数字图像频域相关分析法及其应用
图像频域分析PPT课件

5、iffshift用于颠倒这种居中。 6、ifft2(F)用于计算傅里叶逆变换。
>> f=imread('Fig0403(a)(image).tif'); >> imshow(f) >> F=fft2(f); >> S=abs(F); >> imshow(S,[]) >> Fc=fftshift(F); >> imshow(abs(Fc),[]) >> S2=log(1+abs(Fc)); >> imshow(S2,[])
F=fft2(f,PQ(1),PQ(2)); 3、生成一个大小为PQ(1)*PQ(2)的滤波函数H; 4、将变换乘以滤波函数:
G=H.*F; 5、获得G的傅里叶逆变换的实部:
g=real(ifft2(G)); 6、将左上角的矩形修剪为原始大小:
g=g(1:size(f,1):size(f,1))
4、4 从空间滤波器获得频域滤波器
4、6 锐化频域滤波器
基本的高通滤波器 Hhp(u,v)=1- Hhp(u,v)=
例:高通滤波 f=imread('Fig0413(a)(original_test_pattern).tif'); imshow(f) PQ=paddedsize(size(f)); D0=0.05*PQ(1); H=hpfilter('gaussian',PQ(1),PQ(2),D0); g=dftfilt(f,H); figure,imshow(g,[])
Magnitude
8 7 6 5 4 3 2 1 0 1
0.5
0 -0.5
Fy
频域处理-数字图像处理

频域处理
5.5 频域中图像处理的实现
5.5.1 理解数字图像的频谱图 数字图像平移后的频谱中,图像的能量将集中到频谱中
心(低频成分),图像上的边缘、线条细节信息(高频成分)将分 散在图像频谱的边缘。也就是说,频谱中低频成分代表了图 像的概貌,高频成分代表了图像中的细节。
频域处理
H(u,v)称作滤波器,它具有允许某些频率成分通过,而阻 止其他频率成分通过的特性。该处理过程可表示为
H 和G 的相乘是在二维上定义的。即,H 的第1个元素乘 以F 的第1个元素,H 的第2个元素乘以F 的第2个元素,以此类 推。滤波后的图像可以由IDFT 得到:
频域处理 图5 9给出了频域中图像处理的基本步骤。
频域处理
图5 10 基本滤波器的频率响应
频域处理
图5 11分别为采用D0=10、D0=30、D0=60、D0=160进行 理想低通滤波的结果。图5 11(c)存在严重的模糊现象,表明 图像中多数细节信息包含在被滤除掉的频率成分之中。随着 滤波半径的增加,滤除的能量越来越少,图5 11(d)到图5 11(f) 中的模糊现象也就越来越轻。当被滤除的高频成分减少时, 图像质量会逐渐变好,但其平滑作用也将减弱。
式中:u 取0,1,2,…,M -1;v 取0,1,2,…,N-1。
频域处理 对二维离散傅里叶变换,则有:
图像处理实践中,除了 DFT 变换之外,还可采用离散余弦 变换等其他正交变换。
频域处理
5.4 离散余弦变换(DCT)
离散余弦变换(DiscreteCosineTransform,DCT)的变换核 为余弦函数,因其变换核为实数,所以,DCT 计算速度比变换核 为复数的 DFT 要快得多。DCT 除了具有一般的正交变换性 质外,它的变换阵的基向量能很好地描述人类语音信号、图 像信号的相关特征。因此,在对语音信号、图像信号的变换 中,DCT 变换被认为是一种准最佳变换。
《图像频域分析》课件

图像离散傅里叶变换
1
图像的频率表示
将图像转换到傅里叶频域,使用矩形表示图像的幅度谱,颜色越深表示幅值越大。
2
图像离散傅里叶变换的原理
通过将空间域图像转换为频率域的方法,进行图像处理。
3
图像频域滤波
用于去除图像中的噪声,提高图像的质量和清晰度。
小波变换和小波分析
小波变换的概念
一种对信号的局部分析方 法,能够提供信号的时间 和频率分辨率,对非平稳 信号有很好的处理效果。
包括进一步提高精度和准确性,加速计算速度,并将频域分析应用于实际场景中。
参考文献
• 华伟,林旭,李雨松. 图像处理[M]. 清华大学出版社, 2002. • 唐业光,刘红岩.数字图像处理及MATLAB实现[M]. 清华大学出版社, 2009. • 岑凯利,李兆洪.高清数字图像处理[M]. 电子工业出版社, 2018.
《图像频域分析》PPT课 件
图像频域分析是一种对数字图像进行分析和处理的方法,通过变换图像的表 示方法,使得在一些应用中更容易描述和处理。
介绍
频域分析是什么
频域分析是将信号或数据在频域上进行变换,以便更好地理解其特征。
频域分析的作用
频域分析可以用于改善图像的清晰度、对比度和边缘处理,从而实现数字图像的改进。
图像频域分析的意义
图像频域分析在图像处理、模式识别、图像压缩和通信等领域中有着广泛的应用和意义。
傅立叶变换
离散傅立叶变速傅立叶变换(FFT)
将一个长度为n的序列变换成 一组长度为n/2,处理速度比 DFT更快。
傅立叶变换的应用
用于声音、图像、信号的分析 和处理。
小波变换的基本原理
通过对信号进行分解和重 构的方法,寻找其中的与 不同尺度有关的特征。
数字图像的频域处理

2 . 4 自适应 同态滤波 。 由于大气条件影响 , 云覆盖是遥感图像的 频域处理是指根据一定的 图像模型 , 对图像频谱进行不 同程度 最 大干扰 因素 , 因此去除云噪声对于在图像分析之前 提高图像 质量 是非常重要 的。因为薄云在遥感 图像 中是低频分量 , 同态滤波可以 修改的技术, 通常作如下假设 : 用来去除薄 云。传统方法用整个 图像进行处理 , 不仅耗时而且会破 f 1 ) 引起 图像质量 下降的噪声 占频谱的高频段; 坏无云 区域 。文献 4提出了一种 自适应 同态滤波方法 。首先用 ( 2 ) 图像边缘 占高频段 ; L I S A分析法提取云覆盖区域 ,然后通过计算 D N值来确定云厚度 , ( 3 1 图像 主体或灰度缓变区域 占低频段 。 基 于这些假设 , 可 以对 频谱 的各个频段进行有选择性 的修改 。 和不同的截取频率 ,最后用 同态 滤波器用不 同的截 止频率进行 滤 二维正交变换是 图像处理 中常用 的变换, 其 特点是变换结果 的能量 波 。 分布向低频成份方 向集 中,图像的边缘,线条在高频成份上得到反 2 . 5 图像编码 。压缩 的基本思想是正确表示图像时试图减少每 映, 因此正交变换在图像处理 中得到广泛运用。F O U R I E R作为一种 像 素的位数 ,图像压缩在大型医学 图像 和卫 星图像 中需求非 常大 , 典型 的正交变换 , 在数学上有 比较成熟和快速 的处理方法 。一般上 表现在存储代价和传输效率上 。编码 策略分为有损和无损类型。无 认为空 域的平滑处理对应 于频域的低通滤波而 空域 的锐化 处理对 损编码通常压缩率 比较低 , 比如霍夫曼和算术编码 。基于傅里叶变 应 于高通滤波 。在压缩 编码 上往往舍弃高频分 量 的系数来 实现压 换的压缩方法 , D C T或 D F T在研究低频 自然 图像时是有效率的。但 缩。 是这些变换 的很 多缺点是基函数很 长。 这在高精度下的低频 系数编 2 频域 图像 处理最新研究与应用 码上没有很 大问题 。 但是 , 高频分量系数是粗糙量化的 , 导致 图像重 2 . 1图像融合与高通滤波 。一些 商用地球观测卫星带有 双分辨 建时边界质量会 比较低 。尖锐 的边界是用很多系数来表示 的, 全 部 率传感器 , 能够提供空 间上全色 的高分辨率 图像 和多谱低分辨率 图 保 留才能有很高的保 真度 。 另外 , 图像一般是非平稳的 , 不 同区域有 像 。图像融合技术 用来将高分辨率谱 图像 和高分辨 率空间 图像 集 不 同的统计特性 , 全部变换会损失非平稳 性 , 在压缩效果上并不好 。 成, 产生 的融合图像既有谱 的高分辨 率也 有空间高分辨率。一些 图 文献 5比较 了 D C T和小波在 图像编码 中的性能嗍 , 实验 表明两种方 像融合方 法包 括 I H S , P C和 B T提供 了优秀 的视 觉高分辨率 的多谱 法都 有能量相对凝结特性。 图像但是忽略了对高质量 的谱信息综合的需 求。 高质量 的谱信息综 3 结 论 合对大多数的基于谱 信号 的遥感应用是非常重要 的。 另一类 图像融 频域方法提供了认识和处理问题的另一种视角 , 在一个域 中难 合技术 如高通滤波器在将从 空间高分辨率 多色图 中高频分 量注人 以处理 的问题 , 也许在变 换域 中相对容易解决 , 或能提 供解决 问题 多谱 图中, 再进行操作 。 这类方法提供 了很少的谱 失真。 实验 表明这 的思路。 本文中的新 的研究动态都是在传 统频域理论 的基础上进行 类方法保持 了谱特性的同事提高了其他性能 。【 1 J 扩展完善 和应 用 , 所 以在 平时学习研究 中 , 不仅要 紧跟最新 的研 究 2 . 2图像分辨率增强 与频谱修改 。现在用户对高分辨率的图像 动 向, 也要扎实打好基础 , 才能更好 的理解解决 问题 的思路和原理 , 和产 品需求很高 , 在很多情况 下我们通过手机设 备传输 图像 , 在传 才能为创新发展提供思路 。 输过程 中高分辨率 的图像通常被压缩以减少传输数据量。 实际上图 参考文献 像 已经被损坏 了,所 以图像分辨率增强技术的研究是非常必要 的。 [ 1 1 ] Me t w a l l i , M. R .I m a g e f u s i o n b a s e d o n p i r n c i p a l c o m p o n e n t n a l y s i s a n d h i g h- p a s s f i l t e r .C o mp u t e r E n g i n e e in r g & S y s t e ms . 图像插值 和高分辨率 图像重建通常是图像放 大的方法 。 文献 2提出 a 了一种通过加 强低 分辨率 图像 的高频 成分来达到增 强 图像分辨 率 2 0 1 1 .I C CE S 2 0 0 9 .I n t e r n a t i o n a l 的方法 , 实验 表明这种方法的性能相 比传统 的插值法 能提高 1 3 — 2 5 【 2 ] J e o n g Ho L e e , K i T a e P a r k . I m a g e R e s o l u t i o n E n h a n c e m e n t b y 个百分点 圆 。 Mo d i f y i n g t h e F r e q u e n c y S p e c t r u m. 2 0 1 1 I EE E I n t e r n a t i o n a l c o n f e r —
频域图像处理算法的研究和应用

频域图像处理算法的研究和应用一、概述频域图像处理算法是数字图像处理领域里的重要部分,它通过对图像在频域的处理对图像进行增强或者滤波等操作,常见的算法有傅里叶变换、小波变换等。
近年来,随着网络技术的发展,图像处理技术在生活中已经得到了广泛应用,例如数字医疗、视频监控、无人机航拍等领域。
因此,深入研究和应用频域图像处理算法具有重要的现实意义。
二、傅里叶变换傅里叶变换是最常见的频域图像处理算法,它将时域信号转化为频域信号,可以获得频域分量的幅度和相位信息。
对于图像处理,将二维图像转化为频域的处理方式,称之为二维傅里叶变换.二维傅里叶变换可以用于图像平滑、增强、噪声去除等任务。
图像平滑是指通过滤波方式使图像的细节部分减弱或消失,从而达到去噪或美化图像目的。
图像增强则是强化图像的特征,使图像更加清晰,细节更加突出。
三、小波变换小波变换是另一种常见的频域图像处理算法,它与傅里叶变换不同,将图像划分为不同尺度的图像,并在其上进行处理。
可以分为离散小波变换和连续小波变换。
小波变换在图像处理中被广泛应用,例如在图像去噪、图像压缩和图像增强等方面都有重要的应用。
与傅里叶变换不同,小波变换可以更好地定位局部特征,因此在处理有噪信号时表现更为优秀。
四、应用1.数字医疗频域图像处理在数字医疗领域中的应用广泛,例如医学影像的分析和诊断,如X光检查、电子断层扫描(CT)、磁共振成像(MRI)等。
2.视频监控频域图像处理可以用于视频图像的压缩和增强,提高视频的清晰度,并提升特定区域的对比度。
此外,在目标检测和跟踪方面,图像增强可以提高算法的稳健性和鲁棒性。
3.无人机航拍无人机航拍图像也需要图像增强处理,来获得更好的图像质量和更准确的地图信息。
没有经过任何增强处理的图像可能会过于模糊或者噪声较大,会影响准确性。
五、总结频域图像处理算法是图像处理领域的重要部分,不仅可以用于图像去噪、平滑、增强等任务,还可以应用于数字医疗、视频监控、无人机航拍等领域。
数字图像处理_图像的频域变换处理

图像的频域变换处理1 实验目的 1. 掌握Fourier ,DCT 和Radon 变换与反变换的原理及算法实现,并初步理解Fourier 、Radon和DCT 变换的物理意义。
2、 利用傅里叶变换、离散余弦变换等处理图像,理解图像变换系数的特点。
3、 掌握图像的频谱分析方法。
4、 掌握图像频域压缩的方法。
5、 掌握二维数字滤波器处理图像的方法。
2 实验原理1、傅里叶变换 fft2函数:F=fft2(A);fftshift 函数:F1=fftshift(F);ifft2函数:M=ifft2(F);2、离散余弦变换:dct2函数 :F=dct2(f2);idct2函数:M=idct2(F);3、 小波变换对静态二维数字图像,可先对其进行若干次二维DWT 变换, 将图像信息分解为高频成分H 、V 和D 和低频成分A 。
对低频部分A ,由于它对压缩的结果影响很大,因此可采用无损编码方法, 如Huffman 、 DPCM 等;对H 、V 和D 部分,可对不同的层次采用不同策略的向量量化编码方法,这样便可大大减少数据量,而图像的解码过程刚好相反。
(1)dwt2[CA,CH,CV,CD]=dwt2(X,’wname’)[CA,CH,CV,CD]=dwt2(X,LO_D,HI_D’)()()⎰⎥⎦⎤⎢⎣⎡-ψ=dt a b t t Rf a 1b ,a W *()⎪⎭⎫ ⎝⎛-ψ=ψa b t a 1t b ,a 112()00(,)[(,)](,)ux vy M N j M N x y f x y eF f x y F u v π---+====∑∑1100(21)(21)(,)(,)()()cos cos 22M N x y x u y v F u v f x y C u C v M Nππ--==++=∑∑CA 图像分解的近似分量,CH 水平分量,CV 垂直分量,CD 细节分量; dwt2(X,’wname ’) 使用小波基wname 对X 进行小波分解。
数字图像处理之频率域图像增强

图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS
数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

F (u,v)
F *(u, v)
f ( x ,y ) ☆ h ( x ,y ) i f f t c o n j F ( u , v ) H ( u , v )
h(x,y):CD 周期延拓
PAC1
h:
PQ
QBD1
DFT
H (u,v)
F*(u,v)H(u,v)
IDFT
R(x,y):PQ
✓ 使用这组基函数的线性组合得到任意函数f,每个基函数的系 数就是f与该基函数的内积
图像变换的目的
✓ 使图像处理问题简化; ✓ 有利于图像特征提取; ✓ 有助于从概念上增强对图像信息的理解;
图像变换通常是一种二维正交变换。
一般要求: 1. 正交变换必须是可逆的; 2. 正变换和反变换的算法不能太复杂; 3. 正交变换的特点是在变换域中图像能量将集中分布在低频率 成分上,边缘、线状信息反映在高频率成分上,有利于图像处理
4.11 二维DFT的实现
沿着f(x,y)的一行所进 行的傅里叶变换。
F (u ,v ) F ( u , v ) (4 .6 1 9 )
复习:当两个复数实部相等,虚部互为相 反数时,这两个复数叫做互为共轭复数.
4.6
二维离散傅里叶变换的性质
其他性质:
✓尺度变换〔缩放〕及线性性
a f( x ,y ) a F ( u ,v ) f( a x ,b y ) 1 F ( u a ,v b ) |a b |
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质
✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像频域相关分析法及其应用
数字图像频域相关分析法是把图像处理问题分解为频域与空间域的方法,用于分析、检测和修复图像中的特征。
它以计算机图像处理的实用性和数学技术的方式为基础,广泛应用于具有挑战性的图像处理领域,特别是提高图像质量、弥补图像缺陷和智能图像处理等方面。
频域又称为傅立叶频域,用来描述图像的空间频率特征。
相对于空间域,它具有更高的表示能力,这也是为什么人们将图像处理问题转化到频域中解决的原因,以通过少量的频率特征表达图像的空间特征的信息。
在计算机图像处理中,频域相关分析法具有应用广泛的特点,它可以提供高效的运算方法来解决许多图像处理任务,如图像增强、图像滤波和图像检测等。
一般来说,频域相关分析法可以在以下三个方面应用:
(1)图像增强。
频域分析法可以有效的增强图像的对比度,以提高图像的质量,改善图像的可视性。
它可以有效的提取噪声,使原始图像变得更加清晰,以满足实际的观看需求。
(2)图像滤波。
频域分析法可以有效的滤除图像中的噪声,减少图像中不必要的细节,从而获得更清晰的图像。
它可以有效的滤除图像中的高频成分,使图像柔和,提高图像的可视性。
(3)图像检测。
频域分析法可以使用空间或频率特征来检测图像中的特定物体,如缺陷检测和目标检测等。
它可以有效的检测并标
记图像中的特定特征,以及提取和比较特定的计算机模式,如边缘检测、轮廓检测、纹理检测和色彩检测等。
此外,频域相关分析法可以用于智能图像处理,如图像转换、图像分割等,可以有效的提取图像的特征,完成识别和跟踪任务。
因此,频域相关分析法广泛应用于计算机图像处理,它可以用于图像增强、图像滤波和图像检测等,也可以用于智能图像处理,如图像识别和跟踪等,起到提高图像质量、弥补缺陷和智能图像处理等作用,为计算机图像处理的发展做出了重要贡献。