高一数学复合函数讲解
高一数学复合函数

高一数学复合函数复合函数是高一数学中的一个重要概念,它在函数学习的过程中起着关键作用。
本文将详细介绍复合函数的定义、性质以及其在实际问题中的应用。
1. 复合函数的定义复合函数是由两个函数相互组合而成的新函数。
设有函数f(x)和g(x),则复合函数记作f(g(x)),表示先用g(x)对x进行映射,然后再将结果代入f(x)进行映射。
2. 复合函数的性质(1)复合函数的定义域:复合函数的定义域取决于中间函数的定义域,要求中间函数的值域必须在f(x)的定义域内。
(2)复合函数的值域:复合函数的值域取决于最后一个函数的值域,要求最后一个函数的值域在f(x)的值域内。
(3)复合函数的可逆性:当复合函数中的所有函数都是可逆函数时,复合函数才是可逆的。
(4)复合函数的性质:复合函数满足结合律,即f(g(h(x)))=(f∘g)∘h(x)。
3. 复合函数的应用举例(1)物理问题:假设一辆汽车的速度与时间的函数关系为v(t),而时间与位置的函数关系为s(t),则汽车的位置随时间的变化可以用复合函数s(v(t))来表示。
(2)经济问题:假设某商品的价格与销量的函数关系为p(x),而销量与利润的函数关系为l(x),则利润随销量的变化可以用复合函数l(p(x))来表示。
(3)生物问题:假设某种细胞的密度与时间的函数关系为d(t),而时间与增长率的函数关系为r(t),则细胞的密度随时间的变化可以用复合函数d(r(t))来表示。
4. 复合函数的求导对于复合函数f(g(x)),可以利用链式法则来求导。
链式法则规定,复合函数的导数等于外函数对内函数的导数乘以内函数对自变量的导数。
通过链式法则,可以将复合函数的求导简化为对中间函数和最后一个函数的导数的求导。
5. 复合函数的图像复合函数的图像可以通过画出中间函数和最后一个函数的图像,并根据复合函数的定义进行变换得到。
具体来说,先画出中间函数的图像,然后根据复合函数的定义,将中间函数的输出作为最后一个函数的输入,再画出最后一个函数的图像。
高一必修一复合函数知识点

高一必修一复合函数知识点复合函数是高中数学中的一个重要概念,它在函数的运算和应用中扮演着重要的角色。
本文将详细介绍高一必修一中与复合函数相关的知识点。
一、复合函数的定义及表示方法复合函数是指将一个函数的输出作为另一个函数的输入,通过一系列的运算得到最终结果。
一般表示为f(g(x)),其中g(x)是先于f(x)进行的函数操作。
二、复合函数的求解方法1. 基本复合函数的求解:将内函数的输出作为外函数的输入,逐步代入求解。
2. 复合函数的符号表示法:若f(x) = u(x)和g(x) = v(x),则复合函数可以表示为(u∘v)(x),即f(g(x))。
3. 复合函数的运算规则:满足结合律,即(f∘g)∘h = f∘(g∘h)。
三、复合函数的图像变换1. 反函数的复合:若f(g(x)) = x,g(f(x)) = x,即f(x)和g(x)互为反函数,则(f∘g)(x) = (g∘f)(x) = x。
2. 复合函数的图像对称性:若f(x)在点x处对称,则(f∘g)(x)在g(x)处也有对称性。
四、复合函数的应用领域复合函数在高中数学的各个章节中都有广泛的应用,包括函数的求导、函数的极值、解函数方程等各个方面。
1. 函数的求导:对于复合函数f(g(x)),可以利用链式法则求导,即[f(g(x))]' = f'(g(x)) * g'(x)。
2. 函数的极值:根据函数的极值存在性定理,可以通过求解复合函数的导数等方法求得函数的极值。
3. 解函数方程:对于给定的函数方程f(g(x)) = 0,可以通过求解复合函数的根来解得方程的解。
综上所述,复合函数是高一必修一数学中重要的知识点之一。
它不仅在数学理论的研究中有重要应用,也在实际问题的求解中占据重要地位。
通过对复合函数的学习和理解,同学们可以更好地应用数学知识解决实际问题,提高数学水平。
希望本文对大家的学习有所帮助!。
复合函数课件-高一上学期数学人教A版

学习目标
学习活动
学习总结
1.了解复合函数的概念并学会求复合函数定义域; 2.掌握复合函数单调性的判断方法; 3.学会复合函数奇偶性的判断方法.
学习目标
学习活动
学习总结
目标一:了解复合函数的概念并学会求复合函数定义域
任务1:观察下列函数,归纳复合函数的概念. 设y是u的函数,且满足关系式 y f (u) 1 ,同时u是x的函数,且u=g(x)
u =2x+1.那么y与x的函数关系是什么,如何表示呢?
解: y f (u) f [g(x)] 1 .
2x 1
学习目标
学习活动
学习总结
归纳总结
复合函数定义:
如果y是u的函数,记为 y f (u) ,又u是x的函数,记为 u g(x) , 且 g(x) 的值域与f(u)的定义域交集不为空集,则确定了一个y关于 x的函数 y f [g(x)] ,这时y叫做x的复合函数,其中u叫中间变量, y f (u) 叫外层函数,u g(x) 叫内层函数.
2.已知复合函数 f (x) 的定义域为A,求函数 f [g(x)] 的定义
域 解不等式 g(x) A .
学习目标
学习活动
学习总结
目标二:掌握复合函数单调性的判断方法
任务:判断复合函数单调性,归纳复合函数单调性的判断方法.
1.已知函数 f (u) 在区间A上单调递增,函数 u g(x) 在区间B上单调递增 ,判断函数f [g(x)] 在区间B上的单调性.
解:1.因为函数 f (u) 在区间A上是奇函数,所以 f (u) f (u) ,函数 g(x) 在区间B上是奇函数,所以 g(x) g(x) ,则对于在区间B上, ,所以f [g函(数x)]在 区f [间g(Bx上)] 是 奇f [函g(x数)].
高考数学复合函数基础理论总结

高考数学复合函数基础理论总结复合函数是高一数学学习的重点和难点之一,也是高考数学考试的常见考点。
理解和掌握复合函数的基础理论是学好高等数学、应用数学、物理、化学等学科的前提。
本文将围绕复合函数的定义、性质、运算规则以及应用进行总结和分析。
一、复合函数的定义复合函数的定义:设函数f的定义域为Df,值域为Rf,函数g的定义域为Dg,值域为Rg。
如果存在一个函数h(x)使得对于f的定义域Df中的每一个元素x,都有g的定义域Dg中恰有一个元素y与之对应,并且y是f(x)在g的范围内的唯一值,则称h(x)为f和g的复合函数,表示为h(x) = f(g(x))。
二、复合函数的性质1. 复合函数的定义域:复合函数的定义域由g的定义域和f的值域的交集构成,即Dh = {x|x∈Dg且g(x)∈Df}。
2. 复合函数的值域:复合函数的值域为f的值域的子集,即Rh ⊆ Rf。
3. 复合函数的单调性:若f(x)和g(x)在其定义域内单调增加(或单调减少),则h(x) = f(g(x))也在其定义域内单调增加(或单调减少)。
4. 复合函数的奇偶性:若f(x)为奇函数,g(x)为偶函数,则h(x) = f(g(x))为奇函数;若f(x)和g(x)均为偶函数,则h(x) = f(g(x))为偶函数。
5. 复合函数的周期性:若f(x)的周期为T1,g(x)的周期为T2,则当T2是T1的正整数倍时,h(x) = f(g(x))的周期为T1。
三、复合函数的运算规则1. 复合函数的加法:设h1(x) = f1(g1(x)),h2(x) = f2(g2(x)),且f1(x)和f2(x)的值域相等。
则有(h1 + h2)(x) = f1(g1(x))+f2(g2(x))。
2. 复合函数的减法:设h1(x) = f1(g1(x)),h2(x) = f2(g2(x)),且f1(x)和f2(x)的值域相等。
则有(h1 - h2)(x) = f1(g1(x))-f2(g2(x))。
高一数学必修1_复合函数定义域的求法_1.ppt

1, 2 (2, )
探究学习: 已知函数的解析式,若未加特殊说 明,则定义域是使解析式有意义的自 变量的取值范围。一般有以下几种情况(初等函数) ●分式中的分母不为零; ●偶次方根下的数(或式)大于或等于零; ●指数式的底数大于零且不等于1; ●对数式的底数大于零且不等于1,真数大于零。 ●由几部分的数学式子构成的,那么函数的定义域是
其解法是:若f [g(x)]的定义域为m x n ,则由
m x n 确定 g(x) 的范围即为f (x)的定义域。
题型三:已知 f gx的定义域,求 f hx的定义域。
例3. 函数 y f (x 1) 定义域是 [2,3] ,则
y f (2x 1)的定义域是( )
A. [1,4] B.[5,5] C.[3,7]
其解法是:若f (x)的定义域为 a x b ,则 f [g(x)] 中
x a g(x) b ,从中解得 的取值范围即为 f [g(x)]的定义域
练习:若f (x)的定义域是0,2,求f (x2)的定义域
解:由题意知: 0 x2 2
2 x 2
故 : f x2 的定义域是 [ 2, 2 ]
a4
综上知:实数a 的取值范围为 0 a 4
布置作业:
1.已知函数f (x)的定义域是[2, 2],求y f x 的定义域
2.已知 函数 f 2x 1的定义域是[0,2],求f (13x)的定义域
D.[0, 5 ] 2
归纳:已知f [g(x)] 的定义域,求 f [h(x)]的定义域
其解法是:可先由 f [g(x)] 的定义域求得 f (x) 的定义域,再由 f (x)定义域求得f [h(x)]的定义域。
练习
已知f (2x 1)的定义域1,5,求f (2 5x)的定义域
高一数学复合函数讲解

1、复合函数的概念如果y是a的函数,a又是x的函数,即y=fa,a=gx,那么y关于x的函数y=fgx叫做函数y=fx和a=gx的复合函数,其中a是中间变量,自变量为x,函数值y;例如:函数是由复合而成立;函数是由复合而成立;a是中间变量;2、复合函数单调性由引例对任意a,都有意义a>0且a≠1且;对任意,当a>1时,单调递增,当0<a<1时,单调递减;∵当a>1时,∵y=fu是上的递减函数∴∴∴是单调递减函数类似地, 当0<a<1时,是单调递增函数一般地,定理:设函数u=gx在区间M上有意义,函数y=fu在区间N上有意义,且当X∈M 时,u∈N;有以下四种情况:1若u=gx在M上是增函数,y=fu在N上是增函数,则y=fgx在M上也是增函数;2若u=gx在M上是增函数,y=fu在N上是减函数,则y=fgx在M上也是减函数;3若u=gx在M上是减函数,y=fu在N上是增函数,则y=fgx在M上也是减函数;4若u=gx在M上是减函数,y=fu在N上是减函数,则y=fgx在M上也是增函数;注意:内层函数u=gx的值域是外层函数y=fu的定义域的子集;例1、讨论函数的单调性12又是减函数∴函数的增区间是-∞,2,减区间是2,+∞;②x∈-1,3令∴x∈-1,1上,u是递增的,x∈1,3上,u是递减的;∵是增函数∴函数在-1,1上单调递增,在1,3上单调递减;注意:要求定义域练习:求下列函数的单调区间;1、1减区间,增区间;2增区间-∞,-3,减区间1,+∞;3减区间,增区间;4减区间,增函数;2、已知求gx的单调区间;提示:设,则gx=fu利用复合函数单调性解决:gx的单调递增区间分别为-∞,-1,0,1,单调递减区间分别为-1,0,1,+∞;例2、y=fx,且lglgy=lg3x+lg3-x1y=fx的表达式及定义域;2求y=fx的值域;3讨论y=fx的单调性,并求其在单调区间上相应的反函数;答案:1x∈0,320,3y=fx在上单调递增函数,在上是单调递减函数当x∈时,;当x∈时,;例3、确定函数的单调区间;提示,先求定义域:-∞,0,0,+∞,再由奇函数,先考虑0,+∞上单调性,并分情况讨论; 函数的递增区间分别为-∞,-1,0,+∞函数的递减区间分别为-1,0,0,1;1、求下列函数的单调区间;1232、求函数的递减区间;3、求函数的递增区间;4、讨论下列函数的单调性;12答案:11递减区间2递增区间0,+∞3递减区间-∞,0递增区间2,+∞2、,23、-∞,-24、1在上是增函数,在上是减函数;2a >1时,在-∞,1上是减函数,在3,+∞上是增函数;用待定系数法求函数解析式一、填空题:1、已知二次函数m x x y ++=32的图象与x 轴只有一个交点,则m =;2、抛物线c bx x y ++=2过点1,0,与x 轴两交点间距离3,则b =,c =;3、抛物线42++=bx x y 与x 轴只有一个交点,则b =;4、抛物线的顶点是C2,3,它与x 轴交于A 、B 两点,它们的横坐标是方程0342=+-x x 的两个根,则AB =,S △ABC =;5、如图,二次函数5)2(2-+--=a x a x y 的图象交x 轴于A 、B 两点,交y 轴于点C,当线段AB 最短时,线段OC 的长是;6、若抛物线c x x y +-=212的顶点在x 轴上,则c 的值是;7、抛物线12--=mx x y 与x 轴有个交点; 二、选择题1、抛物线()5322--=x y 与y 轴的交点坐标是A0,-5;B0,13;C0,4;D3,-52、抛物线x x y --=221的顶点坐标为 A ⎪⎭⎫ ⎝⎛211,-B ⎪⎭⎫ ⎝⎛211,-C ⎪⎭⎫ ⎝⎛1,21-D -1,0 3、若抛物线()322++--=m x m x y 的顶点在y 轴上,则m 的值为 A -3B3C -2D24、若抛物线c x x y +-=212的顶点在x 轴上,则c 的值为A 41;B 41-;C 161;D 161- 5、函数()x x y -=32图象可能为 6、若2,5,4,5是抛物线c bx ax y ++=2上的两点,那么它的对称轴为直线A ab x -=B 1=x C 2=x D 3=x7、抛物线12--=mx x y 与x 轴的交点个数是A0;B1;C2;D 无数个;三、求符合下列条件的二次函数式图象:1、过点0,1,1,1,-1,-1;2、对称轴是x =2,经过1,4和5,0两点;3、抛物线与x 轴的一个交点6,0,顶点是4,-84、当x =3时,y 有最大值为-1,且抛物线过点4,-3;5、抛物线以点-1,-8为顶点,且与y 轴交点纵坐标为-6;6、顶点在x 轴上,对称轴方程x =-3,且经过点-1,4;7、求二次函数)4()232-+-+=m m x m x y (的图象与x 轴两交点间的距离的最小值,此时m 的值是多少8、二次函数图象经过A0,2和B5,7两点,且它的顶点在直线y =-x 上;。
高考数学复合函数知识点

高考数学复合函数知识点高考数学是高中数学的重点,其中数学复合函数是高考的难点之一。
复合函数是指在一个函数的基础上再嵌套上一个或多个函数,一般可以表示为f(g(x)),其中g是定义域为x的函数,f是定义域为g(x)的函数。
在自然科学研究领域中,大量的问题是采用函数的复合形式来表示的,所以在数学中复合函数有着广泛的应用和深刻的理论意义。
学习数学复合函数知识点是学习高等数学的重要一环,下面详细介绍高考数学复合函数知识点。
一、符号化表示方法在数学中,符号化表示方法是表示复合函数的标准形式,可以简化复合函数的表达和计算。
在符号化表示中,设有函数y=f(u),u=g(x),则复合函数可以表示为y=f(g(x))。
在函数y=f(u)中,u是自变量,f(u)是因变量,他们都表示实数。
我们可以把y当作g(x)的自变量,因为f(u)的自变量是u,而u又是g(x),所以就有了f(g(x))这个符号化表示方法。
这种方式可以简化学习和计算,便于我们对复杂函数关系进行求解。
二、复合函数的求法计算复合函数时,一般需要利用函数的复合法则。
复合函数的基本法则可以表示为:若有函数y=f(u), u=g(x),则y=f(g(x))。
简单来讲,就是先用x求出g(x)的值,然后用g(x)的值代入f(u)中,得到f(g(x))的值。
需要强调的是,当有多个函数嵌套时,求解复合函数时,应该由内向外逐层求解。
三、除零问题在复合函数的计算中,除零问题是一个重要的考点。
因为如果在复合函数计算中出现除零,结果会得不到解,而造成解题失败。
需要注意,当输入的自变量是使得f(u)=0的值时,可能会出现f(g(x))=f(u)/u,这难以处理,因为除了极少数特定函数之外,0不是任何函数的定值点。
如果g(x)是使得f(u)=0的解,那么f(g(x))将等于未定义。
在数学中,可以通过限定定义域的范围来避免此类问题。
四、基本变换函数的复合基本变换函数的复合也是经常考点之一,他可以帮助我们解决复杂的函数嵌套,同时也是进一步学习函数的基础。
高一复合函数知识点总结

高一复合函数知识点总结复合函数是高中数学中的重要概念之一,它是由两个或多个函数组合而成的函数。
在高一阶段学习复合函数时,需要掌握一些基本知识点和技巧。
本文将对高一复合函数的相关知识进行总结,包括定义、性质和常见解题方法等方面。
1. 复合函数的定义复合函数是由两个函数构成的函数。
设有函数f(x)和g(x),则复合函数f(g(x))表示先对自变量进行g(x)的变换,再对结果进行f(x)的变换。
可以用以下形式表示:f(g(x)),也可以写作(f ∘g)(x)。
2. 复合函数的求解对于给定的复合函数f(g(x)),求解的方法如下:Step 1: 先确定内层函数g(x)的定义域和值域,保证f(g(x))有意义。
Step 2: 将g(x)的结果代入f(x)中,得到f(g(x))的表达式。
Step 3: 综合以上结果,确定f(g(x))的定义域和值域。
3. 复合函数的性质(1)复合函数的定义域:复合函数的定义域等于内层函数g(x)的定义域中,使得g(x) ∈ f(x)的值域。
(2)复合函数的值域:与内层函数g(x)的值域相对应,即g(x)的值域是f(g(x))的值域。
(3)复合函数的奇偶性:若f(x)是奇函数,g(x)是任意函数,则f(g(x))也是奇函数;若f(x)是偶函数,g(x)是任意函数,则f(g(x))也是偶函数。
(4)复合函数的单调性:若f(x)在[a, b]上单调增加(或单调减少),g(x)是单调函数,则f(g(x))在[a, b]上也单调增加(或单调减少)。
4. 复合函数的常见解题方法(1)求函数的复合逆:对于复合函数f(g(x)),若要求它的复合逆,可以先求g(x)的逆函数g^(-1)(x),然后将g^(-1)(x)代入f(x)中即可。
(2)复合函数的导数:若已知内层函数g(x)可导,外层函数f(x)在g(x)的值域上可导,则可以利用链式法则求得复合函数的导数。
(3)复合函数与反函数的关系:若复合函数f(g(x))恒等于x,且g(x)为f(x)的反函数,则f(x)和g(x)互为反函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、复合函数的概念
如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。
例如:函数是由复合而成立。
函数是由复合而成立。
a是中间变量。
2、复合函数单调性
由引例对任意a,都有意义(a>0且a≠1)且。
对任意,
当a>1时,单调递增,当0<a<1时,单调递减。
∵当a>1时,
∵y=f(u)是上的递减函数∴
∴
∴是单调递减函数
类似地,当0<a<1时,
是单调递增函数
一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。
有以下四种情况:
(1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;
(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数;
(3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数;
(4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。
注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。
例1、讨论函数的单调性
(1)(2)
又是减函数
∴函数的增区间是(-∞,2],减区间是[2,+∞)。
②x∈(-1,3)
令
∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。
∵是增函数
∴函数在(-1,1]上单调递增,在(1,3)上单调递减。
注意:要求定义域
练习:求下列函数的单调区间。
1、(1)减区间,增区间;
(2)增区间(-∞,-3),减区间(1,+∞);
(3)减区间,增区间;
(4)减区间,增函数。
2、已知求g(x)的单调区间。
提示:设,则g(x)=f(u)利用复合函数单调性解决:g(x)
的单调递增区间分别为(-∞,-1],[0,1],单调递减区间分别为[-1,0],[1,+∞)。
例2、y=f(x),且lglgy=lg3x+lg(3-x)
(1)y=f(x)的表达式及定义域;
(2)求y=f(x)的值域;
(3)讨论y=f(x)的单调性,并求其在单调区间上相应的反函数。
答案:(1)x∈(0,3)
(2)(0,]
(3)y=f(x)在上单调递增函数,在上是单调递减函数
当x∈时,;
当x∈时,。
例3、确定函数的单调区间。
提示,先求定义域:(-∞,0),(0,+∞),再由奇函数,先考虑(0,+∞)上单调性,并分情况讨论。
函数的递增区间分别为(-∞,-1], [0,+∞)
函数的递减区间分别为[-1,0),(0,1]。
1、求下列函数的单调区间。
(1)(2)(3)
2、求函数的递减区间。
3、求函数的递增区间。
4、讨论下列函数的单调性。
(1)(2)
答案:1(1)递减区间(2)递增区间(0,+∞)(3)递减区间(-∞,0]递增区间[2,+∞)
2、[,2]
3、(-∞,-2)
4、(1)在上是增函数,在上是减函数;
(2)a>1时,在(-∞,1)上是减函数,在(3,+∞)上是增函数;
用待定系数法求函数解析式
一、填空题:
1、已知二次函数m x x y ++=32的图象与x 轴只有一个交点,则m = 。
2、抛物线c bx x y ++=2过点(1,0),与x 轴两交点间距离3,则b = ,c = 。
3、抛物线42++=bx x y 与x 轴只有一个交点,则b = 。
4、抛物线的顶点是C(2,3),它与x 轴交于A 、B 两点,它们的横坐标是方程0342
=+-x x 的两个根,则AB = ,S △ABC = 。
5、如图,二次函数5)2(2-+--=a x a x y 的图象交x
当线段AB 最短时,线段OC 的长是 。
6、若抛物线c x x y +-=2
12
的顶点在x 轴上,则c 7、抛物线12--=mx x y 与x 轴有 个交点。
二、选择题 1、抛物线()5322
--=x y 与y (A)(0,-5); (B) (0,13); (C) (0,4); 2、抛物线x x y --
=22
1的顶点坐标为( ) (A) ⎪⎭⎫ ⎝⎛211,- (B) ⎪⎭⎫ ⎝
⎛211,- (C) ⎪⎭⎫ ⎝⎛1,21- (D) (-1,0) 3、若抛物线()322++--=m x m x y 的顶点在y 轴上,则m 的值为( ) (A)-3 (B)3 (C)-2 (D) 2
4、若抛物线c x x y +-=2
12
的顶点在x 轴上,则c 的值为( ) (A) 41; (B) 41-; (C) 16
1; (D) 161- 5、函数()x x y -=32图象可能为( )
,5)c bx ++上的两点,那么它的对称轴为直线( )
(A) a
b x -
= (B) 1=x (C) 2=x (D) 3=x 7、抛物线12--=mx x y 与x 轴的交点个数是( ) (A)0; (B)1; (C)2; (D)无数个。
三、求符合下列条件的二次函数式图象:
1、过点(0,1),(1,1),(-1,-1);
2、对称轴是x =2,经过(1,4)和(5,0)两点。
3、抛物线与x 轴的一个交点(6,0),顶点是(4,-8)
4、当x =3时,y 有最大值为-1,且抛物线过点(4,-3)。
5、抛物线以点(-1,-8)为顶点,且与y 轴交点纵坐标为-6。
6、顶点在x 轴上,对称轴方程x =-3,且经过点(-1,4)。
7、求二次函数)4()232-+-+=m m x m x y (
的图象与x 轴两交点间的距离的最小值,此时m 的值是多少?
8、二次函数图象经过A(0,2)和B(5,7)两点,且它的顶点在直线y =-x 上。