案y2=x;±2解析如图所示,依据对称性,可设正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px(p>0)上,A(x1,1),F(x2,2),则即x2=4x1,又|AF|==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,则p===,则抛物线的方程是y2=x,则Q,设直线MN的方程为x=my+.将直线MN的方程与抛物线的方程联立,消去x得y2-my-=0.设M(x3,y3),N(x4,y4),所以y3+y4=m①,y3y4=-②,由于焦点Q是弦MN靠近点N的三等分点,所以=2,所以y3=-2y4③,联立①②③消去y3,y4,得m=±,所以直线MN的斜率k=±2.11.答案±解析设A(x1,y1),B(x2,y2),联立得消去x得y2-8my-16=0,则有y1+y2=8m,y1y2=-16.由∠ACB=90°,知·=0,即有(x1+1)(x2+1)+y1y2=0,则有(my1+3)(my2+3)+y1y2=0,即(m2+1)y1y2+3m(y1+y2)+9=0,则-16(m2+1)+24m2+9=0,解得m=±.12.答案2或8解析设N(0,n),当sin∠MNF的值最大时,有∠MNF=,从而有·=0,得ap+n2-4n=0.又2ap=16,所以n2-4n+4=0,所以n=2,所以N的坐标为(0,2)时,sin∠MNF的值最大.过M作MM'⊥y轴,垂足为M',则梯形OFMM'的面积为10,10=·4,又ap=8,得p=2或8.13.解析(1)直线AB的方程是y=2,由消去y得4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,4x2-5px+p2=0可得x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 由=8x3,得[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.14.解析(1)由抛物线的定义得|AF|=2+.由于|AF|=3,即2+=3,解得p=2,所以抛物线E的方程为y2=4x.(2)证法一:由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),所以k GA==,k GB==-,所以k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.证法二:设以点F为圆心且与直线GA相切的圆的半径为r.由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),故直线GA的方程为2x-3y+2=0,从而r==.又直线GB的方程为2x+3y+2=0,所以点F到直线GB的距离d===r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.15.解析(1)由题意可设抛物线C的方程为x2=2py(p>0),则=1,所以抛物线C的方程为x2=4y.(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.由消去y,整理得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.由解得点M的横坐标x M===.同理,点N的横坐标x N=.所以|MN|=|x M-x N|==8=.令4k-3=t,t≠0,则k=.当t>0时,|MN|=2>2.当t<0时,|MN|=2≥.综上所述,当t=-,即k=-时,|MN|的最小值是.16.解析(1)设A(x1,y1),B(x2,y2),则x1>0,x2>0.又易知F(0,1),则由A,B,F三点共线得=,即x2=x1,得(x1+x2)x1x2=4(x1+x2),∵x1>0,x2>0,∴x1+x2>0,∴x1x2=4,故A,B两点的横坐标之积为4.(2)存在.明显直线l的斜率存在,且不为零,故可设直线l的方程为y=kx+1(k≠0).由得x2-4kx-4=0.设C(x3,y3),则有x1+x3=4k,且x1x3=-4.则k1+k3=+=+=+==k.由得x2+4kx-4=0.设D(x4,y4),则有x2+x4=-4k,且x2x4=-4.则k2+k4=+=+=+--=+k=+k=3k,∵k≠0,∴k1+k3=(k2+k4).故存在常数λ=,使得k1+k3=λ(k2+k4).B组提升题组1.B 抛物线y2=2px(p>0)的准线方程为x=-,由题设知-=-1,即=1,所以焦点坐标为(1,0).故选B.2.A 由y2=x得2p=1,即p=,因此焦点F,准线方程为l:x=-,设A点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x0+=x0,解得x0=1,故选A.3.B 记A,B在抛物线准线x=-1的投影分别为A',B',故|AA'|+|BB'|=|AF|+|BF|=12,由中位线定理可得所求距离d=-1=5,故选B.4.C 由于抛物线y2=4x的焦点为N(1,0),所以|PM|+|PN|的最小值等于点M到抛物线的准线x=-1的距离的最小值.而点M在圆(x-3)2+(y-1)2=1上,则点M到准线x=-1的距离的最小值等于圆心(3,1)到准线的距离减去半径1,即(|PM|+|PN|)min=4-1=3,故选C.5.C 焦点F的坐标为,直线AB的斜率为,所以直线AB的方程为y=, 即y=x-,代入y2=3x,得x2-x+=0,设A(x1,y1),B(x2,y2),则x1+x2=,所以|AB|=x1+x2+=+=12,故选C.6.B 如图,设直线l,x轴分别与抛物线的准线交于C,D两点,由抛物线的定义知|PC|=|PF|,由圆的切线性质知|PA|=|PB|,于是|AC|=|BF|.又|AC|=|DO|,|BF|=|FQ|,所以|DO|=|FQ|,而|DO|=|FO|,得O,Q两点重合.故选B.7.D 明显0<r<5.当直线l的斜率不存在时,存在两条满足题意的直线,所以当直线l的斜率存在时,存在两条满足题意的直线,设直线l的斜率为k,由抛物线和圆的对称性知,k>0、k<0时各有一条满足题意的直线.设A(x1,y1),B(x2,y2),M(x0,y0),k====.记圆心为C(5,0).∵k CM=,k·k CM=-1,∴x0=3.∴r2=(3-5)2+>4(y0≠0),即r>2.另一方面,由AB的中点为M,知B(6-x1,2y0-y1),∴(2y0-y1)2=4(6-x1),又∵=4x1,∴-2y0y1+2-12=0.∴Δ=4-4(2-12)>0,即<12.∴r2=(3-5)2+=4+<16,∴r<4.综上,r∈(2,4).故选D.8.答案±解析由题意设l:x=ty+1,A(x1,y1),B(x2,y2).将x=ty+1代入y2=4x,得y2-4ty-4=0,∴y1+y2=4t,y1y2=-4.又=3,∴y1=-3y2,∴∴t2=,即k=±.9.答案3+2解析过抛物线C的焦点,斜率为1的直线方程为y=x-,代入抛物线C的方程,整理得4x2-12px+p2=0.又由题意可得x A>x B,解得x A=p,x B=p,所以====3+2.10.答案解析由题意知抛物线的准线方程为x=-=-,解得p=1,所以抛物线的方程为y2=2x.设直线MN的方程为x=ty+m,M(x1,y1),N(x2,y2),直线MN与x轴的交点为D(m,0),联立直线MN与抛物线的方程,得y2-2ty-2m=0,所以y1y2=-2m.由于·=3,所以x1x2+y1y2=3,即(y1y2)2+y1y2-3=0.由于M,N位于x轴的两侧,所以y1y2=-6,所以m=3,则直线MN恒过点D(3,0).当直线MN绕定点D(3,0)旋转时,旋转到AD⊥MN时,点A到动直线MN的距离最大,且为=.11.答案 4解析设A(x1,y1),B(x2,y2),直线AB的方程为y-3=kx(k<0),即y=kx+3,联立直线AB的方程与抛物线方程消去y,得k2x2+(6k-4)x+9=0,所以x1+x2=.又p=2,依据抛物线的定义有|AF|+|BF|=x1+x2+p=x1+x2+2=6,所以x1+x2==4,解得k=(舍)或k=-2,所以y1+y2=-2(x1+x2)+6=-2,所以线段AB的中点坐标为(2,-1),所以线段AB的垂直平分线的方程为y+1=(x-2),即x-2y-4=0,令y=0,得x=4,所以点D的横坐标为4.12.答案(1,0);6解析抛物线y2=4x的焦点为F(1,0).设A(x1,y1),B(x2,y2),由于线段AB的垂直平分线与x轴的交点为M(4,0),所以|MA|2=|MB|2,即(x1-4)2+=(x2-4)2+,又A,B是抛物线上两点,所以=4x1,=4x2,代入上式并化简得-=4x1-4x2,又x1≠x2,所以x1+x2=4,所以|AB|≤|AF|+|BF|=x1+1+x2+1=6(当且仅当A,B,F三点共线时取等号),所以|AB|的最大值为6.13.解析(1)证明:设以A(x1,)为切点的切线方程为y-=k(x-x1),与x2=y联立得x2-kx+kx1-=0,由Δ=k2-4kx1+4=(k-2x1)2=0得k=2x1,所以切线PA的方程为y=2x1x-.(2)设B(x2,y2),由(1)知点P的坐标为,设直线AB的方程为y=kx+m,与x2=y联立得x2-kx-m=0,所以P,由题意知k·k OP=k·=-2m=-1⇒m=,即R.|PQ|=,|QR|==,所以==|k|+≥2,当且仅当|k|=时,的最小值为2.14.解析(1)设直线AB的方程为x=my+3,与抛物线联立得:y2-2my-6=0,∴y1y2=-6.(2)证明:直线AC的斜率为=,∴直线AC的方程为y=(x-x1)+y1,∴点P的纵坐标为y P===,同理,点Q的纵坐标为y Q=,∴y P+y Q=0,又PQ⊥x轴,∴MP=MQ.15.解析(1)设A(x1,y1)(x1>0),则直线MA的方程为y=x-1,与x2=4y联立消去y,得x1x2-(+4)x+4x1=0,由Δ=-16=0,得=4,而x1>0,故x1=2,即有A(2,1).则直线MA的方程为y=x-1.(2)明显直线BC的斜率存在,设直线BC的方程为y=kx+n,与x2=4y联立消去y,得x2-4kx-4n=0.设B(x2,y2),C(x3,y3),则有x2+x3=4k,x2x3=-4n.由(1)知x1,x3是方程x1x2-(+4)x+4x1=0的两根,且x1≠2.则有x1x3=4,即x1=,从而y1==.由于N,A,B三点共线,所以===+,即有-1=+x2++,化简得x2+x3+x2x3+4=0,即有4k-4n+4=0,得n=k+1.从而直线BC的方程为y=kx+k+1=k(x+1)+1,故直线BC过定点,且定点坐标为(-1,1). 16.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0). 由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x0,1-y0)=3(2k,2k2+m-1),所以由=4y0得k2=-m+.由Δ>0,k2≥0,得-<m≤.又由于|AB|=4·,点F(0,1)到直线AB的距离为d=,所以S△ABP=4S△ABF=8|m-1|=.记f(m)=3m3-5m2+m+1.令f'(m)=9m2-10m+1=0,解得m1=,m2=1.可得f(m)在上是增函数,在上是减函数,在上是增函数.又f=>f,所以,当m=时,f(m)取到最大值,此时k=±.所以,△ABP面积的最大值为.。