小学奥数分数与百分数的应用
小学六年级奥数 第十章 分数、百分数应用题

第十章 分数、百分数应用题知识要点分数、百分数应用题是日常生活和生产实践中应用最广泛的一类数学问题,并且这类知识与生活有着紧密的联系。
如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。
在解题过程中要着重解决以下几个方面的问题: 1.准确地确定单位“1”的量。
2.确定类型。
单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 分率对应量÷单位“1”的量=分率 3.确定好对应关系。
例1 (“希望杯”邀请赛试题)小红和小明帮刘老师修补一批破损图书,根据图中的信息,计算小红、小明一共修补图书 本。
点拨 从图中可知小红和小明一共修补破损图书为:40%-2+14+3=40%+25%+1=65%+1,则这批破损图书一共有(20+1)÷(1-65%)=60(本)。
再减去刘老师修补的图书20本,则为小红和小明一共修补的图书。
解 (20+1)÷[1-(4+40%)]-20 =21÷[1-65%]-20 =21÷35%-20 =60-20 =40(本)答:小红、小明一共修补图书40本。
例2 张、王、李三人共有54元钱,张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,那么张和李两人剩下的钱共有多少元? 点拨一 先假设钢笔的价格是“1”,则有 张的钱数是钢笔的:1÷35=53王的钱数是钢笔的:1÷34=43李的钱数是钢笔的:1÷23=32三人的总钱数是这支钢笔的(53+43+32)倍,这样就可以求出钢笔的价格。
解54÷(53+43+32)=12(元)张剩下的钱数:12×(53-1)=8(元)李剩下的钱数:12×(32-1)=6(元)张、李两人剩下的钱共有:8+6=14(元) 答:张和李两人剩下的钱共有14元。
点拨二据张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,即张钱数的35=王钱数的34=李钱数的23,据此可推知张钱数的610=王钱数的68=李钱数的69(根据分数的基本性质,把这几个分率转化成分子相同的分数,即“分子同化法”。
小学奥数讲义:分数、百分数应用题

分数、百分数应用题1【知识要点】分数、百分数应用题是日常生活和生产实践中应用最广泛的一类数学问题,并且这类知识与生活有着紧密的联系。
如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。
在解题过程中要着重解决以下几个方面的问题:1、准确地确定单位“1”的量。
2、确定类型。
单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 分率对应量÷单位“1”的量=分率 3、确定好对应关系。
4、设单位“1”的量为x ,列方程解决问题。
复杂类型题可以通过画线段图帮助了解“量率对应”关系。
【例题精讲】 一、量率对应1、小林买了一支圆珠笔和一支钢笔共用去12元,圆珠笔的价钱是钢笔的15 。
一支圆珠笔和一支钢笔各多少元?2、一桶油,第一次用去25 ,第二次用去10千克,这时剩下的油的质量正好是整桶油的一半,这桶油有多少千克?3、要修一条路,已修了全长的53少2千米,还剩下12千米没修,求这条路有多少千米?4、仓库里有一批化肥,第一次取出总数的52,第二次取出总数的31少12袋,这时仓库里还剩24袋,两次共取出多少袋?5、王师傅要加工一批零件,第一天加工的零件比这批零件的81还多21个,第二天加工的零件比这批零件的61少6个,还剩下172个没加工。
王师傅一共要加工多少个零件?二、转化单位“1”1、阿呆三天看完一本书,第一天看了全书的31,第二天看了余下的72,第一天比第二天多看了15页,这本书共有多少页?2、甲、乙、丙三人合做一批玩具,甲所做玩具的个数是其余两人的21,乙所做玩具的个数是其余两人的31。
已知丙做了60个,求甲、乙各做了多少个?3、2008年北京奥运会进行到第13天时,金牌榜上排名前三名的分别是中国、美国和英国,共86枚金牌,其中英国占美国的138,美国占中国的2213,中国、美国、英国这时各得几枚金牌?4、某厂男职工比全厂职工总人数的53多60人,女职工人数是男职工的31,这个厂共有职工多少人?三、抓不变量解分数应用题1、今年妈妈54岁,女儿26岁,当女儿的年龄是妈妈的239时,妈妈多少岁?2、有甲、乙两袋小球,甲袋小球占甲、乙两袋小球总个数的52,如果从乙袋中取8个小球放到甲袋中,那么甲袋小球占甲、乙两袋小球总个数的209,这时乙袋中有多少个小球?3、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的21,原来两人各有多少元钱?4、一堆棋子中,黑子颗数是白子的52,后来又放进了14颗黑子,这时黑子占全部棋子的73,这堆棋子原来有多少颗?5、甲、乙两人各带一些钱去超市,甲和乙带的钱数的比是13:9,两人都花了30元,甲剩下的钱是乙剩下的钱的2倍,原来甲、乙带的钱各是多少元?【练习】1、五年级参加数学竞赛的学生中,女生有18人,相当于男生参赛人数的32。
五年级奥数《分数、百分数应用题》含答案(通用版)

一、 知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、 怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相知识框架分数、百分数应用题当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
五年级奥数.应用题.分数、百分数应用题(一)(A级)学生版

【例 1】 解下列方程:(1)52342.3=⨯-x (2) 2283x x x +-=+(3)12(3)7x x +-=+ (4)132(23)5(2)x x --=--【例2】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?【例3】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?分数、百分数应用题(一)发现不同【例4】 缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?【例5】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?【例6】兄弟两人各有人民币若干元,其中弟的钱数是兄的54,若弟给兄4元,则弟的钱数是兄的32,求兄弟两人原来各有多少元? 【例7】某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的53,下半月比上半月多生产了51,这样全月实际生产了1980个零件,一月份计划生产多少个?【例8】 五(2)班有学生54人,男生人数的75%和女生人数的80%都参加了课外兴趣小组,而未参加课外兴趣小组的男、女生人数刚好相等,这个班男、女生各有多少人?【例9】两种糖放在一起,其中软糖占209,再放入16块硬糖以后,软糖占两种糖总数的41,求软糖有多少块?【例10】小明看一本课外读物,读了几天后,已读的页数是剩下页数的81,后来他又读了20页,这时已读的页数是剩下页数的61,这本课外读物共有多少页?【例11】 人合买一台彩电,老大出的钱是其他两人出钱总数的21,老二出的钱是其他两人出钱总数的31,老三比老二多出400元。
问这台彩电多少钱?【例12】 条公路修了1000米后,剩下部分比全长的53少200米,这条公路全长多少米?【例13】 两班共有96人,选出甲班人数的41和乙班人数的51,组成22人的数学兴趣小组,问甲、乙两班原来各有多少人?【例14】 某书店出售一种挂历,每售出1本可得18元利润。
6六年级奥数-第六讲.分数百分数应用题.教师版(2021年整理精品文档)

6六年级奥数-第六讲.分数百分数应用题.教师版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(6六年级奥数-第六讲.分数百分数应用题.教师版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为6六年级奥数-第六讲.分数百分数应用题.教师版的全部内容。
一、解答题(共25小题,满分0分)1.(2011•成都)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元?2.(2006•泉山区校级自主招生)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有千克.3.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?4.(2012•哈尔滨校级自主招生)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重.如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍.这两堆煤共重多少吨?5.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚?6.某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生?7.(2010•北京校级自主招生)把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?8.学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几?9.某校四年级原有2个班,现在要重新编为3个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人?10。
六年级下册数学奥数讲义-分数、百分数应用题(二)(无答案)全国通用

1
,第二天比
2
【巩固】 迎 春农机厂计划生产一批插秧机,现已完成计划的 划产量的 16%.那么,原计划生产插秧机台.
56%,如果再生产 5040 台,总产量就超过计
【例 9】 某运输队运一批大米. 第一天运走总数的 1 多 60 袋,第二天运走总数的 1 少 60 袋.还剩下 220
5
4
袋没有运走。这批大米原来一共有多少袋?
我国人口是部分数, 世界人口就是单
位“ 1”。
解答题关键:只要找准总数和部分数,确定单位“
1”就很容易了。
(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是
带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通
常就作为标准量,也就是单位“ 1”。
分数、百分数应用题(二)
知识框架
一、 知识点概述:
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一
方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”
之间的对应是解题的关键. 关键: 分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称
【例 6】 一个机关精简机构后有工作人员 120 人,比原来工作人员少 40 人,精简了百分之几?
【巩固】 小 强看一本书,每天看 15 页, 4 天后加快进度,又看了全书的 多少页?
2 ,还剩下 30 页,这本故事书有 5
【例 7】 有男女同学 325 人,新学年男生增加 25 人, 女生减少 5%,总人数增加 16 人,那么现有男同学 多少人?
第十五讲 分数百分数应用题(2)-小学奥数

第十五讲 分数百分数应用题(2)告诉你本讲的重点、难点在很多分数和百分数应用题中都会遇到单位“1”的问题,根据题目条件正确使用单位“1”能使解答的思路更加清晰,方法更加简捷,这—讲重点讲解运用这种方法解答分数、百分数应用题.看老师画龙点晴,教给你解题诀窍【例1】甲、乙两数之和是180,甲数的41等于乙数的,51甲、乙两数各是多少? 分析与解 题中有甲、乙两数,两个单位“1”,需要统一单位“1”,若把甲数看成单位“1”,那么乙数是甲数的⋅=÷455141若把乙数看成单位“1 ”,那么甲数是乙数的⋅=÷544151 方法1: 80)15141(180=+÷÷甲数 10080180=-乙数方法2: 100)41511(180=÷+÷乙数 80100180=-甲数【例2】 一本文艺书,小明第一天看了全书的,21第二天看了余下的,31第三天看了再余下的,51还剩下80页.这本书共有多少页?分析与解 本题中单位“r 的量不断地在变化,依次是“全书的页数”、“第—天看后余下的页数”、“第二天看后余下的页数”,出现了三个不同的单位“1”.这里我们把全书看成单位“1”,求出第一天看后剩下),211(再求出第二天看后余下全书的⋅-⨯-)311()211(最后第三天看后余下部分的80页占全书的⋅-⨯-⨯⋅-)511()311()211(于是,全书共有300)]511()311()211[(80=-⨯-⨯-÷(页) 【例3】四个孩子合买一只60元的玩具小船,第一个孩子付的钱是其他孩子付的总钱数的一半,第二个孩子付的钱是其他孩子付的总钱数的三分之一,第三个孩子付的钱是其他孩子付的总钱数的四分之一,第四个孩子付了多少元钱?分析与解 把买玩具的总钱数看作“1”.“第一个孩子付的钱是其他孩子付的钱的总钱数的一半”,表示其他孩子付的是第一个孩子的2倍,因而第一个孩子付的占总钱数的,211+同理可以知道第二个孩子付了总钱数的,311+第三个孩子付了总钱数的,411+第四个孩子付了总钱数的-1⋅+-+-+411311211于是第四个孩子付的钱是13601360)4113112111(60=⋅⨯=+-+-+-⨯(元).【例4】 某小学六年级学生中女生占,127后来又转来15名女生,这样女生占六年级总人数的⋅53六年级原来有学生多少人?分析与解 把男生人数这个不变量看成单位“1”,原来女生占,127男生占,125女生人数是男生 人数的;57125127=÷现在女生占,53男生占,52女生人数是男生人数的,235253=÷女生人数增加15人,分率增加,5723-据此求出男生人数为150)5723(15=-÷人,于是六年级原来有学生150360125=÷人.快来试一试你的身手吧!1.清风文具店运来的毛笔比钢笔多1千枝,其中毛笔的73与钢笔的21的枝数相同.清风文具店共运来多少千枝笔?2.某人拿了一筐橘子到菜场去卖,第一个顾客买了;31第二个顾客买了余下的,31第三个顾客又买了余下的,31筐里还有8个,原来筐里有多少个橘子?3.小芳在看一本小说书,晚饭前,已看的页数是未看的,71晚饭后,她又看了8页,这时已看的页数是未看的⋅61这本小说书一共有多少页? 4.学校成立舞蹈队,其中男生占,103后来又有5名男生参加这个舞蹈队,这时男生人数占舞蹈队人数的⋅52现在舞蹈队有多少人?做题也有小窍门噢关键是如何选择作为单位“1”的那个量,应选择某一个不变的量确定为单位“1”的量,再理清其他的量与单位“1”的关系.通往初中名校的班车1. 两袋大米,第二袋比第一袋重15千克,已知第一袋大米重量的31恰好等于第二袋大米重量的⋅72两袋大米各重多少千克?2. 六年级(1)班召开班会.一个男生上台后向老师报告,台下男生人数是女生人数的,54男生下台后,一个女生上台说,台下男生人数只有女生的⋅87六年级(1)班共有学生多少人?3.有一堆糖果,其中奶糖占45%,再放人16块水果糖后,奶糖就只占了25%,那么这堆糖果中有奶糖多少块?4. 六年级两个班共有学生94人.其中女生有39人,已知(1)班女生占本班人数的40%,二班女生占本班人数的⋅73两班各有多少人?答 案。
寒假奥数专题:分数、百分数复合应用题(试题)-小学数学六年级上册人教版(含答案)

寒假奥数专题:分数、百分数复合应用题(试题)-小学数学六年级上册人教版一.选择题(共5小题)1.某厂上半月完成本月计划的75%,下半月完成本月计划的,这个月实际完成量比计划多()A.25%B.30%C.45%D.50%2.据《钱江晚报》报道,共有100多名自行车运动爱好者参与12月1日至11日进行的“爱我浙江环保骑行宣传活动”.车队途经25个县市,全程1600千米.当行进到全程时,已有70%的参与者退出了骑行队伍.坚持骑完全程的有12人,是出发时总人数的10%,他们平均每天骑行8时,骑行路程的60%是山道.问:没有骑完全程的有多少人?要解决这个问题,需要用到的信息是()A.100人,12人,1600米,1090,,70%B.100人,70%,10%C.12人,70%,10%D.12人,10%3.水果店运进两种质量相同并且超出1吨的水果,甲种水果卖出吨,乙种水果卖出30%,两种水果剩下的()A.甲种多B.乙种多C.一样多D.无法比较4.男生人数的等于女生人数的60%,男生和女生人数的比是()A.:60%B.60%:C.4:5D.5:45.某厂上半月完成计划的75%,下半月完成计划的,这个月增产()A.25%B.45%C.30%D.20%二.填空题(共7小题)6.商店上午的营业额占全天营业额的,其余是下午的营业额,上午的营业额比下午少%.7.电信公司要架设一条长4800米的光缆,第一天架设了全长的25%,第二天架设了余下的又10米,还剩下米.8.在一个三角形中,第一个角占其中的,第二个角占其中的50%,这三个角分别是,这是一个三角形.9.小明和弟弟各自积攒很多画片,小明把自己的给弟弟后,两人的一样多,原来小明比弟弟多%.10.用汽车运一批货,已经运了5次,运走的货物比多一些,比75%少一些.运完这批货物最多要运次,最少要运次.11.花园小学有学生1260人,学校组织全校男生的80%和全校女生的的学生参观西湖,其余学生祭扫雨花台烈士陵园,结果发现扫墓的男、女生人数正好相等.花园小学男生、女生各有人.12.甲、乙、丙三人赛跑,已知甲速比乙速快,而乙速又比丙速快10%,则甲速比丙速快%.三.应用题(共9小题)13.六(1)班有32人喜欢跳舞,占全班人数的,喜欢唱歌的占全班人数的75%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。
最常见的是转换成比例和转换成倍数关
系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。
常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算
出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始
终固定不变的。
有以下三种情况:A、分量发生变化,总量不变。
B、总量发生变化,但其中有的分量不变。
C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。