概率论与数理统计大作业
概率论与数理统计作业题及参考答案

东北农业大学网络教育学院 概率论与数理统计作业题(一)一、填空题1.将A ,A ,C ,C ,E ,F ,G 这7个字母随机地排成一行,恰好排成GAECF AC 的概率为 。
2.用随机变量X 来描述掷一枚硬币的试验结果. 则X 的分布函数为 。
3.已知随机变量X 和Y 成一阶线性关系,则X 和Y 的相关系数=XY ρ 。
4.简单随机样本的两个特点为:5.设21,X X 为来自总体),(~2σμN X 的样本,若2120041X CX +为μ的一个无偏估计,则C = 。
二、选择题1.关系( )成立,则事件A 与B 为互逆事件。
(A )Φ=AB ; (B )Ω=B A ; (C )Φ=AB Ω=B A ; (D )A 与B 为互逆事件。
2.若函数)(x f y =是一随机变量X 的概率密度,则( )一定成立。
)(A )(x f y =的定义域为[0,1] )(B )(x f y =非负)(C )(x f y =的值域为[0,1] )(D )(x f y =在),(+∞-∞内连续3.设Y X ,分别表示甲乙两个人完成某项工作所需的时间,若EY EX <,DY DX >则 ( ) (A ) 甲的工作效率较高,但稳定性较差 (B ) 甲的工作效率较低,但稳定性较好 (C ) 甲的工作效率及稳定性都比乙好 (D ) 甲的工作效率及稳定性都不如乙4.样本4321,,,X X X X 取自正态分布总体X ,μ=EX 为已知,而2σ=DX 未知,则下列随机变量中不能作为统计量的是( )(.A ).∑==4141i i X X (B ).μ241++X X (C ).∑=-=4122)(1i i X X k σ (D ).∑=-=4122)(31i i X X S 5.设θ是总体X 的一个参数,θˆ是θ的一个估计量,且θθ=)ˆ(E ,则θˆ是θ的( )。
(A )一致估计 (B )有效估计 (C )无偏估计 (D )一致和无偏估计三、计算题1.两封信随机地投向标号1,2,3,4的四个空邮筒,问:(1)第二个邮筒中恰好投入一封信的概率是多少;(2)两封信都投入第二个邮筒的概率是多少?22.一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求(1)这4个中的次品数X 的分布列;(2))1(<X p3.已知随机变量X 的分布密度函数为 ⎪⎩⎪⎨⎧≤<-≤<=其他,021,210,)(x x x x x f ,求DX EX ,.4.设随机变量X 与Y(1)求X 与Y 的边缘分布列 (2)X 与Y 是否独立?5.总体X 服从参数为λ的泊松分布)(λp ,λ未知,设n X X X ,,, 21为来自总体X 的一个样本: (1)写出)(21n X X X ,,, 的联合概率分布; (2)}{max 1i ni X ≤≤,21X X +,212XX n -,5,∑=ni iX 12)(λ-中哪些是统计量?6.某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,试对05.0=α,求出滚珠平均直径的区间估计)96.1,645.1(025.005.0==Z Z概率论与数理统计作业题(二)一、填空题1.将A ,A ,C ,C ,E ,F ,G 这7个字母随机地排成一行,恰好排成GAECF AC 的概率为 。
概率论与数理统计作业及答案

概率论与数理统计作业及答案单选题(共100分)说明:()1.的分布函数为,其中为标准正态分布的分布函数,则_______(6分)(A) :0(B) :0.3(C) :0.7(D) :1参考答案:C解题思路:无2. 根据德莫弗-拉普拉斯定理可知_______(6分)(A) : 二项分布是正态分布的极限分布(B) : 正态分布是二项分布的极限分布(C) : 二项分布是指数分布的极限分布(D) : 二项分布与正态分布没有关系参考答案:B解题思路:无3.和独立,其方差分别为6和3,则_______(7分)(A) :9(B) :15(C) :21(D) :27参考答案:D解题思路:无4.设随机变量的分布函数为,则_______(7分)(A) :(B) :(C) :(D) :参考答案:B解题思路:无5.如果和满足, 则必有_______(6分)(A) :和不独立(B) :和的相关系数不为零(C) :和独立(D) :和的相关系数为零参考答案:D解题思路:无6.设随机变量的方差存在,则_______(6分)(A) :(B) :(C) :(D) :参考答案:D解题思路:无7.将一枚硬币重复掷次,以和分别表示正面向上和反面向上的次数,则和的相关系数等于_______(7分)(A) :-1(B) :0(C) :(D) :1参考答案:A解题思路:无8.设是随机变量,,则对任意常数,必有_______(7分)(A) :(B) :(C) :(D) :参考答案:D解题思路:无9.设随机变量的方差存在,为常数),则_______(7分)(A) :(B) :(C) :(D) :参考答案:C解题思路:无10.设随机变量~,~,且相关系数,则_______(7分)(A) :(B) :(C) :(D) :参考答案:D解题思路:无11.设随机变量,…相互独立,且都服从参数为的指数分布,则_______(6分)(A) :(C) :(D) :参考答案:A解题思路:无12.设随机变量~,服从参数的指数分布,则_______(7分)(A) :(B) :(C) :(D) :参考答案:A解题思路:无13. 有一批钢球,质量为10克、15克、20克的钢球分别占55%,20%,25%。
【精品】概率与数理统计作业

概率论与数理统计作业1(§1.1~§1.2)一、填空题1.设A、B、C表示三个随机事件,试将下列事件用A、B、C表示出来:(1)仅A发生;(2)A、B、C都不发生;(3)A、B、C不都发生;(4)A不发生,且B、C中至少有一个事件发生;(5)A、B、C中至少有两个事件发生;(6)A、B、C中最多有一个事件发生。
2.对飞机进行两次射击,每次射一弹,设事件A={第一次击中飞机},B={第二次击中飞机},试用A、B表示下列事件:(1)恰有一弹击中飞机;(2)至少有一弹击中飞机;(3)两弹都击中飞机。
3.设A、B、C是任意的三个随机事件,写出以下概率的计算公式:(1)=BP(AB)AP;)(P;(2)=(A=-)(3)=BP。
A⋃⋃)(C4.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是。
5.设A、B、C是三个随机事件,且25PB=CP,=AP).0(=)()((=)=BCP,则:(ABPP,0)125).0AC(=(1)A、B、C中都发生的概率为;(2)A、B、C中至少有一个发生的概率为;(3)A、B、C都不发生的概率为。
6.设()()P AB P AB =,且()P A p =,则()P B = .二、单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为[]。
(A )“甲种产品滞销,乙种产品畅销”;(B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”;(D )“甲种产品滞销或乙种产品畅销”。
2.对于事件A 、B 有A B ⊂,则下述结论正确的是[]。
(A )A 与B 必同时发生;(B )A 发生,B 必发生;(C )B 发生,A 必发生;(D )B 不发生,A 必不发生。
3.对于任意两事件A 、B ,与B B A =⋃不等价的是[]。
(A )B A ⊂;(B )A B ⊂;(C )φ=B A ;(D )φ=B A 。
概率论与数理统计作业A题

且他们损坏的概率依次为 0.3,0.2,0.1,则电路断路的概率为
。
9.甲、乙两人独立地对同一目标各射一次,其命中率分别为 0.7 和 0.5,现已知目标
被命中,则它是由甲单独射中的概率是
。
10. 已知 p(A B) 0.8, p(AB) 0.5 , 则 p(A) p(B)
。
11. n 张彩票中有 m(m n) 张可以中奖,今有 K ( K m )个人各买一张,则至少有一个
3.设事件 A,B 及 AB 的概率分别是 p, q, r 求(1) p( AB ) ;(2) p( AB)
1
4.已知100件产品中有10件次品,无放回地抽3次,每次取一件;求(1)取出的全是次 品的概率;(2)直到第三次才取得正品的概率。
5. 用3台机床独立的制造一部机器的3种零件,各机床的不合格品率分别为0.2、0.3、 0.1,从它们的产品中各任取1件进行检验,求(1)所取的3个产品都是不合格品的概率; (2)所取的3个产品有一个不合格品的概率。
。
3.设 A, B 为任意两互不相容事件,则 P(A B)
。
4.假设 A, B 为两个事件, p(A) 0.9, p(AB) 0.36,则 p(AB)
。
5.设 A, B 为两事件, p(A) 0.5, p(A B) 0.2,则 p(AB)
。
6.设
p( A)
p(B)
p(C)
1 4
( A) P(C) P( AB)
(B) P(C) P( A B)
(C) P(C) P( A) P(B) 1
(D) P(C) P( AB)
7.设 p(AB)=0 , 则正确的是【 】。
(A) A 和 B 互不相容;
概率论与数理统计作业及解答

概率论与数理统计作业及解答第一次作业★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;ABACBC =或;ABACBC =或;ABACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B ,当,A B 互斥即AB φ=时,A B 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m M C C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率.A ={8只鞋子均不成双},B ={恰有2只鞋子成双},C ={恰有4只鞋子成双}.61682616()32()0.2238,143C C P A C ===1414872616()80()0.5594,143C C C P B C === 2212862616()30()0.2098.143C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求:(1)其中无次品的概率; (2)其中恰有一件次品的概率.(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C ==5. 从1~9九个数字中, 任取3个排成一个三位数, 求:(1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率.(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.记事件A ={最小号码为5}, B ={最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次,求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}.311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8()1(),9P D P B =-=3328(),327P E ==311(),327P F ==2()2().27P G P A ==☆.某班n 个男生m 个女生(m ≤n +1)随机排成一列, 计算任意两女生均不相邻的概率.☆.在[0, 1]线段上任取两点将线段截成三段, 计算三段可组成三角形的概率. 14第二次作业 1. 设A , B 为随机事件, P (A )=0.92, P (B )=0.93, (|)0.85P B A =, 求:(1)(|)P A B , (2)()P A B ∪. (1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=-()()()()()()P AB P A P AB P A P B P AB =-=-+0.920.930.0680.058,=-+=()0.058(|)0.83.()10.93P AB P A B P B ===-(2)()()()()P A B P A P B P AB =+-0.920.930.8620.988.=+-=2. 投两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 记事件A ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ={(1,6),(6,1)}. 21(|).63P B A ==★.在1—2000中任取一整数, 求取到的整数既不能被5除尽又不能被7除尽的概率. 记事件A ={能被5除尽}, B ={能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+1575710.686.54002000=--+=3. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B )、P (B |A )、P (A B ).()1/103(|),()7/1514P AB P A B P B ===()1/103(|),()4/158P AB P B A P A ===()()()()P A B P A P B P AB =+-47119.15151030=+-=4. 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2,若第一次落下未摔破,第二次落下时摔破的概率是7/10,若前二次落下未摔破,第三次落下时摔破的概率是9/10,试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破},1,2,3.i = 1231213121793()()(|)(|)111.21010200P A A A P A P A A P A A A ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭5. 设在n 张彩票中有一张奖券,有3个人参加抽奖,分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券},1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n-====-31231213121211()()()(|)(|).12n n P A P A A A P A P A A P A A A n n n n--====--或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6. 甲、乙两人射击, 甲击中的概率为0.8, 乙击中的概率为0.7, 两人同时射击, 假定中靶与否是独立的.求(1)两人都中靶的概率; (2)甲中乙不中的概率; (3)甲不中乙中的概率.记事件A ={甲中靶},B ={乙中靶}.(1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7. 袋中有a 个红球, b 个黑球, 有放回从袋中摸球, 计算以下事件的概率: (1)A ={在n 次摸球中有k 次摸到红球}; (2)B ={第k 次首次摸到红球};(3)C ={第r 次摸到红球时恰好摸了k 次球}.(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8.一射手对一目标独立地射击4次, 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率.设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-= 9. 设某种高射炮命中目标的概率为0.6, 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标.(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式1111()()()()(1)().nn n n i i i i j i j k i i i i ji j kP A P A P A A P A A A P A -===<<<=-+++-∑∑∑证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂只计算1次概率.(1,,n i i 是1,,n 的一个排列,1,2,,.k n =)分块概率重数为1,,k i i A A 中任取1个-任取2个1(1)k -++-任取k 个,即121(1)1k k k k k C C C --++-=⇔ 121(1)(11)0.k k k k k k C C C -+++-=-=将,互换可得对偶加法(容斥)公式1111()()()()(1)().nnn n i i i ij ij k i i i i ji j kP A P A P A A P AA A P A -===<<<=-+++-∑∑∑☆.证明 若A , B 独立, A , C 独立, 则A , B ∪C 独立的充要条件是A , BC 独立. 证明(())()()()()P A B C P AB AC P AB P AC P ABC ==+- ()()()()()P A P B P A P C P ABC =+- 充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C = 即,A B C 独立. 必要性:⇒(())()()P A B C P A P B C =()(()()())P A P B P C P BC =+-()()()()()()P A P B P A P C P A P BC =+-()()()()()P A P B P A P C P ABC =+- ()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为[()]()()()()()()()()()()()[()()()()]()()()P A B C P AC BC P AC P BC P ABC P A P C P B P C P A P B P C P A P B P A P B P C P A B P C ==+-=+-=+-=[()]()()()()[()()]()()()P AB C P ABC P A P B P C P A P B P C P AB P C ==== [()]()()()()()()()()[()()]()()()P A B C P AC B P AC P ABC P A P C P A P B P C P A P AB P C P A B P C -=-=-=-=-=-所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1. 在做一道有4个答案的选择题时, 如果学生不知道问题的正确答案时就作随机猜测. 设他知道问题的正确答案的概率为p , 分别就p =0.6和p =0.3两种情形求下列事件概率: (1)学生答对该选择题; (2)已知学生答对了选择题,求学生确实知道正确答案的概率. 记事件A ={知道问题正确答案},B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+ 当0.6p =时,13130.67()0.7,444410p P B ⨯=+=+==当0.3p =时,13130.319()0.475.444440p P B ⨯=+=+== (2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时,440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时,440.312(|).13130.319p P A B p ⨯===++⨯ 2. 某单位同时装有两种报警系统A 与B , 当报警系统A 单独使用时, 其有效的概率为0.70; 当报警系统B 单独使用时, 其有效的概率为0.80.在报警系统A 有效的条件下, 报警系统B 有效的概率为0.84.计算以下概率: (1)两种报警系统都有效的概率; (2)在报警系统B 有效的条件下, 报警系统A 有效的概率; (3)两种报警系统都失灵的概率.()0.7,()0.8,(|)0.84.P A P B P B A ===(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+10.70.80.5880.088.=--+=☆.为防止意外, 在矿内同时设有两种报警系统A 与B . 每种系统单独使用时, 其有效的概率系统A 为0. 92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85,. 求: (1)发生意外时, 两个报警系统至少有一个有效的概率; (2) B 失灵的条件下, A 有效的概率.3. 设有甲、乙两袋, 甲袋中有n 只白球, m 只红球; 乙袋中有N 只白球, M 只红球. 从甲袋中任取一球放入乙袋, 在从乙袋中任取一球, 问取到白球的概率是多少. 记事件A ={从甲袋中取到白球},B ={从乙袋中取到白球}. 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+111n N m Nn m N M n m N M +=+++++++().()(1)n N n m n m N M ++=+++☆.设有五个袋子, 其中两个袋子, 每袋有2个白球, 3个黑球. 另外两个袋子, 每袋有1个白球, 4个黑球, 还有一个袋子有4个白球, 1个黑球. (1)从五个袋子中任挑一袋, 并从这袋中任取一球, 求此球为白球的概率. (2)从不同的三个袋中任挑一袋, 并由其中任取一球, 结果是白球, 问这球分别由三个不同的袋子中取出的概率各是多少?★4. 发报台分别以概率0.6和0.4发出信号 “·” 及 “-”. 由于通信系统受到于扰, 当发出信号 “·” 时, 收报台分别以概率0.8及0.2收到信息 “·” 及 “-”; 又当发出信号 “-” 时, 收报台分别以概率0.9及0.l 收到信号 “-” 及 “·”. 求: (1)收报台收到 “·”的概率;(2)收报台收到“-”的概率;(3)当收报台收到 “·” 时, 发报台确系发出信号 “·” 的概率;(4)收到 “-” 时, 确系发出 “-” 的概率.记事件B ={收到信号 “·”},1A ={发出信号 “·”},2A ={发出信号“-”}. (1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5. 对以往数据分析结果表明, 当机器调整良好时, 产品合格率为90%, 而机器发生某一故障时, 产品合格率为30%. 每天早上机器开动时, 机器调整良好的概率为75%. (1)求机器产品合格率,(2)已知某日早上第一件产品是合格品, 求机器调整良好的概率. 记事件B ={产品合格},A ={机器调整良好}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+0.750.90.250.30.75,=⨯+⨯= (2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A), (B), (C)图如下, 系统(A), (B)由4个元件组成, 系统(C)由5个元件组成,每个元件的可靠性为p , 即元件正常工作的概率为p , 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常},B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+ (B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+2222(44)(1)(2)p p p p p p p =⋅-++-- 23452252.p p p p =+-+第四次作业1. 在15个同型零件中有2个次品, 从中任取3个, 以X 表示取出的次品的个数, 求X 的分布律.2213315(),0,1,2.k k C C P X k k C -===☆.经销一批水果, 第一天售出的概率是0.5, 每公斤获利8元, 第二天售出的概率是0.4, 每公斤获利5元, 第三天售出的概率是0.1, 每公斤亏损3元. 求经销这批水果每公斤赢利X0,3,(3)(3)0.1,35,()(5)(3)(5)0.10.40.5,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩2. 抛掷一枚不均匀的硬币, 每次出现正面的概率为2/3, 连续抛掷8次, 以X 表示出现正面的次数, 求X 的分布律.(8,2/3),X B n p ==8821(),0,1,,8.33k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭3. 一射击运动员的击中靶心的命中率为0.35, 以X 表示他首次击中靶心时累计已射击的次数, 写出X 的分布律, 并计算X 取偶数的概率.(0.35),X G p =11()0.350.65,1,2.k k P X k pq k --===⨯= ()+()=1,()()=,P X P X P X P X q ⎧⎪⎨⎪⎩奇偶偶奇 解得0.6513()=0.394.110.6533q P X q ==++偶4. 一商业大厅里装有4个同类型的银行刷卡机, 调查表明在任一时刻每个刷卡机使用的概率为0.1,求在同一时刻:(1)恰有2个刷卡机被使用的概率;(2)至少有3个刷卡机被使用的概率; (3)至多有3个刷卡机被使用的概率;(4)至少有一个刷卡机被使用的概率. 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5. 某汽车从起点驶出时有40名乘客, 设沿途共有4个停靠站, 且该车只下不上. 每个乘客在每个站下车的概率相等, 并且相互独立, 试求: (1)全在终点站下车的概率; (2)至少有2个乘客在终点站下车的概率; (3)该车驶过2个停靠站后乘客人数降为20的概率. 记事件A ={任一乘客在终点站下车},乘客在终点站下车人数(40,1/4).X B n p ==(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.0001340880.999865912.=-=(3) 记事件B ={任一乘客在后两站下车},乘客在后两站下车人数(40,1/2).Y B n p ==2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!2,nn n n e π⎛⎫ ⎪⎝⎭2020202040404011(20)222C P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭24040!(20!)2= 402204040202e e ⎫⎪⎝⎭⎫⎫⎪⎪⎪⎭⎭0.1262.=其中 1.7724538509.π==参:贝努利分布的正态近似.6. 已知瓷器在运输过程中受损的概率是0.002, 有2000件瓷器运到, 求: (1)恰有2个受损的概率; (2)小于2个受损的概率; (3)多于2个受损的概率; (4)至少有1个受损的概率.受损瓷器件数(2000,0.002),X B n p ==近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7. 某产品表面上疵点的个数X 服从参数为1.2的泊松分布, 规定表面上疵点的个数不超过2个为合格品, 求产品的合格品率.产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭ ★8. 设随机变量X求:X 的分布函数, 以及概率(||5).X ≤ 随机变量X 的分布函数为0,3,(3)(3)0.2,35,()(5)(3)(5)0.20.50.7,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩(36)(5)0.5,P X P X <≤===(1)(5)(8)0.50.30.8,P X P X P X >==+==+=(5)(||5)(5)(3)(5)0.20.50.7,P X P X F P X P X ≤=≤===-+==+=第五次作业1. 学生完成一道作业的时间X 是一个随机变量(单位: 小时), 其密度函数是2,00.5()0,kx x x f x ⎧+≤≤=⎨⎩其他试求: (1)系数k ; (2)X 的分布函数; (3)在15分钟内完成一道作业的概率; (4)在10到20分钟之间完成一道作业的概率. (1) 0.50.523200111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2. 设连续型随机变量X 服从区间[-a , a ](a >0)上的均匀分布, 且已知概率1(1)3P X >=, 求: (1)常数a ; (2)概率1()3P X <.(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3. 设某元件的寿命X 服从参数为θ 的指数分布, 且已知概率P (X >50)=e -4, 试求:(1)参数θ 的值; (2)概率P (25<X <100) . 补分布()()|,0.x x xx x S x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rxr S rx e S x r x θ-==>取50,x =依次令1,2,2r =得12282(25)(25)(50),(100)(100)(50)S P X S e S P X S e --=>===>==0.0003354563,=其中 2.7182818284.e28(25100)(25)(100)P X P X P X e e --<<=>->=- 0.135334650.00033545630.1349991937.=-= 4. 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布, 求: (1)任取1只灯泡使用时间超过1200小时的概率; (2)任取3只灯泡各使用时间都超过1200小时的概率. (1) 1312008002(1200)0.2231301602,P X ee -⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5. 设X ~N (0, 1), 求: P (X <0.61), P (-2.62<X <1.25), P (X ≥1.34), P (|X |>2.13). (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ-0.894359956010.88995,=+-=(3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-= (4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6. 飞机从甲地飞到乙地的飞行时间X ~N (4, 19). 设飞机上午10: 10从甲地起飞, 求: (1)飞机下午2: 30以后到达乙地的概率; (2)飞机下午2: 10以前到达乙地的概率; (3)飞机在下午1: 40至2: 20之间到达乙地的概率.(1) 131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13122⎛⎫⎛⎫=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭0.691460.9331910.62465.=+-=★7. 设某校高三女学生的身高X ~N (162, 25), 求: (1)从中任取1个女学生, 求其身高超过165的概率; (2)从中任取1个女学生, 求其身高与162的差的绝对值小于5的概率; (3)从中任取6个女学生, 求其中至少有2个身高超过165的概率.(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-=⎪⎝⎭ (2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}, ()(165)0.2742,p P A P X ==>= 随机变量Y 贝努利分布(6,0.2742),B n p ==6156(2)1(0)(1)1(1)(1)0.52257.P Y P Y P Y p C p p ≥=-=-==----=第六次作业★1.设随机变量X 的分布律为(1)求Y =|X |的分布律; (2)求Y =X 2+X 的分布律. (1)(2)★.定理X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为(())|()|,()(),()0,XY f x y x y g x y g x f y αβ'=<<=⎧=⎨⎩极小值极大值其它. 证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤()()(()())()(),Y X F y P Y y P g X g x P X x F x =≤=≤=≤= 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=<<2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥()()(()())()1(),Y X F y P Y y P g X g x P X x F x =≤=≤=≥=- 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=-<<因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明()(),()0,()()(()())()1(),()0,X Y X P X x F x g x F y P Y y P g X g x P X x F x g x '≤=>⎧=≤=≤=⎨'≥=-<⎩ 两边对y 求导,(),()(),X Y X dF x dxdx dyf y dF x dx dx dy ⎧⎪⎪=⎨⎪-⎪⎩或两边微分()(),()()()(),X X Y Y X XdF x f x dx dF y f y dy dF x f x dx =⎧==⎨-=-⎩(),()(),X Y X dx f x dy f y dxf x dy ⎧⎪=⎨-⎪⎩(())|()|,.X f x y x y y αβ'=<<2. 设随机变量X 的密度函数是f X (x ), 求下列随机变量函数的密度函数: (1)Y =tan X ; (2)1Y X=; (3)Y =|X |. (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得'21()(())|()|(arctan ).1Y X Xf y f x y x y f y y ==+ 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y =+ '21()(())|()|(arctan ).1Y X i iX i i f y f x y x y f i y y π+∞+∞=-∞=-∞==++∑∑(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--. 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+->★3. 设随机变量X ~U [-2, 2], 求Y =4X 2-1的密度函数.2()()(41)(115,Y F y P Y y P X y P X y =≤=-≤=≤=-≤≤两边对y 求导得随机变量Y 的密度为()115.Y f y y =-≤≤ 或解反函数支12()()x y x y =='''112211()(())|()|(())|()|2(())()115.Y X X X f y f x y x y f x y x y f x y x y y =+==-≤≤★4. 设随机变量X 服从参数为1的指数分布, 求Y =X 2的密度函数(Weibull 分布). 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时,2()()()(Y X F y P Y y P X y P X F =≤=≤=≤= 两边对y 求导得()Y X f y f '==0,()0.Y y f y >=⎩或反函数y x='()()0.Y X y y f y f x x y ==>★5. 设随机变量X~N (0, 1), 求(1)Y =e X 的密度函数; (2)Y =X 2的密度函数(Gamma 分布). (1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时,()()(e )(ln )(ln ),X Y F y P Y y P y P X y y =≤=≤=≤=Φ 因而Y 的密度为''1()(ln )(ln )(ln )(ln ),Y f y y y y y y ϕϕ=Φ=={}2(ln ),0,2()0,0.Y y y f y y ->=≤⎩ 或 反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =-> (2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-.两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y =''21122()(())|()|(())|()|,0.yY X X f y f x y x y f x y x y y -=+=>6. 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩, 求Y =ln X 的概率密度. 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1, 2, 3, 4, 5的五个盒子中去, 设X 为落入1号盒的球的个数, Y 为落入2号盒的球的个数, 试求X 和Y 的联合分布律.1. 袋中装有标上号码1, 2, 2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球,. 以X , Y 分别记第一、二次取到球上的号码数, 求: (1)(X , Y )的联合分布律(设袋中各球被取机会相等); (2)X , Y 的边缘分布律; (3)X 与Y 是否独立? (1)(X , Y )的联合分布律为(1,1)0,P X Y ===1(1,2)(2,1)(2,2).3P X Y P X Y P X Y =========(2) X , Y 的分布律相同,12(1),(2).33P X P X ====(3) X 与Y 不独立.2. 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度.2(,)(,),f x y F x y x y ∂=∂∂3515,,0,(,)0,.x y e x y f x y --⎧>=⎨⎩其它★3. 设二维随机变量(X , Y )服从D 上的均匀分布, 其中D 是抛物线y =x 2和x =y 2所围成的区域, 试求它的联合密度函数和边缘分布密度函数, 并判断Y X ,是否独立.分布区域面积213123200211,333x S x dx x x ⎛⎫==-=-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X xf x dy x x ==-<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y两行成比例1/151/52,1/53/103q p ===解得12,.1015p q ==★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求:(1)常数A ;(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ), f Y (y ); (4)X 与Y 是否相互独立? (1) 2220()(,),11,y y X f x f x y dy Ax e dy Ax e dy Ax x +∞+∞+∞--====-<<⎰⎰⎰112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = (2) 112201113(0,1)(0)(1).22216ye P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<111221113()(,),0.2y yy Y f y f x y dx Ax e dx e x dx e y ------====>⎰⎰⎰(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求:(1)X的密度;(2) (,)X Y 的联合密度. (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1.求函数(1)Z 1=X +Y , (2) Z 2=min{X , Y }, (3) Z 3=max{X , Y }的分布律.(1) 11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=1111(2)(0,2)(1,1),12126P Z P X Y P X Y ====+===+=11(3)(1,2).6P Z P X Y =====(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====31117(1)(0,1)(1,1)(1,0),312612P Z P X Y P X Y P X Y ====+==+===++=3111(2)(0,2)(1,2).1264P Z P X Y P X Y ====+===+=2. 设随机变量(求函数Z =X /Y 的分布律.(/1)(1)(1)0.250.250.5,P Z X Y P X Y P X Y =====+==-=+= (/1)1(/1)0.5.P Z X Y P Z X Y ==-=-===3. 设X 与Y 相互独立, 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求Z =X +Y 的概率密度.()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰20222(1),0.z zx z x z x z z e e dx e e dx e e z --+----===->⎰⎰★4. 设X ~U (0, 1), Y ~E (1), 且X 与Y 独立, 求函数Z =X +Y 的密度函数.,01,0,(,)0,y e x y f x y -⎧<<>=⎨⎩其它,当01z <≤时,()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰01,zz z x z xz x e dx e e -+-+-====-⎰当1z >时,11110()(,)()().zz x z xz z Z X Y x f z f x z x dx f x f z x dx e dx e e e -+-+--==-=-===-⎰⎰⎰因此11,01,(),1,0,.z z z Z e z f z e e z ---⎧-≤≤⎪=->⎨⎪⎩其它★5. 设随机变量(X , Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ), f Y (y ); (2)求函数U =max (X , Y )的分布函数; (3)求函数V =min(X , Y )的分布函数.(1) 1,01,()10,xX e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,y Y e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1xx x x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. 0,0,()1,0Y yy F y e y -≤⎧=⎨->⎩.21(1),01,()()()11,1x U X Y x e x F x F x F x e e x ---⎧-<<⎪==-⎨⎪-≥⎩. min{,1}1(1)(1),0.1x x e e x e -----=>-(3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩.min{,1}111,0,,01x x e e x e---≤⎧⎪=⎨->⎪-⎩.1,0,()1(),0Y Y yy S y F y e y -≤⎧-=⎨>⎩.112111()11,01,()1()()111,1x x x xV X Y e e e e e e x F x S x S x e e x ---------⎧---+-=<<⎪=-=--⎨⎪≥⎩. 1min{,1}111,01x x x e e e x e --------+=>-.6. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.随机变量2(160,20),X N 180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为444(180)(1(1))(10.84134)0.00063368.P X >=-Φ=-=第九次作业★1.试求: E (X ), E (X 2+5), E (|X |).20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑22(5)57.2,E X EX +=+=||||20.110.210.320.130.1 1.2.i i iE X x p ==⨯+⨯+⨯+⨯+⨯=∑2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求: (1)常数A ; (2)X 的数学期望.(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a , b ]上均匀分布,试求: (1)球的表面积的数学期望(表面积2D π);(2)球的体积的数学期望(体积316D π).(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4. 设二维离散型随机变量(X , Y )的联合分布律为求E (X ), E (Y ), E (XY ).2(0.10.050.050.1)2(0.10.150.050.1)i i iEX x p ==-⨯++++⨯+++∑20.320.350.1,=-⨯+⨯=1(0.10.050.1)2(0.050.15)j j jEY y p ==⨯+++⨯+∑3(0.050.10.05)4(0.10.20.05) 2.65,+⨯+++⨯++=,()i j i j ijE XY x y p =∑∑2(10.120.0530.0540.01)2(10.120.1530.0540.05)=-⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯ 1.5 1.50.=-+=★5. 设随机变量X 和Y 独立, 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y ey f y y --⎧>=⎨≤⎩(1)求(25)E X Y +; (2)求2()E X Y .(1) 112002()2,3X EX xf x dx x dx ===⎰⎰3(1)114()3,3y Y EY yf y dy ye dy +∞+∞--===⎰⎰或随机变量1Z Y =-指数分布(3),E 141,,33EZ EY EY =-==24(25)25258.33E X Y EX EY +=+=⨯+⨯=(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1. 设离散型随机变量试求: (1) D (X ); (2) D (-3X +2) .(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑2222.20.4 2.04.DX EX E X =-=-=(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求: (1)常数A ; (2)E (X ); (3) D (X ); (4) D (2X -3) .(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3) 22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求: (1),X Y 的协方差和相关系数A ; (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<1035(),212X EX xf x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰12222031(),24X EX x f x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰2221511,412144DX EX E X DY ⎛⎫=-=-== ⎪⎝⎭11001()(,)(2),6E XY xyf x y dydx xy x y dydx +∞+∞-∞-∞==--=⎰⎰⎰⎰ 因此2151(,)(),612144Cov X Y E XY EXEY ⎛⎫=-=-=- ⎪⎝⎭,1.11X Y ρ==-(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得(21)(2)()2(2,)D X Y D X D Y Cov X Y -+=+-+-22592(1)22(1)(,).144DX DY Cov X Y =+-+⨯⨯-⨯=★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数. (1) X 的分布列为0.45由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=∑22222(1)0.4500.4510.450.9,i i iEX x p ==-⨯+⨯+⨯=∑220.9.DX EX E X =-=(2) Y 的分布列为j (,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑222222(2)0.2(1)0.2510.2520.2 2.1,j j iEY y p ==-⨯+-⨯+⨯+⨯=∑22 2.1.DY EY E Y =-=(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ,随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得2(2)(2)2(,2)(2)4(,)10.DZ D X Y DX D Y Cov X Y DX DY Cov X Y =-=+-+-=+--=第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大: 掷1000次均匀硬币, 出现正面的次数在400到600次之间.出现正面的次数~(1000,0.5),X B n p == 10000.5500,EX np ==⨯=10000.50.5250,DX npq ==⨯⨯=应用切比雪夫不等式,有239(400600)(|500|100)1.10040DX P X P X ≤≤=-≤≥-=2. 若每次射击目标命中的概率为0.1, 不断地对靶进行射击, 求在500次射击中, 击中目标的次数在区间(49, 55)内的概率.击中目标的次数~(500,0.1),X B n p ==5000.150,EX np ==⨯=5000.10.945.DX npq ==⨯⨯= 根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==(4955)P X P ≤≤=≤≤1≈Φ-Φ=Φ+Φ-⎝⎭⎝⎭ (0.74)(0.15)10.77040.559610.33.=Φ+Φ-=+-=★3. 计算器在进行加法时, 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5, 0.5)上服从均匀分布, (1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90.(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N15001||15i i P X =⎧⎫>⎨⎬⎩⎭∑15001|ii P X =⎧⎪=>=⎨⎪⎪⎩⎭∑2222(1.34)220.90990.1802.≈-Φ=-Φ=-⨯=⎝⎭(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1||n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝0.95,⎛Φ≥ ⎝1.645,≥2124.4345.1.645n ≤= 因此,最多可有4个数相加,误差总和的绝对值小于10的概率不小于0.90.★4. 一个系统由n 个相互独立的部件所组成, 每个部件的可靠性(即部件正常工作的概率)为0.90. 至少有80%的部件正常工作才能使整个系统正常运行, 问n 至少为多大才能使系统正常运行的可靠性不低于0.95.正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==(0.8)P X n≥3P ⎛=≥==-⎭0.95,3⎛≈Φ≥ ⎝⎭1.645,24.354.n ≥≥因此n 至少取25.★5. 有一大批电子元件装箱运往外地, 正品率为0.8, 为保证以0.95的概率使箱内正品数多于1000只, 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n ==(1000)P X≥P =≥=0.95,≈Φ≥1.645,0.810000.n ≥-≥ 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率. 正面次数(40,1/2),X B n p ==400.520,400.50.510.EX np DX npq ==⨯===⨯⨯= 离散值20X =近似为连续分组区间19.520.5,X <<(20)(19.520.5)P X P X =<<0.16P ⎫=<=⎪⎭2((0.16)0.5)2(0.56360.5)0.1272.=Φ-=⨯-= 第十二次作业★1. 设X 1, X 2, ⋅⋅⋅, X 10为来自N (0, 0.32)的一个样本, 求概率1021{ 1.44}i i P X =>∑.标准化变量(0,1),1,2,...,10.0.3iXN i =由卡方分布的定义,10222211~(10).0.3ii Xχχ==∑1021 1.44i i P X =⎧⎫>⎨⎬⎩⎭∑10222211 1.44(10)160.1,0.30.3i i P X χ=⎧⎫==>=≈⎨⎬⎩⎭∑ 略大,卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1, X 2, X 3, X 4, X 5是来自正态总体X ~(0, 1)容量为5的样本, 试求常数c , 使得统计量t 分布, 并求其自由度.由独立正态分布的可加性,12(0,2),X X N +标准化变量(0,1),U N =由卡方分布的定义,22222345~(3),X X X χχ=++U 与2χ独立.由t 分布的定义,(3),T t ===因此c =自由度为3.★3. 设112,,,n X X X 为来自N (μ1, σ2)的样本, 212,,,nY Y Y 为来自N (μ2, σ2)的样本, 且两样本相互独立, 2212,S S 分别为两个样本方差, 222112212(1)(1)2pn S n S S n n -+-=+-. 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得()2211112(1)(1)1,n S E E n n χσ⎛⎫-=-=- ⎪⎝⎭221.ES σ= 类似地222.ES σ=222112212(1)(1)2pn S n S ES E n n ⎛⎫-+-= ⎪+-⎝⎭22212121212(1)(1).22n n ES ES n n n n σ--=+=+-+-。
《概率论与数理统计》作业参考答案

《概率论与数理统计》作业参考答案一、填空题 1.0.84,6. 2.⎪⎩⎪⎨⎧≥<≤<=111000)(x x xx x F ,1. 3. N(30,1),1/2,8)30(4241221()(--∑==i i x ex p π.4. 83 5.161, (2分)816. 0.096 7. 1/3,(2分)-1/6.8. 2,9,92)2(2231⋅--x e π.9. 0.1,0.5,0.5,0.2,0.9. 10. 3. 11.6. 12. 2y 13. 4114.np p )1(-15. )1,0(N 16. ]1,1[-17. 审视所考察事件是否为小概率 18. 0.5 19. 0.4 20.5321. 1 22. 3723. t (n) 二、选择题1. A 2. C 3. B 4. B 5. B 6. B 7. D 8.C 9. C 10. C 11. B 12. B 13. A 14. D 15. A 16. B 17. A 18. D 19. A 20. B 21.C 22. B 三、计算题1. 第一问是服从超几何分布第二问是服从二项分布 2. 解:由切贝晓夫不等式21)|(|εξεξξD E P -≥<-,8,nD E ==ξμξ于是281)|(|εεξξn E P -≥<-nn P 211481)4|(|2-=⋅-≥<-μξ.3. 解: 矩估计为,112ˆXX --=α极大似然估计为,1ln 1ˆ+-=i X α4. (1))0(22)(2ln2>=-y ey y g yπ(2))0(22)(22≥=-y ey g yπ5. (1)0.807(2)2,1,0)(3203128===-k CC C k P kkξ, 32.1=ξE 6. 矩估计 X =θˆ,极大似然估计 X =θˆ. 7.(1)2/9,(2)5/18, (3)1/2. 8.(1))0(22)(2ln2>=-y ey y g yπ(2))0(22)(2>=-y eyy g y π9. 矩估计 X =μˆ; 极大似然估计 X =μˆ. 10. 解: 矩估计为,1ˆX=λ极大似然估计为,1ˆX=λ11. 由公式)(1)(A P A P -= 109101112522=-=-=C C p12. 30114.0323.031)|()()|()()(2211=⨯+⨯=+=B A P B P B A P B P A P11330113.031)()()()(=⨯===A P B A P B P A B P p i i i13. 25125,,5335353=====P nk p P k n14. 8413.0)1()69096690()96(≈Φ=-<-=<ξξP P 5.0)0()69090690()90(=Φ=-<-=<ξξP P15. )3.1(1)3.1(≤-=>ξξP P25.0])2([13.1110≈-+-=⎰⎰dx x xdx16. .601!52,,255=====nk p P k n17. 设事件A : 迟到,1B :乘火车来,2B :乘轮船来,3B :乘汽车来,4B :乘飞机来,203)()()(41==∑=i i iB A P BP A P5.0)()()()(111==A P B P B A P A B P18. 由1)(=⎰∞+∞-dx x f ,得1,10==⎰∞+-A dx Aex19. 6826.01)1(2)115651()8050(=-Φ=≤-≤-=≤≤ξξP P.34136826.050008050=⨯分的学生人数为分至20. )2()4()04(22≥=≥=≥-ξξξp p p8.05162=⎰=dx四、证明题1.证明:总体X ~N (0,1),样本),,,(521X X X 来自总体X ,则i X 相互独立且与总体X 同分布,令221X X X +=,则X ~N (0,21),于是221X X +~N (0,1),令 )3(~2252423χX X X Y ++=,于是3/2Y X 服从t 分布,要使25242321)(XXXX X c +++服从t 分布,必须 23=c .2. 可用切贝晓夫不等式来证. 3. 证:∵1222,0)12(2=⋅⋅==+-k kk k D E ξξ而n D D nk knk k ==∑∑==11)(ξξ 故01lim)(1lim12==∑=∞→∞→nD nnk n k n ξ∴}{n ξ服从马尔科夫大数定律. 4. 证明:()∑-=---=11212)1(21n i i i X X E n ES()∑-=+++--=1121212)1(21n i ii i i X X X X E n()∑-=+++--=112121)(2)1(21n i ii i i EX X X E EXn()∑-=+++++-+-=1121211)(2)()1(21n i iii i i i EXDXEX EX EXDX n()∑-=++-+-=11222222)1(21n i n μσμμσ2σ=。
概率论与数理统计作业及解答()

概率论与数理统计作业及解答第一次作业★1. 甲? 乙? 丙三门炮各向同一目标发射一枚炮弹? 设事件A ? B ? C 分别表示甲? 乙? 丙击中目标? 则三门炮最多有一门炮击中目标如何表示. 事件E ?{事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;ABACBC =或;ABACBC =或;AB ACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B ,当,A B 互斥即AB φ=时?A B 常记为A B +?) 2. 设M 件产品中含m 件次品? 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m MC C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只? 计算以下事件的概率.A ?{8只鞋子均不成双},B ?{恰有2只鞋子成双},C ?{恰有4只鞋子成双}. ★4. 设某批产品共50件? 其中有5件次品? 现从中任取3件? 求? (1)其中无次品的概率? (2)其中恰有一件次品的概率?(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C ==5. 从1~9九个数字中? 任取3个排成一个三位数? 求?(1)所得三位数为偶数的概率? (2)所得三位数为奇数的概率?(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10?任选3人记录其号码?求?(1)最小号码为5的概率?(2)最大号码为5的概率?记事件A ?{最小号码为5}, B ?{最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个?每次从袋中任取一球?记下颜色后放回?共取球三次?求下列事件的概率:A ={全红}?B ={颜色全同}?C ={颜色全不同}?D ={颜色不全同}?E ={无黄色球}?F ={无红色且无黄色球}?G ={全红或全黄}.☆.某班n 个男生m 个女生(m ?n ?1)随机排成一列? 计算任意两女生均不相邻的概率.☆.在[0? 1]线段上任取两点将线段截成三段? 计算三段可组成三角形的概率.第二次作业1. 设A ? B 为随机事件? P (A )?0.92? P (B )?0.93? (|)0.85P B A =? 求?(1)(|)P A B ?(2)()P A B ∪? (1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=- (2)()()()()P A B P A P B P AB =+-0.920.930.8620.988.=+-=2. 投两颗骰子?已知两颗骰子点数之和为7?求其中有一颗为1点的概率. 记事件A ?{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ?{(1,6),(6,1)}.★.在1—2000中任取一整数? 求取到的整数既不能被5除尽又不能被7除尽的概率?记事件A ?{能被5除尽}, B ?{能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦285(),200P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = 3. 由长期统计资料得知? 某一地区在4月份下雨(记作事件A )的概率为4/15?刮风(用B 表示)的概率为7/15? 既刮风又下雨的概率为1/10? 求P (A |B )、P (B |A )、P (A ?B )?4? 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2?若第一次落下未摔破?第二次落下时摔破的概率是7/10?若前二次落下未摔破?第三次落下时摔破的概率是9/10?试求落下三次而未摔破的概率. 记事件i A ={第i 次落下时摔破}?1,2,3.i = 5? 设在n 张彩票中有一张奖券?有3个人参加抽奖?分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券}?1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n -====-或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6? 甲、乙两人射击? 甲击中的概率为0?8? 乙击中的概率为0?7? 两人同时射击? 假定中靶与否是独立的?求(1)两人都中靶的概率? (2)甲中乙不中的概率? (3)甲不中乙中的概率?记事件A ={甲中靶}?B ={乙中靶}. (1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7? 袋中有a 个红球? b 个黑球? 有放回从袋中摸球? 计算以下事件的概率?(1)A ?{在n 次摸球中有k 次摸到红球}? (2)B ?{第k 次首次摸到红球}?(3)C ?{第r 次摸到红球时恰好摸了k 次球}?(1) ();()k n kk n kk k n nna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭(3) 1111().()rk rr k rr r k k ka b a b P C C Ca b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8?一射手对一目标独立地射击4次? 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率? 设射击一次命中目标的概率为,1p q p =-4801121,,1.818133q q p q =-===-= 9? 设某种高射炮命中目标的概率为0.6? 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标?(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂只计算1次概率.(1,,n i i 是1,,n 的一个排列?1,2,,.k n =)分块概率重数为1,,k i i A A 中任取1个-任取2个1(1)k -++-任取k 个?即将,互换可得对偶加法(容斥)公式☆.证明 若A ? B 独立? A ? C 独立? 则A ? B ∪C 独立的充要条件是A ? BC 独立. 证明充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C = 即,A B C 独立. 必要性:⇒()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1? 在做一道有4个答案的选择题时? 如果学生不知道问题的正确答案时就作随机猜测? 设他知道问题的正确答案的概率为p ? 分别就p ?0.6和p ?0.3两种情形求下列事件概率?(1)学生答对该选择题? (2)已知学生答对了选择题?求学生确实知道正确答案的概率?记事件A ={知道问题正确答案}?B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+当0.6p =时?13130.67()0.7,444410p P B ⨯=+=+== 当0.3p =时?13130.319()0.475.444440p P B ⨯=+=+==(2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时?440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时?440.312(|).13130.319p P A B p ⨯===++⨯ 2? 某单位同时装有两种报警系统A 与B ? 当报警系统A 单独使用时? 其有效的概率为0.70? 当报警系统B 单独使用时? 其有效的概率为0.80.在报警系统A 有效的条件下? 报警系统B 有效的概率为0.84.计算以下概率? (1)两种报警系统都有效的概率? (2)在报警系统B 有效的条件下? 报警系统A 有效的概率? (3)两种报警系统都失灵的概率.(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+☆.为防止意外? 在矿内同时设有两种报警系统A 与B ? 每种系统单独使用时? 其有效的概率系统A 为0? 92? 系统B 为0.93? 在A 失灵的条件下? B 有效的概率为0.85?? 求: (1)发生意外时? 两个报警系统至少有一个有效的概率? (2) B 失灵的条件下? A 有效的概率?3? 设有甲、乙两袋? 甲袋中有n 只白球? m 只红球? 乙袋中有N 只白球? M 只红球?从甲袋中任取一球放入乙袋? 在从乙袋中任取一球? 问取到白球的概率是多少?记事件A ={从甲袋中取到白球}?B ={从乙袋中取到白球}. 由全概率公式得☆.设有五个袋子? 其中两个袋子? 每袋有2个白球? 3个黑球? 另外两个袋子? 每袋有1个白球? 4个黑球? 还有一个袋子有4个白球? 1个黑球? (1)从五个袋子中任挑一袋? 并从这袋中任取一球? 求此球为白球的概率? (2)从不同的三个袋中任挑一袋? 并由其中任取一球? 结果是白球? 问这球分别由三个不同的袋子中取出的概率各是多少?★4? 发报台分别以概率0?6和0?4发出信号 “·” 及 “?”? 由于通信系统受到于扰? 当发出信号 “·” 时? 收报台分别以概率0?8及0?2收到信息 “·” 及 “?”? 又当发出信号 “?” 时? 收报台分别以概率0?9及0?l 收到信号 “?” 及 “·”? 求: (1)收报台收到 “·”的概率?(2)收报台收到“?”的概率?(3)当收报台收到 “·” 时? 发报台确系发出信号 “·” 的概率?(4)收到 “?” 时? 确系发出 “?” 的概率?记事件B ={收到信号 “·”}?1A ={发出信号 “·”}?2A ={发出信号“?”}.(1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5? 对以往数据分析结果表明? 当机器调整良好时? 产品合格率为90%? 而机器发生某一故障时? 产品合格率为30%? 每天早上机器开动时? 机器调整良好的概率为75%?(1)求机器产品合格率?(2)已知某日早上第一件产品是合格品? 求机器调整良好的概率? 记事件B ={产品合格}?A ={机器调整良好}. (1) 由全概率公式得(2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A)? (B)? (C)图如下? 系统(A)? (B)由4个元件组成? 系统(C)由5个元件组成? 每个元件的可靠性为p ? 即元件正常工作的概率为p ? 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常}?B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+(B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得 第四次作业1? 在15个同型零件中有2个次品? 从中任取3个? 以X 表示取出的次品的个数? 求X 的分布律.☆.经销一批水果? 第一天售出的概率是0.5? 每公斤获利8元? 第二天售出的概率是0.4? 每公斤获利5元? 第三天售出的概率是0.1? 每公斤亏损3元? ?2? 抛掷一枚不均匀的硬币? 每次出现正面的概率为2/3? 连续抛掷8次? 以X 表示出现正面的次数? 求X 的分布律.3? 一射击运动员的击中靶心的命中率为0.35? 以X 表示他首次击中靶心时累计已射击的次数? 写出X 的分布律? 并计算X 取偶数的概率?解得0.6513()=0.394.110.6533q P X q ==++偶4? 一商业大厅里装有4个同类型的银行刷卡机? 调查表明在任一时刻每个刷卡机使用的概率为0.1?求在同一时刻?(1)恰有2个刷卡机被使用的概率?(2)至少有3个刷卡机被使用的概率? (3)至多有3个刷卡机被使用的概率?(4)至少有一个刷卡机被使用的概率? 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5? 某汽车从起点驶出时有40名乘客? 设沿途共有4个停靠站? 且该车只下不上? 每个乘客在每个站下车的概率相等? 并且相互独立? 试求? (1)全在终点站下车的概率? (2)至少有2个乘客在终点站下车的概率? (3)该车驶过2个停靠站后乘客人数降为20的概率?记事件A ={任一乘客在终点站下车}?乘客在终点站下车人数(40,1/4X B n p == (1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3) 记事件B ={任一乘客在后两站下车}?乘客在后两站下车人数(40,1/2)Y B n p == 2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!2,nn n n e π⎛⎫⎪⎝⎭其中 1.7724538509.π==参?贝努利分布的正态近似?6? 已知瓷器在运输过程中受损的概率是0.002? 有2000件瓷器运到? 求? (1)恰有2个受损的概率? (2)小于2个受损的概率? (3)多于2个受损的概率? (4)至少有1个受损的概率?受损瓷器件数(2000,0.002),X B n p ==近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7? 某产品表面上疵点的个数X 服从参数为1.2的泊松分布? 规定表面上疵点的个数不超过2个为合格品? 求产品的合格品率?产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭★8? 设随机变量X求?X 的分布函数? 5),(||5).P X ≤≤ 随机变量X 的分布函数为 第五次作业1? 学生完成一道作业的时间X 是一个随机变量(单位? 小时)? 其密度函数是 试求? (1)系数k ? (2)X 的分布函数? (3)在15分钟内完成一道作业的概率? (4)在10到20分钟之间完成一道作业的概率? (1) 0.50.523200111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2? 设连续型随机变量X 服从区间[?a ? a ](a ?0)上的均匀分布? 且已知概率1(1)3P X >=? 求? (1)常数a ? (2)概率1()3P X <?(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3? 设某元件的寿命X 服从参数为? 的指数分布? 且已知概率P (X ?50)?e ?4? 试求?(1)参数? 的值? (2)概率P (25?X ?100) ? 补分布()()|,0.x x xx x S x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rx r S rx e S x r x θ-==>取50,x =依次令1,2,2r =得其中 2.7182818284.e4? 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布? 求? (1)任取1只灯泡使用时间超过1200小时的概率? (2)任取3只灯泡各使用时间都超过1200小时的概率? (1) 1312008002(1200)0.2231301602,P X ee-⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5? 设X ~N (0? 1)? 求? P (X ?0?61)? P (?2?62?X ?1?25)? P (X ?1?34)? P (|X |?2?13)? (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ- (3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-= (4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6? 飞机从甲地飞到乙地的飞行时间X ~N (4? 19)? 设飞机上午10? 10从甲地起飞? 求? (1)飞机下午2? 30以后到达乙地的概率? (2)飞机下午2? 10以前到达乙地的概率? (3)飞机在下午1? 40至2? 20之间到达乙地的概率? (1)131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭★7? 设某校高三女学生的身高X ~N (162? 25)? 求? (1)从中任取1个女学生?求其身高超过165的概率? (2)从中任取1个女学生? 求其身高与162的差的绝对值小于5的概率? (3)从中任取6个女学生? 求其中至少有2个身高超过165的概率? (1)162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-= ⎪⎝⎭(2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}? ()(165)0.2742,p P A P X ==>= 随机变量Y 贝努利分布(6,0.2742),B n p == 第六次作业★1.设随机变量X 的分布律为 (1)求Y ?|X |的? (2)求Y ?X 2?X 的分布律?(1)(2)★.定理设连续型变量X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤ 两边对y 求导,2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥ 两边对y 求导,因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明两边对y 求导,或两边微分2? 设随机变量X 的密度函数是f X (x )? 求下列随机变量函数的密度函数? (1)Y ?tan X ? (2)1Y X=? (3)Y ?|X |? (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y=+(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--? 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+-> ★3? 设随机变量X ~U [?2? 2]? 求Y ?4X 2?1的密度函数? 两边对y 求导得随机变量Y 的密度为或解 反函数支12()()x y x y ==★4? 设随机变量X 服从参数为1的指数分布? 求Y ?X 2的密度函数(Weibull 分布)?当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时, 两边对y 求导得或 反函数y x ='()()0.Y X y y f y f x x y ==>★5? 设随机变量X~N (0? 1)? 求(1)Y ?e X 的密度函数? (2)Y ?X 2的密度函数(Gamma 分布)?(1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时, 因而Y 的密度为或 反函数l X Y =l y x y ='1()()Yyf y x x yϕϕ=={}2(lx p2y y =-(2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=-?两边对y 求导得Y 的密度函数为2,0,()0.yY y f y ->=⎩或 反函数支12()()x y x y ==6? 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩? 求Y ?ln X 的概率密度? 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1? 2? 3? 4? 5的五个盒子中去? 设X 为落入1号盒的球的个数? Y 为落入2号盒的球的个数? 试求X 和Y 的联合分布律? 1? 袋中装有标上号码1? 2? 2的3个球? 从中任取一个并且不再放回? 然后再从袋中任取一球?? 以X ? Y 分别记第一、二次取到球上的号码数? 求? (1)(X ? Y )的联合分布律(设袋中各球被取机会相等)? (2)X ? Y 的边缘分布律? (3)X 与Y 是否独立?(1)(X ? Y )的联合分布律为(2) X ? Y 的分布律相同?12(1),(2).33P X P X ====(3) X 与Y 不独立?2? 设二维连续型变量(,X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度?★3? 设二维随机变量(X ? Y )服从D 上的均匀分布? 其中D 是抛物线y ?x 2和x ?y 2所围成的区域?试求它的联合密度函数和边缘分布密度函数? 并判断Y X ,是否独立?分布区域面积213123200211,333x S x dx x x ⎛⎫===-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<<⎪=⎨⎪⎩其它边缘X 的密度为22()),01,X x f x dyx x ==<<边缘Y 的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立. 4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y 两行成比例1/151/52,1/53/103q p ===解得12,.1015p q == ★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求?(1)常数A ?(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x )? f Y (y )? (4)X 与Y 是否相互独立? (1) 2220()(,),11,y y X f x f x y dy Ax e dy Ax e dy Ax x +∞+∞+∞--====-<<⎰⎰⎰(2) 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求?(1)X 的密度?(2) (,)X Y 的联合密度? (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)XY 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1?求函数(1)Z 1?X ?Y ? (2) Z 2?min{X ? Y }? (3) Z 3?max{X ? Y }的分布律? (1)11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=(2)2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====2?求函数Z ?X /Y 的分布律?3? 设X 与Y 相互独立? 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求Z ?X ?Y 的概率密度?★4? 设X ~U (0? 1)? Y ~E (1)? 且X 与Y 独立? 求函数Z ?X ?Y 的密度函数? 当01z <≤时? 当1z >时? 因此★5? 设随机变量(X ? Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x )? f Y (y )? (2)求函数U ?max (X , Y )的分布函数? (3)求函数V ?min (X , Y )的分布函数?(1) 1,01,()10,xX e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,y Y e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1xx x x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩.(3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩.6? 设某种型号的电子管的寿命(以小时计)近似地服从N (160? 202)分布? 随机地选取4只求其中没有一只寿命小于180小时的概率?随机变量2(160,20),X N 180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为 第九次作业★1.试求? E (X )? E (X 2?5)? E (|X |)?2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求? (1)常数A ? (2)X 的数学期望?(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a ? b ]上均匀分布?试求? (1)球的表面积的数学期望(表面积2D π)?(2)球的体积的数学期望(体积316D π)?(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4.求E (X )? E (Y )? E (XY )? ★ 5. 设随机变量X和Y 独立? 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0,1.y Y e y f y y --⎧>=⎨≤⎩ (1)求(25)E X Y +? (2)求2()E X Y ?(1) 112002()2,3X EX xf x dx x dx ===⎰⎰或随机变量1Z Y =-指数分布(3),E 141,,33EZ EY EY =-==(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1.试求? (1) D (X )? (2) D (?3X ?2) ?(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求? (1)常数A ? (2)E (X )? (3) D (X )? (4) D (2X ?3) ?(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3)22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★ 3. 设二维随机变量(,X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求? (1),X Y 的协方差和相关系数A ? (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<因此(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得 ★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数? (1) X 的分布列为由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=(2) Y(,)X Y 取值关于原点中心对称由变量Y分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ?随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得 第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大? 掷1000次均匀硬币? 出现正面的次数在400到600次之间?出现正面的次数~(1000,0.5),X B n p ==应用切比雪夫不等式?有2. 若每次射击目标命中的概率为0.1? 不断地对靶进行射击? 求在500次射击中? 击中目标的次数在区间(49? 55)内的概率? 击中目标的次数~(500,0.1),X B n p ==根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==★3. 计算器在进行加法时? 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(?0.5? 0.5)上服从均匀分布? (1)若将1500个数相加? 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90?(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1|n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝ 因此?最多可有4个数相加?误差总和的绝对值小于10的概率不小于0.90? ★4. 一个系统由n 个相互独立的部件所组成? 每个部件的可靠性(即部件正常工作的概率)为0.90? 至少有80%的部件正常工作才能使整个系统正常运行? 问n 至少为多大才能使系统正常运行的可靠性不低于0.95? 正常工作的部件数~(,),X B n p 其中0.p =0.E X n p n ==0.D X n p q n==1.645,24.354.n ≥≥因此n 至少取25.★5. 有一大批电子元件装箱运往外地? 正品率为0.8? 为保证以0.95的概率使箱内正品数多于1000只? 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n == 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率.正面次数(XBn p==40E Xn ==⨯离散值20X =近似为连续分组区间19.520.5,X <<第十二次作业★1. 设X 1? X 2? ???? X 10为来自N (0? 0?32)的一个样本? 求概率1021{ 1.44}i i P X =>∑?标准化变量(0,1),1,2,...,10.0.3i X N i =由卡方分布的定义?10222211~(10).0.3ii Xχχ==∑略大?卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1? X 2? X 3? X 4? X 5是来自正态总体X ~(0? 1)容量为5的样本? 试求常数c ? 使得统计量t 分布? 并求其自由度?由独立正态分布的可加性?12(0,2),X X N +标准化变量(0,1),U N =由卡方分布的定义?22222345~(3),X X X χχ=++U 与2χ独立?由t 分布的定义?(3),T t ===因此c =自由度为3. ★3? 设112,,,n X X X 为来自N (?1? ?2)的样本? 212,,,nY Y Y 为来自N (?2? ?2)的样本? 且两样本相互独立? 2212,S S 分别为两个样本方差? 222112212(1)(1)2pn S n S S n n -+-=+-? 试证明22().p E S σ= 证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得类似地222.ES σ=★4? 设1,...,n X X 为总体2(,)N μσ的简单样本?样本均值和样本方差依次为2,.X S 求满足下式的k 值?()0.95.P X kS μ>+=统计量(1),T t n =-因此k = ☆.设正态总体2(,)N μσ的容量为12n =的简单样本为112,...,X X ?样本均值和样本方差依次为2,.X S 求满足下式的k 值?()0.95.P X kS μ>+= 正态总体样本方差未知?统计量(1),12.T t n n =-=★5? 设X 1? X 2? ???? X n ? X n ?1为来自N (?? ?2)的样本? 记11n ii X X n ==∑?2211()1ni i S X X n ==--∑? 证明?T (1)t n -? 证由独立正态分布的可加性?21(,),nii XN n n μσ=∑211,,nii X X N n n σμ=⎛⎫= ⎪⎝⎭∑1n X +及2S 相互独立?()2110,n n X XN nσ++-和2S 独立?标准化变量(0,1),U N =2222(1)~(1),n S n χχσ-=-/,S σ=由t 分布的定义?第十三次作业★1? 设总体的密度函数为22(),0,(;)0,x x f x αααα-⎧<<⎪=⎨⎪⎩其他,?求参数α的矩估计?总体期望23220002()2(;),33x x x EX xf x dx x dx ααααααααα⎛⎫-==⋅=-= ⎪⎝⎭⎰⎰3,EX α= 用样本均值X 估计(或替换)总体期望EX 即ˆ,EXX =得α矩估计为ˆ3.X α= ★2? 设总体的密度函数为1(1)(1),01(;)0,x x x f x θθθθ-⎧+-<<=⎨⎩其他? 求参数? 的矩估计?总体期望解得2,1EX EX θ=-用样本均值X 估计(或替换)总体期望EX 即ˆ,EX X =得? 矩估计为2ˆ.1X Xθ=- 3? 设总体的密度函数为||1(;),2x f x e x σσσ-=-∞<<+∞? 求参数? 的最大似然估计?似然函数1111()(;)exp ||,2nn i i n n i i L f x x σσσσ==⎧⎫==-⎨⎬⎩⎭∑∏取对数得对数似然函数11ln ()ln 2ln ||,ni i L n n x σσσ==---∑令21ln ()1||0,ni i L n x σσσσ=∂=-+=∂∑ 解得σ的最大似然估计为11ˆ||.nL i i x n σ==∑ 4? 设总体的密度函数为222,0(;)0,0x x e x f x x θθθ-⎧⎪>=⎨⎪<⎩? 求参数? 的最大似然估计? 似然函数2122111()(;)exp ,ninn i i i ni i xL f x x θθθθ===⎧⎫==-⎨⎬⎩⎭∏∑∏取对数得对数似然函数22111ln ()ln 2ln ,nni i i i L x n x θθθ===--∑∑令231ln ()220,n i i L n x θθθθ=∂=-+=∂∑ 解得θ的最大似然估计为ˆLθ= ★5? 设总体X 的均值和方差分别为?与? 2? X 1? X 2? X 3是总体的一个样本, 试验证统计量(1)112311ˆ4412X X X μ=++; (2)2123111ˆ333X X X μ=++; (3)3123311ˆ882X X X μ=++? 均为? 的无偏估计量, 并比较其有效性?(1)1123123111111ˆ.442442E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ (2)1123123111111ˆ.333333E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ (3)1123123311311ˆ.882882E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ 因此123ˆˆˆ,,μμμ均为μ的无偏估计量? 由独立变量方差的可加性因此无偏估计量123ˆˆˆ,,μμμ中2ˆμ最有效,1ˆμ比3ˆμ有效? ★7. 设2ˆθ为? 2的无偏估计, 且ˆ()0D θ>, 试证ˆθ不是? 的无偏估计? 反之, 若ˆθ为? 的无 偏估计, ˆ()0D θ>, 则2ˆθ也不是? 2的无偏估计?证(1) 22ˆ,E θθ=2222ˆˆˆˆ0,D E E E θθθθθ=-=->22ˆˆ,,E E θθθθ<≠得ˆθ不是? 的无偏估计? (2) ˆ,E θθ=222222ˆˆˆˆˆ0,,D E E E E θθθθθθθ=-=->>得2ˆθ不是2θ的无偏估计? 8?设12,θθ是参数θ的两个相互独立的无偏估计量,且124D D θθ=,找出常数12,k k ,使1212k k θθ+也是θ的无偏估计量,并使它在所有这种形状的估计量中方差最小.1212121212()()E k k k E k E k k θθθθθθ+=+=+=,121k k +=,222212122121212()(4)D k k k D k D k k D θθθθθ+=+=+,121222121,0,1,min{4}.k k k k s k k +=≤≤⎧⎨=+⎩ 求最小值得1214,55k k ==,4min 5s =,121124min ().5D k k D θθθ+=第十四次作业★1. 某车间生产滚珠, 从长期实践中知道, 滚珠直径X 可以认为服从正态分布.从某天的产品里随机抽取6个, 测得直径(单位:mm)为14.6, 15.1, 14.9, 14.8, 15.2, 15.1?若已知总体方差为0.06, 试求平均直径的置信区间.(置信度为0.95)? 若总体方差未知, 试求平均直径的置信区间.(置信度为0.95)? (1)μ的置信区间中心当20.06σ=时,μ的95.01=-α置信区间半长为 因此μ的0.95置信区间为(2) 样本方差2211()0.051,1ni S X X n =-=-∑ μ的95.01=-α置信区间半长为因此μ的0.95置信区间为★2. 为了解某型号灯泡使用寿命X (单位:小时)的均值μ和标准差?? 今测量10只灯泡? 测得1500x =? S ?20? 若已知X 服从正态分布N (?? ??2), 求? (1)置信度为0.95的总体均值? 的置信区间? (2)置信度为0.90的总体方差??2的置信区间?(1) 置信区间半长/20.025( 2.262 6.32214.3,t n t α-==⨯= 当2σ未知时,μ的95.01=-α置信区间为(2) 已知参数2210,20,0.10,n S α===上侧分位数为 置信区间两端(下限,上限)为因此灯泡使用寿命方差2σ置信度为10.90α-=的置信区间为★3. 对方差220σσ=为已知的正态总体? 问须抽取容量n 为多大的样本, 方能使总体均值?的置信度为1??的置信区间的长度不大于L ?总体均值μ的置信区间长度为/22,u L α≤取220/224n u L ασ≥的整数? ★4? 已知某种元件的寿命X ~N (?? ? 2)? 现随机地抽取10个试件进行试验, 测得数据如下?82, 93, 57, 71, 10, 46, 35, 18, 94, 69. (1)若已知? ?3, 求平均抗压强度? 的95%的置信区间?(2)求平均抗压强度?的95%的置信区间? (3)求? 的95%的置信区间? (1)μ的置信区间中心当223σ=时,μ的95.01=-α置信区间半长/2 1.96 1.861,u α==因此μ的0.95置信区间为(2) 上侧分位数220.02510.025(9)19.023,(9) 2.700,χχ-== 样本方差σ的10.95α-=的置信区间两端(下限,上限)为因此元件寿命标准差σ的0.95置信区间为★.两正态总体均值差21μμ-的1α-置信区间.当22212σσσ==未知时? 由于22,,,x yX Y S S 相互独立?构造服从分布(2)t m n +-的统计量(枢轴量) 记222(1)(1)2x ywm S n S S m n -+-=+-,则21μμ-的二样本t 置信区间为★5? 随机地抽取A 批导线4根? B 批导线5根? 测得起电阻为(单位? 欧姆) A ? 0.143? 0.142? 0.143? 0.137?B ? 0.140? 0.142? 0.136? 0.138? 0.140设测得数据分别服从正态分布N (?1? ? 2)? N (?2? ? 2)? 且它们相互独立? ?1? ?2? ? 均未知? 求?1??2的95%的置信区间?上侧分位数20.025(2)(7) 2.3646,t m n t α+-==当22212σσσ==未知时,21μμ-的1α-置信区间半长为 21μμ-的95.01=-α置信区间为★6? 假设人体身高服从正态分布, 今抽测甲、乙两地区18岁~ 25岁女青年身高得数据如下: 甲地区抽取10名, 样本均值1.64米, 样本标准差0.2米; 乙地区抽取10名, 样本均值1.62米, 样本标准差0.4米. 求? (1)两正态总体均值差的95%的置信区间? (2)两正态总体方差比的95%的置信区间?(1) 分位数20.025(2)(18) 2.1009,t m n t α+-==当22212σσσ==未知时,21μμ-的1α-置信区间半长为 21μμ-的95.01=-α置信区间为★(2)两正态总体(期望未知)的方差比2212/σσ的1α-置信区间.由于22111(1)/n S σ-~21(1),n χ-22222(1)/n S σ-~22(1),n χ-且2212,S S 独立,构造统计量(枢轴量) 2211122222~(1,1),S F F n n S σσ=-- 对给定的置信度α-1,由其中/2211/2121(1,1),(1,1)F n n F n n αα-=---- 因此2212/σσ的α-1置信区间为第十五次作业★1? 某工厂生产的固体燃料推进器的燃烧率服从正态分布N (?? ? 2)? ? ?40cm/s, ? ?2cm/s ? 现在用新方法生产了一批推进器? 从中随机抽取25只? 测得燃烧率的样本均值为X ?41.25cm/s ? 设在新方法下总体均方差仍为2cm/s ? 问这批推进器的燃烧率是否较以往生产的推进器的燃烧率有显着的改变?取显着性水平??0.05?1).提出原假设及备择假设.0010:40;:.H H μμμμ==≠ 2).选取统计量并确定其分布.~(0,1).X U N =3).确定分位数及拒绝域.上侧分位数0.025 1.96,u =拒绝域{|| 1.96}.W U =≥4).计算统计量的观测值并作出统计推断.因此拒绝原假设,认为在显着性水平0.05α=下,推进器的燃烧率显着改变.★2? 某苗圃规定平均苗高60(cm)以上方能出圃? 今从某苗床中随机抽取9株测得高度分别为 62? 61? 59? 60? 62? 58? 63? 62? 63? 已知苗高服从正态分布? 试问在显着性水平? ?0.05下? 这些苗是否可以出圃? 1).原假设及备择假设0010:60;:.H H μμμμ≥=< 2).取统计量(8).X T t =3).上侧分位数0.05(8) 1.8595,t =得拒绝域(, 1.8595).W =-∞-4).由样本计算得61.11,X=0,.T T W S ==>∉因此接受原假设0,H 即认为在显着性水平0.05α=下,这些苗可以出圃.★3? 5名测量人员彼此独立地测量同一块土地? 分别测得这块土地面积(单位? km 2)为1.27, 1.24, 1.20, 1.29, 1.23算得平均面积为1.246? 设测量值总体服从正态分布? 由这批样本值能否说明这块土地面积不到1.25km 2?(? ?0.05)1).原假设及备择假设0010: 1.25;:.H H μμμμ≥=< 2).取统计量(4).X T t =3).上侧分位数0.05(4) 2.1318,t =得拒绝域(, 2.1318).W =-∞-4).样本方差为2211()0.00123,1ni S X X n =-=-∑0.035,S = 统计量的实现值为因此接受原假设0,H 认为在显着性水平0.05下,这块土地面积达到1.25km2.★4? 设某电缆线的抗拉强度X 服从正态分布N (10600? 822)? 现从改进工艺后生产的一批电缆线中随机抽取10根? 测量其抗拉强度? 计算得样本均值x ?10653? 方差S 2?6962? 当显着水平??0.05时? 能否据此样本认为(1)新工艺下生产的电缆线抗拉强度比过去生产的电缆线抗拉强度有显着提高?(2)新工艺下生产的电缆线抗拉强度的方差有显着变化? (1)提出原假设及备择假设.0010:10600;:.H H μμμμ≥=< 选取统计量并确定其分布.(9).X T t =确定分位数及拒绝域.0.05(9) 1.8331,t =得拒绝域(, 1.8331).W =-∞- 计算统计量的观测值并作出统计推断.因此接受原假设,认为在显着性水平0.05α=下,新工艺电缆抗拉强度比过去工艺有显着提高.(2)提出原假设及备择假设222220010:82;:.H H σσσσ==≠ 在原假设成立的前提下,构造统计量2222(1)~(9).n S χχσ-=确定上侧分位数2210.0250.025(9) 2.700,(9)19.023,χχ-==得拒绝域 计算2χ统计量的观测值并作出统计推断因而接受原假设0,H 即认为新工艺下的电缆抗拉强度的方差无显着变化.★5? 设某涤纶强度X ~N (?? ? 2)? 用老方法制造的涤纶强度均值是0.528? 标准差0.016? 现改进工艺后? 从新生产的产品中随机抽取9个样品? 测得起强度如下?0.519? 0.530? 0.527? 0.541? 0.532? 0.523? 0.525? 0.511? 0.541 在显着性水平0.05α=下,涤纶强度的均值和标准差是否发生了改变? (1)提出原假设及备择假设.0010:0.528;:.H H μμμμ==≠ 选取统计量并确定其分布.~(0,1).X U N =确定分位数及拒绝域.上侧分位数0.025 1.96,u =拒绝域{|| 1.96}.W U =≥ 计算统计量的实现值并作出统计推断.样本均值为 统计量的实现值为因此接受原假设0,H 即认为在显着性水平0.05α=下,涤纶强度均值未改变.(2)提出原假设及备择假设222220010:0.016;:,H H σσσσ==≠ 在原假设成立的前提下,构造统计量2222(1)~(8).n S χχσ-=。
概率论与数理统计总习题及答案

试题一、填空1、设P(A)=0.4,P(AUB)=0.7,A与B不相容,则P(B)=0.3 解:由公式,P(AUB)= P(A)+ P(B)所以P(B)= 0.7-0.4=0.32、若X~B(n,p),则X的数学期望E(X)= n*p解:定义:二项分布E(X)= n*p D(X)=n*p(1-p)3、甲盒中有红球4个,黑球2个,白球2个;乙盒中有红球5个,黑球3个;丙盒中有黑球2个,白球2个。
从这3个盒子中任取1个盒子,再从中任取1球,他是红球的概率0.375解:设甲为A1,乙为A2,丙为A3,红球为B则P(B)=P(A1)P(B| A1)+P(A2)P(B| A2)+P(A3)P(B| A3)=1/3*1/2+1/3*5/8+1/3*0=0.3754、若随机变量X的分布函数为f(x)={0,x<0√x,0≤x<1 1, x≥1则P{0.25<X≤1}=0.5解:分布函数求其区间概率即右端点函数值减去左端点函数值F (1)-F (0.25) = 1-0.5=0.55、设(X1,X2,…X n)为取自正态分布,总体X~N(μ,σ2),的样本,则X的分布为N(μ,σ2n )解:定义6、设ABC表示三个随机变量事件,ABC至少有一个发生,可表示为AUBUC解:至少;如果是一切发生为A∩B∩C7、设X为连续随机变量,C是一个常数,则P{X=C}=0 解:取常数,取一个点时,恒定为08、一射手对同一目标独立地进行4次射击,若至少命中1次的概率为80/81,则该射击的命中率为2/3解:射击,即伯努利试验。
求P(X=0)=Cn0p0(1−p)4=1−80/81(1−p)4=181,1−p=13,p=239、设X~N(−1,2),Y~N(1,3)且X与Y相互独立,则X+ 2Y~N(1,14)解:因为X与Y相互独立,再由正态分布得E(X)=-1,D(X)=2;E(Y)=1,D(Y)=3;所以E(X+2Y)=E(X)+2E(Y)=-1+2*1=1D(x+2Y)=D(X)+4D(Y)=2+4*3=14所以X+2Y~N(1,14)10、设随机变量X的方差为2.5,利用切比雪夫不等式估计概率得P{|X−E(X)|≥7.5}≤ 2.57.52解:由切比雪夫不等式P{|X−μ|≥ε}≤σ2ε2≤ 2.57.52二、 计算1、 从0,1,2,…9中任意取出3个不同的数字,求下列的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》大作业题目:对图书馆晚间人员离馆时间的调查研究学院:理学院******柳铄刘振鹏学号:**********16040102101604010614专业班级:理科实验班1603任课教师:***2016年5月12日关键词人员流量、相关关系、回归分析、与时间对应关系、计算机辅助分析。
摘要图书馆是大学内重要的功能性场所,很多人都选择在这里做工作,每天进、出馆人员流量巨大。
这对图书馆的管理工作构成了挑战,能否合理安排工作,使得工作时间内所有人都能方便的进出馆成为一个随之产生的问题,而解决离馆人员流量和时间的相关关系则是解决该问题的关键。
一、问题背景中国石油大学图书馆始建于1953年,当时是北京石油学院图书馆,在清华大学石油工程系图书资料室的基础上建立。
迁校山东后,先后于1980年和1997年两次在东营建馆,2004年在青岛建成本馆,馆舍总面积5万平方米,其中本馆2.9万平方米。
馆藏纸质图书文献244万余册,中外文纸质期刊2000种,电子文献资源总量35TB(截至2011年),年进纸质图书9万册。
作为一个重要的功能性公共场所,很多人都有且有不尽相同的入馆需求,因此就会产生非常大的,且随机性很强的进出馆人数。
在一天中的其他时间,馆内人员都可以自行决定是否需要离馆,而馆内人员的时间安排不尽相同,因此人员流量都不是很大,一般来说不会出现大量人流。
而闭馆则要求馆内人员必须在闭馆时间之前尽快离馆,这样很多人就都会具有离馆需求,离馆走向可能出现大量人流。
因此我们研究的重点就基于此。
二、问题调查考虑到每个人都必须离馆,且离馆时间均是自己决定的,基本上不会互相影响,因此我们推测晚间同学们离馆的时间分布与泊松分布类似。
因此我们将从晚间九点到十点三十分成若干个小区间,而且我们安排了三位同学同时进行统计,将每次结果取平均值,并且连续统计十五天(含周末)。
但我们在先前的两天发现了这样的情况:可以看出在21:40~22:05间出现了趋势的变化,出现了峰值,且远远超过之前所取得的极值。
绘制饼图结果更加明显:因此我们决定将研究的重点放在人员流量发生激增的21:50~22:00这一时段。
并划定每分钟为一个计数点,经过剩余几天的调查得到了以下的数据:如果取得平均数,我们发现趋势会更加明显,可以得图:从图像上可以看出这个分布确实和泊松分布很相像;但仅仅根据视觉上的相像是绝不能就此下结论说这就是泊松分布,这是非常不严谨的做法。
但我们不妨利用这个模型进行一次拟合:(将上面图例的50、51简化为0、1)很明显,这个模型是失败的:除了2~4部分比较接近,其他部分的残差是非常大的,甚至在5以后的部分残差居然变号了,显然需要进行调整。
我们可以发现,2~4部分拟合的效果还是很不错的,表明这个模型可能具有范围内的适用性。
之前我们知道对于光子轨道的能级问题,也不是一个模型就能做到普适性极强。
那么我们不妨利用分段函数对数据进行进一步研究,对于不同的区段利用不同的模型去拟合。
这并不是说数据本身存在问题,因为这些数据毕竟是实地考察的结果,应该具有一定的参考意义。
基于这种情况,我们决定利用尽可能少的几个模型来得出一个尽可能普适的结果:分析元数据图像可知,前半部分图线对应的函数的二次导数是单调递减的,而后半部分则相反,那么我们可以利用两个λ不同的泊松分布模型来完成,利用残差平方和最小的原则来控制是否采用的问题:经计算,当λ=4.90时,e2 =62.19328663取得最小值(在0处的孤立点暂不考虑),作为0~4部分的模型;如图:同理,当λ=4.46时,e2 = 6.540435取得最小值,作为6~10部分的模型;如图:发现5处一直都残差较大,故以5~10为研究区间独立建模。
进行简单拟合后出现以下情况:很明显,这个模型显然没有先前的好。
但这个模型在5附近是很接近原数据的,因此不妨只采用它在4~6的拟合情况。
当λ=1.75时,e2 = 3.874265714取得最小值,作为4~6部分的模型;如图:综合以上的模型,可以得到以下的综合效果图:(实心部分是原数据)滤去不采用的部分可以看出:这个分段拟合的模型还是比较成功的。
因此初步得到一个回归函数:F(X)= 428.8667*4.9x /(x!*e4.9 ) 0≤x<4;290*1.75x /(x!*e1.75 ) 4≤x<6;428.8667*4.46x /(x!*e 4.46 ) 6≤x ≤10;从均值进行一次验证。
基本上可以说,样本方差2S 是2σ的无偏估计,所以可以用样本函数2X T=S n μ-÷求μ的区间估计。
我们知道样本函数T~t (n-1)分布(为方便计算,此处n 为100)。
对于给定的α=0.05,那么置信区间为(n S -X 2÷λ,n S X 2÷+λ)。
查表得λ=1.984,可以算出各个区段μ的置信区间:0≤x<4(43.32,43.74),4≤x<6(69.09144,71.23144),6≤x ≤10(31.60565,31.92565)。
所以我们有95%的把握说这个组合模型基本上是成功的。
为了验证这一模型的真正可靠性,决定进行一次调查验证。
选取非常正常的一个工作日进行预报值检验,可得知结果如下:如果剔除某些离群值(1),求得残差平方和为31.38852466,考虑到随机性事件发生的情况,这个模型运行还是比较成功的。
另外,这里补充说明一下λ的算法:(以0~4区段为例)在计算机上编写程序,利用二分法,计算λ取中点时模型的残差平方和和λ取两个端点时的该值进行比较,取较小的两个取值点作为新的端点,在新区间中再重复以上的过程,为避免陷入死循环,设定当区间长小于0.01时停止取中点,取两端点中该值较小的点的对应λ作为结果使用。
核心部分的代码如下:(输出的p 即为所求λ)#include<stdio.h>#include<math.h>int f1(int x){int i=0,j=1;for(i=0;i<=x;i++)j*=i;return j;}//**阶乘算法**//double f2(double x,int i){double j=1.0;int k;for(k=0;k<=i;k++)j*=x;return j;}//**乘方算法**//main(){double a[5],lp=0.0, rp=0.0;int i,j,k,e,r,l,m,p;a[0]= 18.13333333;a[1]=21.2;a[2]=39;a[3]=61.06666667;a[4]=78;l=0;r=4;m=(l+r)/2;while(abs(l-r)>0.01){for(i=0;i<5;i++)lp+= f2(428.8667*f2(l,i)/(f1(i)*exp(l))-a[i],2);for(i=0;i<5;i++)rp+= f2(428.8667*f2(r,i)/(f1(i)*exp(r))-a[i],2);//**计算残差平方和**// if(rp>lp)//**二分法比较**//{r=m;m=(l+r)/2;p=l;}else{l=m;m=(l+r)/2;p=r;}lp=0.0, rp=0.0;}for(i=0;i<5;i++)lp+= f2(428.8667*f2(l,i)/(f1(i)*exp(l))-a[i],2);for(i=0;i<5;i++)rp+= f2(428.8667*f2(r,i)/(f1(i)*exp(r))-a[i],2);if(rp>lp){p=l;}else{p=r;}printf(“%lf”,p);}三、问题总结各个图表的峰值时间之晚足以体现出石大学子学习的忙碌、刻苦。
然而,猛增的人流量存在安全隐患。
建议同学们合理安排学习时间,尽量不要集中在临近闭馆时离开;建议图书馆将各书库闭馆时间分离,从十点到十点半自下而上逐步关闭各层书库;此外,建议学校修缮南教、南堂等教室的桌椅,安装空调,吸引一部分自习的同学,加快小图书馆修建进程,以减轻图书馆的压力;对于在临近闭馆前不可避免的流量上升,馆方应做好预案,如有拥堵及时疏导,防止发生人员滞留甚至更加严重的安全问题。
在本次数据调查与分析的过程中,我组采取边收集数据边统计分析的方式,深刻体会到样本长度的增加会使模型逐渐趋近契合于总体的现象;及时针对现实情况作出了相应调整,避免了产生大量无研究价值数据的问题。
试想如果未对调查方向及时调整,模型建立将难以进行,后续的工作将无法开展,直至研究失败;求得的回归函数亦表明,现实中数据的规律是可能分段体现的。
能否灵活的调整模型构想,将决定模型是否能最佳性的契合原始数据,甚至决定该模型是否有意义,是否普遍适用。
参考文献王清河,随机数据处理方法,东营:中国石油大学出版社,2011.马知恩,工科数学分析基础,北京:高等教育出版社,2006.何书元,概率论与数理统计,北京:高等教育出版社,2006.。