EVA热熔胶配方设计

合集下载

EVA热熔胶配方设计

EVA热熔胶配方设计

EVA热熔胶配方设计热熔胶是一种常见的胶黏剂,由于其良好的黏附性和可靠的性能,广泛应用于家具制造、纺织品、汽车制造、电子产品、包装等领域。

其中,乙烯醋酸乙烯酯(EVA)是一种常见的热熔胶原料,具有优良的黏附性和改性性能。

设计EVA热熔胶配方的关键是确定原料的种类和比例,以满足特定使用要求。

一般来说,EVA热熔胶的基本配方包括乙烯醋酸乙烯酯、增塑剂、稳定剂和填充剂。

下面将详细介绍每个原料在配方中的作用和选择要点。

1.乙烯醋酸乙烯酯:是EVA热熔胶的主要胶黏剂成分,具有良好的黏附性和柔韧性。

一般选择具有合适分子量的乙烯醋酸乙烯酯作为主胶黏剂。

分子量较高的乙烯醋酸乙烯酯可提供更好的黏附性和拉伸强度,分子量较低的乙烯醋酸乙烯酯可提供更好的流动性。

根据具体应用需求,选择合适分子量的乙烯醋酸乙烯酯进行配方。

2.增塑剂:增塑剂可以提高热熔胶的可塑性和可延展性,使其更易于使用。

适量的增塑剂可以改善胶体流动性能和热熔性能,但过量使用可能会导致胶体强度下降。

常见的增塑剂有聚丙烯酸酯类增塑剂和低聚烯烃类增塑剂。

根据需求,选择适量的增塑剂进行配方。

3.稳定剂:稳定剂可以提高热熔胶抗氧化性和耐热性,延长其使用寿命。

常见的稳定剂有抗氧剂和紫外线吸收剂。

选择适量的稳定剂能够有效抑制热熔胶在高温和紫外线条件下的退化和变色。

4.填充剂:填充剂可以调整热熔胶的黏度和硬度,改善其性能。

常见的填充剂有颜料、纤维和微粉。

填充剂的类型和用量应根据具体需求进行选择,以达到所需的黏度和硬度。

以上是常见的EVA热熔胶配方原料选择和使用要点,具体的配方设计还需要进行实验室测试和实际应用验证。

在实际配方设计过程中,还需要考虑其他因素,如工艺条件、环境要求和成本等。

EVA热熔胶制备论文(1)

EVA热熔胶制备论文(1)

Foshan University本科生科研训练设计(论文) EVA热熔胶的制备学院:理学院专业: 09化学(应用化学)学号: 2009294129学生姓名:宿旭昊指导教师:刘弋路教授二〇一一年六月采用氢化C5 石油树脂代替传统EVA 热熔胶中的增黏剂,制备EVA 热熔胶。

通过对产品软化点、固化时间、剥离强度、熔融黏度及破坏状态等性能的分析,确定出了新型EVA 热熔胶的配方。

实验结果表明,以EVA 树脂做为基料,加入量为50%(质量百分比,下同),调节剂的加入量为10%,填料的加入量为5%,氢化C5 石油树脂加入量为35%时,最终得到的产品能广泛应用在家具封边,地板粘结等领域,并且产品性能达到了行业标准的要求。

关键词:氢化C5 石油树脂;EVA 热熔胶;软化点;剥离强度AbstractEV A hot melt adhesive preparation(作者英文名):SuXU-haoThe C5 hydrogenated oil resin instead of traditional EV A hot melt adhesive was used in the preparation, EV A hot melt adhesive. Through to the product softening point, curing time, peel strength, melt viscosity and damage to state, etc, to determine the properties of a new formula of hot melt adhesive EVA. The experimental results show that, with EV A resin as makings, add content is 50% (quality percentage, similarly hereinafter), the regulator to join content is 10%, and amount of the fillers for 5%, hydrogenated C5 petroleum resin content is 35%, to finally get the product to be widely used in furniture sealing side, the floor bond and other fields, and the product can meet the industry standards. Keywords:Key words:hydrogenated C5 petroleum resin; EV A hot melt adhesive; Softening point; Peel strength一.前言……………………………………………………………………………………二.实验原料…………………………………………………………………………1.实验试剂………………………………………………………………………………………2.合成热熔胶的工艺…………………………………………………………………………3.测试与特征……………………………………………………………………三.实验结果与结论………………………………………………………………………………………1.石油树脂加入量对热熔胶软化的影响……………………………………………2.氢化C5 石油树脂对热熔胶破坏状态的影响…………………………………………………3.石油树脂的加入量对剥离强度的影响………………………………………………………4.石油树脂的加入量对熔融黏度的影响…………………………………………………………5.实验结论…………………………………………………………………………………………四.参考文献…………………………………………………………………………………EV A热熔胶的制备姓名:宿旭昊学号:2009294129 班级:化学(应用化学)一.前言:早在20 世纪70 年代,国外胶黏剂行业的发展就已经十分成熟[1~2 ]。

各种热熔胶体系差别及一些典型配方

各种热熔胶体系差别及一些典型配方

各种热熔胶体系差别及一些典型配方热熔胶是一种在高温下熔化的粘合剂,它通过快速冷却形成牢固的粘接强度。

根据成分和特性的不同,热熔胶可以分为多种体系,下面将介绍几种常见的热熔胶体系及其典型配方。

1.EVA热熔胶体系乙烯-醋酸乙烯共聚物(EVA)是最常用的热熔胶体系之一,因其良好的粘接性能和经济性而受到广泛应用。

典型的EVA热熔胶配方包括:乙烯-醋酸乙烯共聚物、树脂增塑剂、黏度调节剂、稳定剂和颜料等。

其中树脂增塑剂在配方中起到增加黏性和粘接强度的作用,黏度调节剂则用于调节热熔胶的粘度,稳定剂用于防止热熔胶在高温下分解,颜料则用于调整热熔胶的颜色。

2.PSA热熔胶体系压敏胶(PSA)热熔胶是一种特殊的热熔胶体系,具有优异的粘接性能和可调控性。

典型的PSA热熔胶配方包括:合成橡胶、树脂增塑剂、黏度调节剂、稳定剂、交联剂和颜料等。

其中合成橡胶是PSA热熔胶的主要成分,它负责提供胶黏性能;树脂增塑剂用于增加胶黏性和粘接强度;黏度调节剂用于调节热熔胶的粘度;稳定剂用于抑制热熔胶在高温下的分解;交联剂用于提高胶黏性能和耐高温性能;颜料用于调整热熔胶的颜色。

3.PO热熔胶体系聚脂酯(PO)热熔胶是一种具有良好热稳定性和耐化学性的热熔胶体系。

典型的PO热熔胶配方包括:聚脂酯、树脂增塑剂、黏度调节剂、稳定剂和颜料等。

聚脂酯是PO热熔胶的主要成分,它负责提供胶黏性能;树脂增塑剂用于增加胶黏性和粘接强度;黏度调节剂用于调节热熔胶的粘度;稳定剂用于抑制热熔胶在高温下的分解;颜料用于调整热熔胶的颜色。

总体来说,不同的热熔胶体系具有不同的成分和特性,因此在实际应用中需要根据具体的需求来选择合适的热熔胶体系及其配方。

以上介绍的是几种常见的热熔胶体系及其典型配方,但并不代表所有的热熔胶体系和配方。

在实际应用中,可以根据具体的要求和材料的特性调整热熔胶的配方,以获得最佳的粘接效果。

EVA热熔胶配方成分分析,热熔胶生产工艺及技术开发

EVA热熔胶配方成分分析,热熔胶生产工艺及技术开发

EVA热熔胶配方成分分析,热熔胶生产工艺及技术开发EVA热熔胶配方成分分析,生产工艺及技术开发导读:本文详细介绍了EVA热熔胶的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。

EVA热熔胶广泛应用于家具、制鞋,电子等行业,禾川化学引进尖端配方解剖技术,致力于EVA热熔胶成分分析,配方还原,研发外包服务,为EVA 热熔胶相关企业提供一整套配方技术解决方案。

一、背景热熔胶是以热塑性树脂或热塑性弹性体为主要成分,添加增塑剂、增粘树脂、抗氧剂、阻燃剂及填料等成分,经熔融混合而制成的不含溶剂的固体状粘合剂。

因其无毒、无环境污染、制备方便等优点成为胶粘剂市场发展的方向,世界年产量一直处于上升趋势,其增长速度在各类胶粘剂中为最高,品种越来越多样化,应用也越来越广泛。

乙烯与醋酸乙烯共聚物( EVA) 热熔胶制备方法简便,广泛应用于机械化包装、家具制作、制鞋、无线装订、电子元件及日常用品粘接,迅速成为热熔胶粘剂中应用最广、用量最大的一种。

1960 年由美国杜邦公司首先实现工业生产,命名该商品为Elvax,之后,UCC、USI、Bayer、ICI、Monsanto 等公司相继生产该类产品。

EVA热熔胶凝聚力大,熔融表面张力小,对几乎所有的物质均有热胶接力,且具有优良的耐药品性、热稳定性、耐候性和电气性能,粘接迅速、应用面广、无毒害、无污染等特点而被“绿色胶粘”,引起越来越多的关注。

禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。

样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。

有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案!二、EVA热熔胶2.1 EVA胶黏剂的组成2.1.1 EVA树脂EVA热熔胶的主体树脂是乙烯-醋酸乙烯酯共聚物(EVA),由乙烯与醋酸乙烯酯经高压本体聚合法或溶液聚合法制造,一般为无规结构。

论文EVA热熔胶额制备

论文EVA热熔胶额制备

毕业论文家具用热熔胶的制备学生姓名:李金鑫学号:102041110 系部:化学与化工系专业:应用化学指导教师:程雪松(讲师)二零一四年六月诚信声明本人郑重声明:本论文及其研究工作是本人在指导教师程雪松讲师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。

本人签名:2014年6月15日毕业设计(论文)任务书设计(论文)题目:家具用热熔胶的制备系部:化学与化工系专业:应用化学学号:1012041110学生:李金鑫指导教师(含职称):程雪松(讲师)1. 课题意义及目标家具用热熔胶是一种不需要溶剂、不含水份、100%的固体可熔性聚合物,是由基料、增粘剂、调节剂、抗氧剂和填料组成的,它无毒无害、施胶方便、适用范围广。

论文寻找一种新型的环保型家具用热熔胶的制备方法,通过对其某些性能的测试,希望制备出的产品达到90℃左右的软化点,并且使其初粘度、热稳定性等都达标。

2.主要任务(1)查阅文献资料30篇以上。

(2)拟定实验方案,完成开题报告。

(3)实验研究家具用热熔胶的制备工艺。

(4)总结实验结果,撰写1.5万字以上的论文一篇。

3. 主要参考资料[1] 荆鹏, 刘峰, 王晓蕾, 等. 新型家具封边用EVA热熔胶的制备[ J ]. 辽宁石油化工大学化学与材料科学学院. 抚顺石油化工研究院. 2010(2), 35-37.[2] 李士学等.二胶粘剂制备及应用[ M]. 天津: 天津科学技术出版社, 1983, 198~199.[3] 石军, 李建颖. 热熔胶黏剂实用手册[ M] . 北京:化学工业出版社, 2004.[4] 向明, 蓝方. 热熔胶黏剂[ M] . 北京:化学工业出版社, 2002.[5] 冯波. 热熔胶黏剂研究和应用的最新进展[ J ] .化学与粘合, 2002(1), 45~47.4.进度安排审核人:年月日家具用热熔胶的制备摘要家具用热熔胶无溶剂有着其他胶难以达到的优势,它几乎无气味,无污染,施胶方便,所以广泛应用在许多领域。

EVA热熔胶配方成分分析,热熔胶生产工艺及技术开发

EVA热熔胶配方成分分析,热熔胶生产工艺及技术开发

EVA热熔胶配方成分分析,生产工艺及技术开发导读:本文详细介绍了EVA热熔胶的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。

EVA热熔胶广泛应用于家具、制鞋,电子等行业,禾川化学引进尖端配方解剖技术,致力于EVA热熔胶成分分析,配方还原,研发外包服务,为EVA热熔胶相关企业提供一整套配方技术解决方案。

一、背景热熔胶是以热塑性树脂或热塑性弹性体为主要成分,添加增塑剂、增粘树脂、抗氧剂、阻燃剂及填料等成分,经熔融混合而制成的不含溶剂的固体状粘合剂。

因其无毒、无环境污染、制备方便等优点成为胶粘剂市场发展的方向,世界年产量一直处于上升趋势,其增长速度在各类胶粘剂中为最高,品种越来越多样化,应用也越来越广泛。

乙烯与醋酸乙烯共聚物( EVA) 热熔胶制备方法简便,广泛应用于机械化包装、家具制作、制鞋、无线装订、电子元件及日常用品粘接,迅速成为热熔胶粘剂中应用最广、用量最大的一种。

1960 年由美国杜邦公司首先实现工业生产,命名该商品为Elvax,之后,UCC、USI、Bayer、ICI、Monsanto 等公司相继生产该类产品。

EVA热熔胶凝聚力大,熔融表面张力小,对几乎所有的物质均有热胶接力,且具有优良的耐药品性、热稳定性、耐候性和电气性能,粘接迅速、应用面广、无毒害、无污染等特点而被“绿色胶粘”,引起越来越多的关注。

禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。

样品分析检测流程:样品确认—物理表征前处理—大型仪器分析1配方分析/成分检测/研发外包/工业诊断—工程师解谱—分析结果验证—后续技术服务。

有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案!二、EVA热熔胶EVA胶黏剂的组成EVA树脂EVA热熔胶的主体树脂是乙烯-醋酸乙烯酯共聚物(EVA),由乙烯与醋酸乙烯酯经高压本体聚合法或溶液聚合法制造,一般为无规结构。

EVA热熔胶配方设计

EVA热熔胶配方设计

EVA热熔胶配方设计胶黏剂在工业生产中起着非常重要的作用,而热熔胶是一种常用的胶黏剂之一、EVA(乙烯-乙酸乙烯酯共聚物)是热熔胶的一种常用材料,具有良好的黏性、透明度、柔韧性和耐化学品的特性。

下面将为您介绍EVA 热熔胶配方的设计。

一、EVA的选择:EVA是一种共聚物,可以根据需求选择不同乙酸乙烯酯乙烯的摩尔比例,通常在15%到50%之间。

较高的乙酸乙烯酯乙烯含量可以提高熔融指数、柔韧性和透明度,但降低了耐溶剂性。

根据应用的需求,选择适当比例的EVA。

二、增塑剂的选择:增塑剂可以提高热熔胶的延展性和柔韧性。

常用的增塑剂有脂肪酸酯类、磺酸酯类、磺醚类等。

根据需要,选择合适的增塑剂并控制其含量。

三、填料的选择:填料可以调整热熔胶的流动性和机械性能。

常用的填料有碳酸钙、滑石粉、硅酸钙等。

填料的选择要根据需要平衡流动性和机械性能,并控制其含量。

四、粘合剂的选择:粘合剂是热熔胶中的重要组成部分,可以提高胶黏剂的粘接强度和耐化学性。

常用的粘合剂有环氧树脂、聚氨酯、硅橡胶等。

根据不同需求选择合适的粘合剂。

五、抗氧剂和抗紫外线剂的选择:抗氧剂和抗紫外线剂可以延长热熔胶的使用寿命和耐候性。

常用的抗氧剂有酚类、酮类、酰胺类等。

抗紫外线剂常用的有吡啶类、苯类等。

根据需求选择合适的抗氧剂和抗紫外线剂。

六、助剂的选择:助剂可以调整热熔胶的性能和加工工艺。

常用的助剂有增溶剂、阻燃剂、流变剂等。

根据需要选择适当的助剂并控制其含量。

以上是EVA热熔胶配方设计的一些关键点,根据具体应用和需求,可以根据以上原则进行选择和调整。

需要注意的是,在实际生产中,配方设计需要综合考虑各项因素,经过试验验证,以获得最优配方。

一种eva导电热熔胶和制造方法

一种eva导电热熔胶和制造方法

一种eva导电热熔胶和制造方法EVA导电热熔胶是一种具有导电性能的热熔胶,其主要成分是乙烯醋酸乙烯共聚物(Ethylene Vinyl Acetate, EVA)。

EVA是一种常用的热熔胶材料,具有优异的粘接性、耐候性和机械性能。

然而,普通的EVA热熔胶并不具备导电性能,因此,为了满足特定应用场景的需求,人们开发出了EVA导电热熔胶。

EVA导电热熔胶的导电性能主要是通过添加导电剂实现的。

常见的导电剂包括碳黑、金属粉末、导电纤维等。

这些导电剂的添加可以使EVA热熔胶具有一定的导电性能,从而可以在电子产品组装、电路连接等领域得到应用。

制造EVA导电热熔胶的方法主要包括以下几个步骤:准备原材料。

除了EVA树脂之外,还需要导电剂、增塑剂和其他助剂。

导电剂的选择应根据具体需求来确定,不同的导电剂会对胶水的导电性能和机械性能产生不同的影响。

将EVA树脂和导电剂按照一定比例混合,并加入适量的增塑剂和其他助剂。

混合的方法可以采用机械搅拌、热熔混合等方式,以确保各种组分充分均匀地分散在EVA树脂中。

然后,将混合均匀的材料通过热熔机进行熔化和混合。

热熔机通常采用螺杆挤出机,通过高温和高压将材料熔化并混合均匀。

接下来,将熔化的材料通过模具或喷涂机进行成型。

模具可以用于制备胶条、胶片等形状规则的产品,而喷涂机可以用于制备薄膜、涂层等形状不规则的产品。

经过冷却固化和切割加工,即可得到成品的EVA导电热熔胶。

冷却固化的方法可以采用自然冷却、水冷却等方式,切割加工可以采用切割机、切割刀等工具。

总结一下,EVA导电热熔胶是一种具有导电性能的特殊热熔胶,可以在电子产品组装、电路连接等领域得到应用。

制造EVA导电热熔胶的方法主要包括准备原材料、混合和熔化、成型、冷却固化和切割加工等步骤。

通过合理的配方和工艺控制,可以制备出具有一定导电性能的EVA导电热熔胶,满足不同应用需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Jan 10, 2007>> All articles Formulating Ethylene Vinyl Acetate Hot Melt Adhesives Edward M. Petrie, Member of SpecialChem Technical Expert TeamIntroductionKey Material Properties Required for Hot Melt AdhesivesFormulation of EVA Hot Melt SystemsAdvances in EVA Hot Melt AdhesivesIntroductionHot melt adhesives are increasingly becoming popular because of their fast setting speed, relatively low cost (materials and processing), and low environmental impact. Hot melt adhesive systems also have broad formulation latitude so that a multiplicity of products can be produced for specific end-uses and substrates.Primary hot melt applications are high-speed applications such as packaging, attaching labels and wood veneer, bookbinding, and textiles. Hot melt adhesives can also be manufactured in various forms including pellets, slugs, and blocks for bulk application or stick and continuous rope forms for heated gun applicators. Films are also available for high area assembly and continuous laminating.Hot melt adhesives are primarily made from thermoplastic polymers including ethylene vinyl acetate (EVA), block copolymers such as styrene butadiene styrene (SBS) or styrene isoprene styrene (SIS), polypropylene (atactic), polyethylene, polyamide, polyester, and polyurethane. Of these, EVA is the most popular due to their high versatility.EVA resins are highly flexible products, compatible with many other polymers and additives, and easy to process. They have high cohesive strength and excellent adhesion to a wide range of substrates. EVA copolymers can be used in soft, permanently tacky pressure sensitive adhesives or in tough rigid hot melt compositions used for semi-structural applications. Table 1 identifies the major advantages and limitations associated with EVA based hot melt adhesives.Broad formulating latitude necessary for many differentapplications and adhesion to a wide variety of substratesCold flow (creep)Quick setting - no cure or fixturing required Attacked by some greases, oils, and solventsRetention of properties at low temperatures High viscosity needed for maximum performanceNo water or solvent removalLow equipment and operating costsPressure sensitive systems can be formulatedMany formulations have approval for food contactRelatively low costTable 1: Advantages and Disadvantages of EVA Based Hot Melt AdhesivesThis article first reviews the key materials properties that are required generally for hot melt adhesives. The formulating principles and potential product possibilities available with EVA hot melt adhesives are then reviewed, and starting formulations are offered for specific applications.Key Material Properties Required for Hot Melt AdhesivesHot melt adhesives facilitate fast production speeds because the adhesives set simply by cooling from a molten liquid to a cohesive solid. Hot melts do not require processing time for evaporation of solvents or water carrier or for a chemical reaction to occur. This also generally results in lower energy and maintenance costs.Hot melt formulations contain polymers to provide strength and hot tack, and tackifiers and oils or plasticizers to reduce melt viscosity, adjust glass transition temperature, and improve wetting. Some formulations also contain waxes to speed setting and further reduce viscosity. These additives are generally high concentrations (comparable to the base polymer) in hot melt adhesive formulations. Fillers are also used to increase melt viscosity to reduce excessive penetration into porous substrates and to modify cohesive properties. Antioxidants are generally added to prevent thermal oxidation during processing and service. Additives often consist of blends of two or more materials to optimize certain properties. A typical EVA hot melt formulation for packaging is indicated in Table 2.EVA copolymer 20-50Tackifying resin 20-50Synthetic wax 0-20Plasticizer 0-20Filler 0-20Antioxidant 0.1-1.0Table 2: Starting Formulation for an EVA Hot Melt Packaging AdhesiveIn order to obtain adequate strength and heat resistance from a nonreactive formulation, hot melt adhesives generally require some component to separate out into a dispersed but interconnected hard phase network on cooling. For adhesives based on styrene block copolymers, the hard phase consists of glassy styrene domains. For adhesive based on ethylene copolymers, waxes, or olefinic copolymers, the hard phase consists of organic crystallites (Figure 1).Figure 1: Crystalline and amorphous regions in a polymer structureFigure 2 illustrates the mechanical spectrum of amorphous and crystalline polymers. The glassy region is indicative of a brittle polymer; in the flow region the polymer is in its melt form and lacks strength. The rubbery region is indicative of high strength and viscoelastic deformation to absorb stress and impact.Figure 2: Mechanical spectrum of two hot melt polymers1Because hot melt adhesives are applied in melt form and achieve their bond strength on resolidification on cooling, there are two important physical properties: glass transition temperature and melt temperature. These will vary significantly depending on the type of base polymer used and the additives or modifiers present in the formulation.Generally, most hot melt adhesives and sealants have a glass transition temperature, Tg,below room temperature. The melt temperature, Tm, should be low enough to conveniently provide for application but not so high as to result in a safety or fire issue. Most hot melt adhesives have a Tm so that typical application temperatures are 150-200°C, and they become fully solid at temperatures below 80°C.The viscosity of the hot melt at elevated temperature is also an important criterion. The hot melt must be capable of flow to be applied and wet the substrate, but it must not have such a low viscosity so as to flow out of the processing equipment or joint. The viscosity in the melt form will also determine how the product can be applied (Figure 3).Figure 3: Viscosity of molten hot-melt adhesives as a function of temperature2Viscosity of hot melt adhesives or sealants is generally not measured in centipoises. The viscosity at elevated temperature is usually present as a melt flow index (MFI), which is the weight of polymer that can be extruded from a nozzle at a given temperature, pressure, and time. Polymers with a high MFI have low viscosity at elevated temperatures. The melt flow index test method is specified in ASTM D1238. The melt viscosity of most polymers is an exponential function of the molecular weight, but the relationship is not simple.The hot melt system must achieve a relatively low viscosity when in the molten state to achieve wetting, but it must not cool too rapidly or it will not have time to completely wet the molecular roughness of the substrate. Fast cooling can be the result of applying the hot melt to a substrate with high thermal conductivity (e.g., metals) or polymers, which crystallize rapidly. The problem of achieving high bond strength with metals can be resolved by preheating the metal prior to applying the adhesive. This will provide a longer time for the adhesive to be in the melt form and wet the substrate. The problem of rapid crystallization with certain polymers must be balanced against the higher cohesive strength that usually results from these systems.The semicrystalline polymers generally exhibit a greater temperature range for application and a higher modulus at elevated temperatures as was shown in Figure 2. This is due to the pseudo-crosslinking characteristics of hydrogen bonding. Amorphous polymers would require significant molecular weight and molecular entanglements to have properties equivalent tosemicrystalline polymers. This would result in an unrealistically high melt flow index for the amorphous materials. Therefore, the majority of hot melt adhesives and sealants are formulated from semicrystalline polymers, although amorphous polymers are often used as modifiers and additives.The application, performance, and cost properties of hot melt adhesives and sealants can vary significantly depending on the base polymer and the specific formulation employed. Typical properties of several common fully formulated hot melt adhesives are shown in Table 3.Softening point, °C 40 100 --- ---Melting point, °C 95 --- 267 137Crystallinity L L H H or LMelt index 6 2 5 5Tensile strength, psi 2750 2000 4500 2000Elongation, % 800 300 500 150Cost L to M M H LTable 3: General Comparison of Common Hot Melt Adhesives3Formulation of EVA Hot Melt SystemsLike other adhesive formulations, hot melt adhesives require a delicate balancing of constituents relative to the performance and processing properties. The adhesive components as well as the base polymer play a very significant role in the formulation process. The major components of a hot melt adhesive or sealant include base polymers, tackifiers, processing oils and waxes, filler, antioxidants, and UV inhibitors.•The base polymer is the molecular backbone of the systems, and it is used to provide the inherent strength and chemical resistance as well as the applicationcharacteristics.•Tackifiers are added to improve initial adhesion and to modify the base polymer.•Processing oils and waxes are used to adjust viscosity and set times. Both tackifiers and processing materials will affect the Tg and Tm of the final product.•Fillers are used to fine tune certain properties such as melt viscosity, thermal expansion coefficient, set time, etc.•Antioxidants are used to provide oxidation resistance - more for the polymer in the application state rather than in the final joint.•UV inhibitors are to provide stability against exposure to light.The selection of formulation components is determined primarily by the chemical compatibility of the components both during the formulation stage and during the service life stage. Optimal properties and performance can only be exhibited by a formulation where all the componentsare compatible.Certain thermoplastic resins do not require modification by way of additives to achieve good hot melt adhesive properties. These are primarily polyurethanes, polyamides, and polyesters. But the remaining thermoplastic resins will require compounding with the additives mentioned above.Ethylene vinyl acetate (EVA) copolymers are perhaps the most widely used base polymer in general-purpose hot melt adhesives. The material is essentially a random, amorphous copolymer with regions of crystallinity. Melt viscosity is very dependent on molecular weight for this material. Melt flow indices ranging from 2 to 200 are possible. Suppliers of EVA resins for adhesive systems along with information regarding their technical properties can be found in the SpecialChem4Adhesives polymers database.EVA copolymers can be made in continuous bulk, solution, or emulsion processes. The emulsion process produces resins with vinyl acetate content greater than 60% and is more appropriate for water-based adhesives than for hot melt systems. These high vinyl acetate resins are more usually described as vinyl acetate ethylene (VAE) copolymers.Generally, for hot melt adhesives a resin with vinyl acetate concentration of 18-40% is utilized. The vinyl acetate content can be a significant parameter in varying the properties of the adhesive. The materials with high vinyl acetate concentration exhibit reduced crystallinity and increased polarity. The physical property changes as a function of vinyl acetate content is shown in Table 4. At about 50% vinyl acetate content, all crystallinity is lost. Recrystallization rate or setting speed is greatly influenced by the choice of specific EVA resin.Stiffness modulus DecreasesSurface hardness DecreasesCrystalline melting (softening) point DecreasesTensile yield strength DecreasesChemical resistance Decreases (generally)Impact strength (especially at lowIncreasestemperatures)Optical clarity IncreasesEnvironmental stress crack resistance IncreasesCoefficient of friction IncreasesRetention of mechanical strength at high fillerIncreasesloadingsCompatibility with other polymers, resins,Variableetc.Dielectric loss factor IncreasesCompatibility with polar resins andIncreasesplasticizersSpecific adhesion IncreasesSurface printability IncreasesTable 4: Changes in Physical Properties of EVA Due to Increasing Vinyl Acetate Content4The higher vinyl acetate copolymers provide better adhesion to polar substrates such as vinyl, aluminum, and steel, while the lower vinyl acetate copolymers are often used for bonding low energy surfaces. Table 5 illustrates the effect that vinyl acetate content has on the adhesion of EVA to a number of substrates.Kraft paper Little effectGlassine paper Little effectWood Little effectABS Slight trendAluminum Major improvementSteel Major improvementPlasticized vinyl Major improvementRigid vinyl Major improvementPolypropylene Major improvementHigh density polyethylene Major improvementTable 5: Effect of Vinyl Acetate Content in EVA Copolymer Hot Melts on Adhesion to VariousSubstrates5EVA resins normally used in hot melt adhesives have a vinyl acetate content less than 40%. However, a new product line, Levamelt, from Bayer provides vinyl acetate contents in the40-80% range. This polymer backbone consists of fully saturated methylene units with acetate groups attached. Thus it is referred to as a EVM copolymer. Levamelt is particular well suited for pull-off protective film such as that used for automobiles, furniture, and liquid crystal displays.Melt index or melt viscosity is another important criterion in choosing the correct EVA resins for adhesive formulations. Low melt index EVA grades provide high viscosity, strength, and hot tack. In contrast, high MI grades enable higher polymer content and low application viscosities. Mid-range MI grades provide formulation flexibility.EVA resins are considered to be relatively safe to use in food applications. Certain adhesive manufacturers offer EVA hot melt formulations that are approved for indirect food contact (FDA 21 CFR.175) applications. This allows the adhesive to be used not only in food packaging but also in food cooking and other food preparation applications.EVA resins exhibit miscibility in the melt with a wide range of modifying resins, tackifiers, and waxes. This provides the adhesive formulator with a wide latitude of compounding possibilities. Often a modifier resin is incorporated along with the EVA copolymer to provide specific adhesion characteristics and substrate wetting. Common modifying resins include:•Wood rosin derivatives (adhesion to vinyl and other plastics),•Hydrocarbon resins (adhesion to Kraft paper),•Polyterpene resins (adhesion to metals and plastics),•Low molecular weight styrene and styrene copolymers (adhesion to metals at elevated temperatures), and•Phenolic resins (improved temperature resistance and adhesion to wood).Tackifiers are added to EVA copolymers to reduce viscosity and improve wetting. These include C5 - C9 hydrocarbon resins, polyterpenes, and rosin esters of pentaerylthritol and glycerol. Waxes are added to lower cost and reduce viscosity. Fillers such as calcium carbonate lower cost and increase viscosity. Antioxidants are needed to protect the adhesive during application and service life. The idealized formulation ranges for an EVA hot melt adhesive was shown in Table 2.Specific EVA hot melt formulations for certain bonding applications can be found in the SpecialChem4Adhesive's Ethylene Copolymers Center. Selected formulations from this site are given in Table 6.Evatane 28.420 EVA 20Evatane 28.05 EVA 5Evatane 33.45 EVA 20Evatane 28.40 EVA 5Evatane 33.400 44Hydrogenated rosin ester 40Rosin ester (mp 105°C) 34Rosin ester (mp 85°C) 40 7.5Microcrystalline wax (mp3070°C)Acid functionalized wax 4.5 8Polyethylene wax 25Paraffinic oil 9.5Antioxidant 0.5 0.5 0.5Table 6: Starting Formulation for Several EVA Hot Melt Adhesives6Advances in EVA Hot Melt AdhesivesEVA hot melts are generally susceptible to creep as any thermoplastic. However, they can be crosslinked by adding peroxide and heating or by electron beam (EB) radiation. EVAs exhibit outstanding viscosity retention on aging at elevated temperature; however, they slowly release acetic acid. This can cause corrosion problems with adhesive applications equipment. Formulations based on ethylene n-butyl acrylate have been developed to address this deficiency.Current trends favor fast setting hot melts to improve line speed while keeping a "long" open time in order to reduce quality problems when the line is running at low speed. New EVA formulations can be formulated to offer relatively long open times (40-60 secs) and excellent adhesion to many substrates including metal, plastics, wood, and elastomers. Pressure sensitive EVAs that stay tacky even after cooling are another recent advancement in hot melt technology7.References1. Pocius, A.V., Adhesion and Adhesives Technology, Hanser / Gardner Publications, New York, 1997, p. 247.2. Petrie, E.M., Handbook of Adhesives and Sealants, 2nd ed., McGraw-Hill, New York, 2006, p. 686.3. Gauthier, M. M., "Types of Adhesives", in Adhesives and Sealants, vol. 3, Engineered Materials Handbook,ASM International, 1990.4. Henderson, A.M., "Ethylene Vinyl Acetate (EVA) Copolymers: A General Review", IEEE Electrical InsulationMagazine, January/February, 1993, p. 31.5. Domine, J.D., and Schaufelberger, R.H., "Ethylene Copolymer Based Hot Melt Adhesives", in Handbook ofAdhesives, I. Skeist, ed., van Nostrand Reinhold, New York, 1977.6. Ethylene Copolymers Center, SpecialChem4Adhesives.7. Tremblay, S., "Advances in Hot Melt Technology", Loctite Technical Brief, Henkel Corporation.This document was provided by SpecialChem's editor. If you want to share your technical expertise in a specific area related to adhesives and sealants or if you want to submit press releases, please send it to james.brown@. SpecialChem reserves the right to refuse any article or news item.。

相关文档
最新文档